
Distributed Reforming of Renewable 
Liquids via Water Splitting using 

Oxygen Transport Membrane (OTM) *

U. (Balu) Balachandran, T. H. Lee, C. Y. Park, and S. E. Dorris

Energy Systems Division

E-mail: balu@anl.gov

* Work supported by the Hydrogen, Fuel Cells, and Infrastructure 
Technologies Program of DOE’s Office of Energy Efficiency and 
Renewable Energy

Presented at the Bio-derived Liquids Working Group (BILIWG) Meeting, 
Nov. 6, 2007.



BILIWG Meeting, Nov. 6, 2007 2

Objective & Rationale 
Objective:

Develop compact dense ceramic membrane reactors that enable the efficient 
and cost-effective production of hydrogen by reforming renewable liquid fuels 
using pure oxygen produced by water splitting and transported by an OTM. 

Rationale:
Membrane technology provides the means to attack barriers to the 
development of small-scale hydrogen production technology.  This is critical to 
the development of hydrogen infrastructure for refueling of hydrogen powered 
vehicles.

Specific areas where this membrane technology provides crucial benefits 
include:
– Improved reforming & separation efficiencies
– Incorporation of breakthrough separations technology
– Intensification & consolidation of the number of process steps
– Reduced foot-print area
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Reforming of Fuels via Water Splitting using OTM

No electrical circuitry/power 
supply
Non-galvanic
Single material (no electrodes)

Ethanol/NG

Steam

O2-→ 1/2 O2 + 2e- 1/2 O2 + 2e- → O2-

CH4 + 1/2 O2 →

CO + 2H2

H2O → H2 + 1/2 O2

e-

O2-

-Fuel is reformed using oxygen that 
is formed by water splitting and 
transported by the membrane.

-H2 is produced on both sides of the 
membrane.C2H5OH + 1/2 O2 →

2CO + 3H2

Predominant products of ethanol
reforming: H2, CO, CO2, CH4, H2O 
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Barriers Addressed by this Project (DOE – MYPP)

A – Reformer capital cost
– Process intensified by combining unit operations
– High energy efficiencies

B – Reformer manufacturing costs
– Skid mounted units can be produced using currently available low-

cost, high-throughput manufacturing methods
– Compact design reduces construction costs

C – Operation & maintenance costs
– Uses robust membrane systems that require little maintenance

D – Feedstock issues
– Feedstock flexible; membrane provides pure oxygen needed for 

reforming

Membranes being developed also address cross-cutting barriers – Separations

Durability (barrier K), Impurities (barrier L); Selectivity (barrier N); Operating 
Temperature (barrier O); and Flux (barrier P).
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Reforming via Water Splitting using OTM

Oxygen is removed by 
membrane.
Non-galvanic (no electrodes/ 
electrical circuitry)

High pO2
(Steam side)

Low pO2
(Fuel side)

Dense mixed (oxygen ion-electron) conductor
(500-900°C)

O2-

e-
O2

H2O

H2

U. Balachandran et al., Int. J. Hydrogen Energy, 29, 291, 2004; U.S. Patent 7,087,211, Aug. 8, 2006.

H2O ⇔ H2 +1/2 O2

Very low concentrations of H2 and O2 are generated even 
at relatively high temperatures (0.1 and 0.042% for H2 and 
O2, respectively, at 1600°C).

Significant amounts of H2 & O2 can be generated at moderate 
temperatures if the reaction is shifted toward dissociation 
by removing either O2, H2, or both.

