
Low Cost, High Efficiency, High Pressure Hydrogen Storage

DoE Review February 8th, 2005

Mark J. Warner, P.E. Principal Engineer Quantum Technologies, Inc. Irvine, CA

This presentation does not contain any proprietary or confidential information.

Compressed Hydrogen Storage System

Compressed Hydrogen Type-IV Storage Tank

Foam Dome (impact protection)

Impact Resistant Outer Shell (damage resistant)

Carbon Composite Shell (structural)

High Molecular Weight Polymer Liner (gas permeation barrier)

In Tank Gas Temperature Sensor

Gas Outlet Solenoid -

In-Tank Regulator

Pressure Sensor (not visible here)

Pressure Relief Device (thermal)

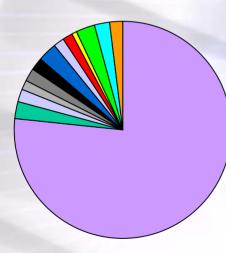
Project Objectives

Optimize and validate commercially viable, high performance, compressed hydrogen storage systems for transportation applications, in line with DOE storage targets of FreedomCar

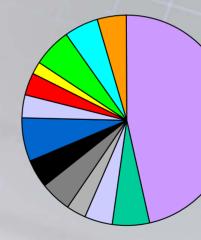
- Lower weight and cost of storage system
 - Material optimization
 - Process optimization and evaluations
 - Use of lower cost carbon fibers
- Reduce amount of material required through use of sensor technology to monitor storage system health
- Increase density of hydrogen by filling & storing at lower temperatures

Technical Barriers

- Sufficient fuel storage for acceptable vehicle range
 - Volume (Vehicle packaging limitations)
 - Pressure (70 MPa thick-walled pressure vessel challenges)
- Materials
 - Weight
 - Volume
 - Cost
 - Performance
- Balance-of-plant (BOP) components
 - Weight
 - Cost
 - Availability/development



Cost Drivers

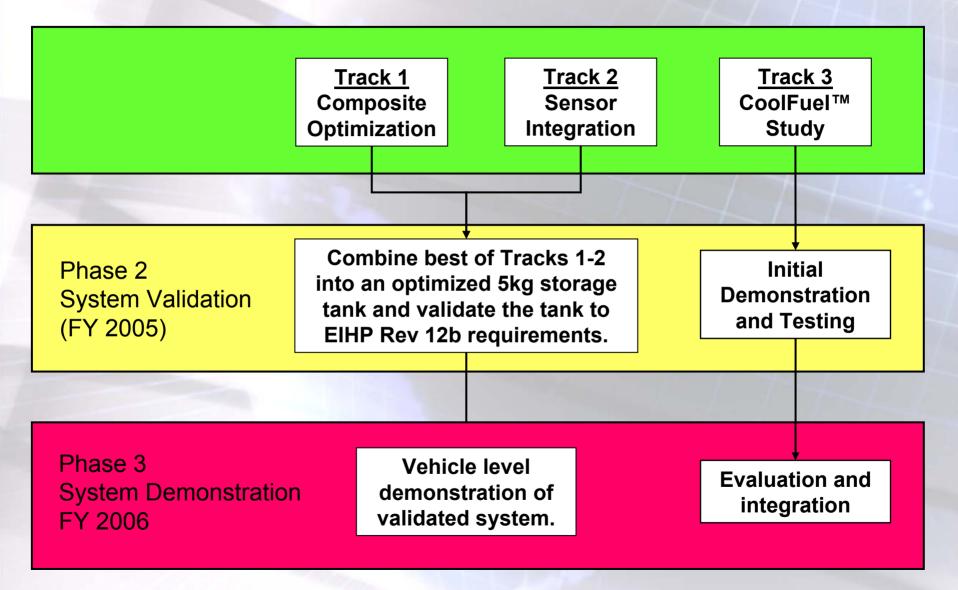

- Primary driver is material cost
 - 40 80% is carbon fiber cost
 - Significant opportunities for cost-reduction

High Performance Fiber

Low Cost Fiber

Carbon Fiber
Glass Fiber
Epoxy
Curatives
Liner Polymer
Foam Dome
Front Boss
Aft Boss
1-1/8 Adapter
Seals
Valve
PRD
Miscellaneous

Carbon Fiber
Glass Fiber
Epoxy
Curatives
Liner Polymer
Foam Dome
Front Boss
Aft Boss
1-1/8 Adapter
Seals
Valve
PRD
Miscellaneous



Technical Approach

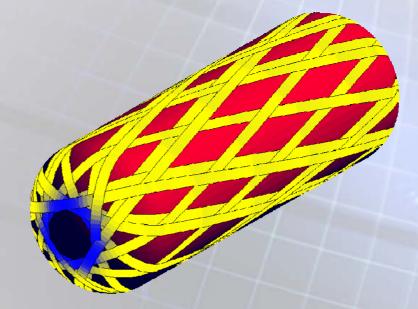
- Track 1: Optimize materials, design, and process to improve weight efficiency, costs, and performance
 - Increase fiber translation for 70 MPa tank design
 - Optimize use of "Low-cost" fiber for 70 MPa service
 - Minimize processing steps
- Track 2: Develop sensor integration technique to improve weight efficiency and costs
 - Monitor composite strain to reduce design burst criteria from EIHP = 2.35(SP) to 1.8(SP)
- Track 3: Study feasibility of hydrogen storage at lower temperatures to increase energy density
 - Develop techniques for maintaining "Cool Fuel"

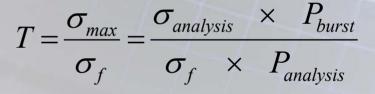
Project Overview

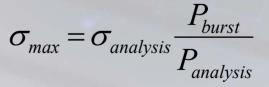
Track 1: Approach

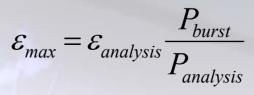
- Establish a baseline tank design for testing
 - 28-liter 70 MPa tank
- Vary materials, processing, and composite layup
- Measure tank strength and fatigue life

Track 1: Optimization of materials & design

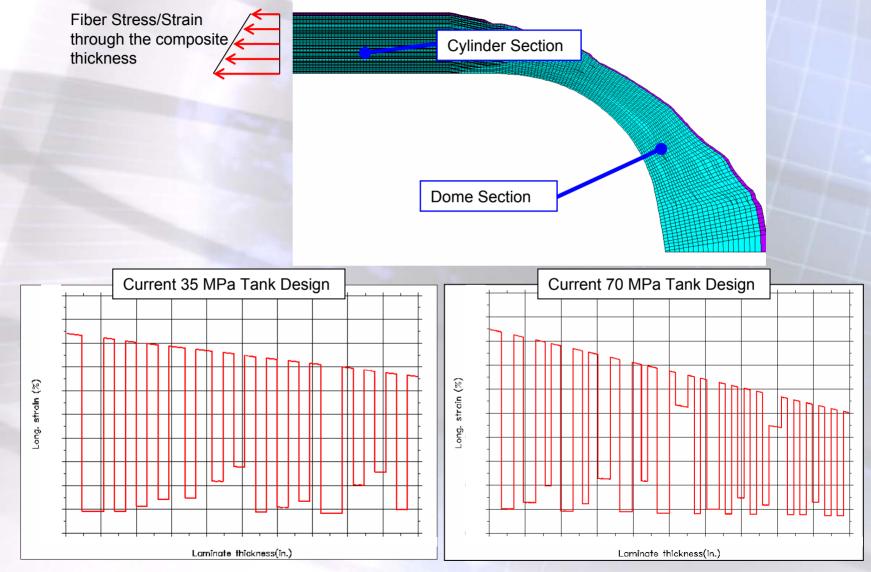

- Current 35 MPa tanks achieve 78-85% fiber translation
 - Thin-walled Pressure Vessel
- Current 70 MPa tank achieve about 58-68% fiber translation
 - Thick-walled Pressure Vessel

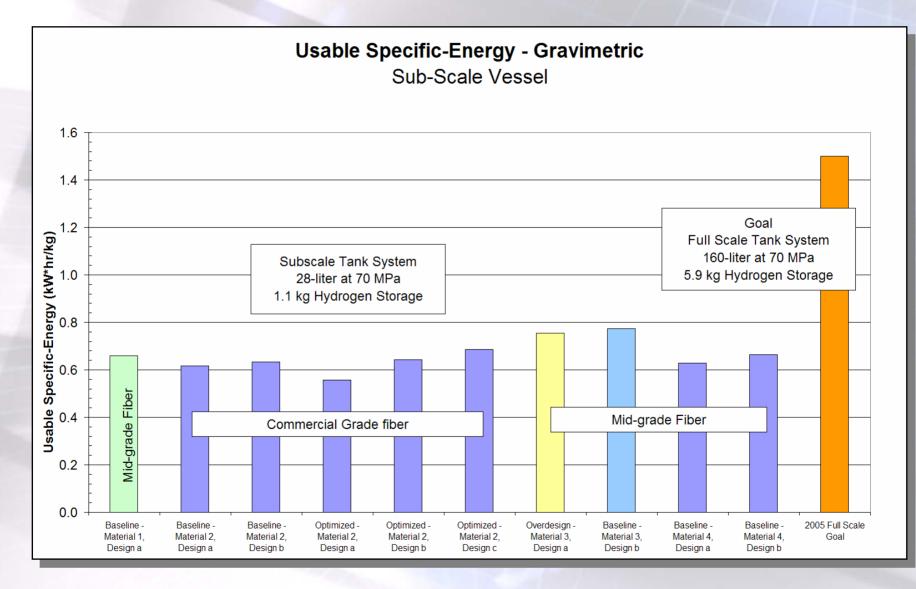

Fiber	# of Filaments	Tensile Strength		Tensile Modulus		Elongation	Approximate	Cost per
		(ksi)	(MPa)	(ksi)	(GPa)	(%)	Dry Fiber Cost (\$/kg)	Strength metric
High Performance	12K	900	6,370	42.7	294	2.2	\$170	6.8
Mid Performance	18K	790	5,490	42.7	294	1.9	\$58	2.6
Low Cost	24K	711	4,900	33.4	230	2.1	\$20	1.0




Track 1: Optimization of materials & design

- Translation is the ratio of the <u>actual</u> fiber strength in a structure to the <u>pure tensile</u> strength
 - Increasing fiber translation will reduce amount of fiber required
 - Composite fibers have the maximum strength when pulled in pure tension
- Several factors improve fiber translation
 - Resin consolidation
 - Fiber wetting by resin
 - Reduced number of helical cross-overs
 - Load transfer to outer shell in thick-walled vessel





Track 1: Optimization of materials & design

Track 1: Accomplishments

Track 2: Approach

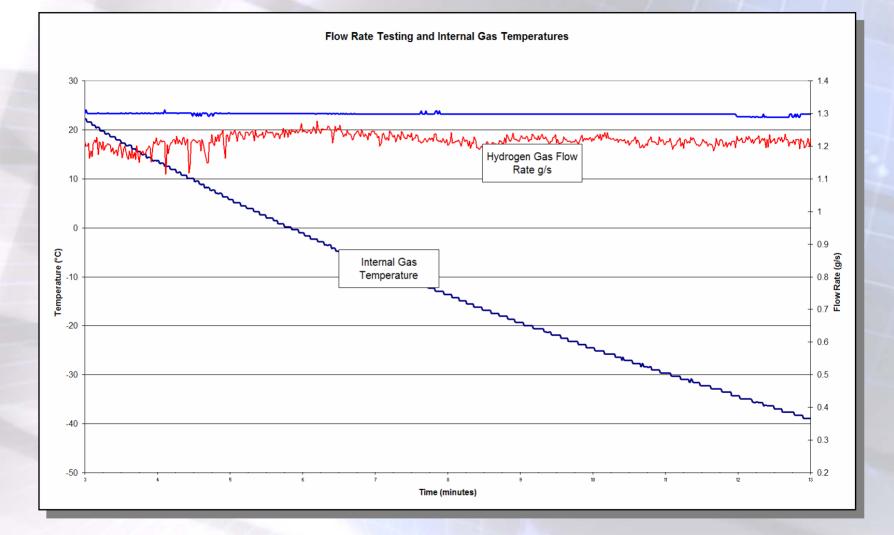
- Test existing strain sensors to assess health monitoring of a tank
 - Current E.I.H.P (European Integrated Hydrogen Project) Rev. 12b allows for the reduction of Burst Ratio factor from 2.35 to 1.8

Track 2: Accomplishments

- Sensor technology evaluation
 - Three sensor technologies were investigated for feasibility, cost, complexity, sensitivity, service life and power consumption
 - Resistance strain gage Monitoring
 - Fiber-Optic Strain gage Monitoring
 - Acousto-Ultrasonic Monitoring
 - Fiber-Optic Strain gage monitoring
 - Sensors monitor a large area
 - Sensors are wound into composite shell
 - They are placed on various layers
 - Have been tested in tank structures

Track 3: Approach

- Study feasibility of hydrogen storage at lower temperatures to increase energy density
 - Develop techniques for maintaining "Cool Fuel"
 - Hydrogen gas density at -70°C and 35 MPa is the same at 15 °C and 70 MPa



Track 3: Accomplishments

- Temperature cycle of filling and draining hydrogen tanks used to assess the thermal needs to maintain the stored gas at -70°C
- Thermal model is in development to assess the energy requirements to keep gas cool.

Track 3: Accomplishments

Phase 2 Plans

- Track 1 and 2
 - Combine Track 1 and 2 into a full scale optimized tank (+5kg H₂)
 - Lower Cost Fibers
 - Improved processing
 - Integrated Sensor System to Support Lower Burst Ratio
 - Fabricate and validate full scale storage vessel to E.I.H.P. Rev 12b requirements
- Track 3:
 - Initial prototype fabrication and demonstration of "Cool Fuel"

Conclusions

- Optimization of composite tank structures is achievable
- Integrated sensor technologies promise improved safety as much as reducing cost
- Active and passive techniques for improving fuel density and fill rates continue to be investigated.
- Safety will remain an industry priority!

Codes and Standards

Certification Status:

Storage Pressure	Approvals / Compliance
25 MPa (3,600 psi)	NGV2-2000 (modified) DOT FMVSS 304 (modified)
35 MPa (5,000 psi)	E.I.H.P. / German Pressure Vessel Code DBV P.18 NGV2-2000 (modified) FMVSS 304 (modified) KHK
70 MPa (10,000 psi)	E.I.H.P. / German Pressure Vessel Code DBV P.18 FMVSS 304 (modified) KHK

QUANTUM Participates in:

- E.I.H.P (European Integrated Hydrogen Project) Code Committee
- ISO Hydrogen Storage Standard Committee
- CSA America NGV2 Hydrogen TAG

Codes and Standards

Regulatory Agency Approval

- ISO 15869 International
- NGV2 US/Japan/Mexico
- FMVSS 304 United States
- NFPA 52 United States
- KHK Japan
- CSA B51 Canada
- TÜV Germany

Validation Tests

- Hydrostatic Burst
- Extreme Temperature Cycle
- Ambient Cycle
- Acid Environment
- Bonfire
- Gunfire Penetration
- Flaw Tolerance
- Accelerated Stress
- Drop Test
- Permeation
- Hydrogen Cycle
- Softening Temperature
- Tensile Properties
- Resin Shear
- Boss End Material