K =
PH 2

PO2

1

2

PH 2O

(for reforming NG or 
renewable liquids)

OTM



BILIWG Meeting, Nov. 6, 2007 6

Schematic of Experimental Setup – Ambient pressure 
Disk-type Membrane

Steam/N2

Al2O3 Disk Membrane SpringAl2O3 Rod

seal Al2O3 Tubes
Agilent  6890 GC
Column: molecular 
sieve 5A
Detector: TCD

Water Trap

Fuel 
(H2/He; CH4/He; CO/CO2)

Furnace

•Flow rates: ≈200 cc/min
•OTM sample size: ≈20 mm dia.
•Feed concentration: 5% CH4/He; 10% CO/CO2
•H2 production rate: ≈18 cc/min/cm2

•Temperature: 500 - 900°C
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Reforming of NG using OTM via Water Splitting
(Fuel side = 5% methane/bal. N2 )

Thickness = 0.58 mm
Temperature = 900°C
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Performance Metrics

Near term – focus on OTM material development 
– Flux, temperature, stability, mechanical properties
– Membrane fabrication, catalyst(s) incorporation
– H2A analysis using updated OTM performance
– Ethanol reforming using a small tubular OTM membrane reactor

Mid term – focus on membrane reactor design & prototype reactor testing
– Bench-scale membrane reactor for ethanol reforming
– Long-term stability tests
– Defining optimum operability conditions
– Scale-up issues & preliminary membrane reactor design
– Update H2A analysis using data from bench-scale reactor testing

Longer term – technology transfer
– Process demonstration unit
– Sub-scale engineering prototype
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Challenges and Options
Preventing coke formation. [Ethanol will thermally decompose into 
methane, ethylene, formaldehyde, and carbonaceous deposits (coke)].  
Possible approaches:
– Higher temperature operation (>800°C) 
– Mixing steam with ethanol

Fabricating of membrane modules for “real-world” applications
– Life cycle analysis

• Demonstrate mechanical integrity in prototype forms (mechanical 
property measurement)

• Evaluate failure limits of materials by finite-element analysis
• Evaluate chemical stability by performing long term tests

Enhancing H2 yield of the reformer
– Incorporate hydrogen transport membrane to remove H2 and thereby 

circumvent thermodynamic equilibrium limits
Incorporating catalysts to promote desired reactions
– Interact with catalyst development effort 

Controlling the mixing of ethanol vapor & oxygen 
– Membrane reactor design by simulation & modeling studies 
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Flow Diagram for Hydrogen Production by Reforming 
Methane/Renewable Liquids Using OTM Membrane via Water Splitting

Recirc.
Pump

H2
Compressor

H2
Storage

Pressure
Vessel

H2/H2O
Separator

Shift
Reactor

CO2/H2
Separator

Steam
Generator Water

Steam

CO/H2

Renewable Liquid or NG

H2

Natural Gas

Recirculated Water

H2H2H2O

H2/H2O

CO2



BILIWG Meeting, Nov. 6, 2007 11

Hydrogen Cost vs. Station Capacity
(Reforming of NG using OTM via Water Splitting)

Analysis done by 
Jerry Gillette @ Argonne

$/
kg
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Delivery Capacity (kg/day)

Station Size     Production Cost    Total Cost
(kg/day)            ($/kg)                    ($/kg)

70                    1.79 6.76
100                    1.58                     5.23
200                    1.31                     3.58
400                    1.13                     2.54
600                    1.05                     2.16
800                    1.01                     2.00

1000                    0.98                     1.85
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Hydrogen Cost vs. Station Capacity
(Reforming of Ethanol using OTM via Water Splitting)

Hydrogen Cost vs Station Capacity
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Production Cost (Including
ethanol)
Total Cost

Station Size     Production Cost     Total Cost
(kg/day)     Incl. Ethanol ($/kg)      ($/kg)
250                  3.52 5.39
500                  3.04                        4.29
750                  2.84                        3.81

1000                  2.73                        3.59
1250                  2.65                        3.44
1500                  2.60                        3.31

Total Hydrogen Cost @1500 kg/day

Production

Ethanol

Compression

Storage

Dispensing $0.71 (21.5%)

$1.89 (57%)

$0.24 (7.3%)

$0.35 (10.6%)
$0.12 (3.6%)

Total Cost = $3.31/kg H2

Analysis done by 
Jerry Gillette @ Argonne

•Total capital investment per station: $3.2 M (1500 kg H2/day)
•Annual operating cost of $1.8 M of which $1 M is for ethanol 
(@$1.07/gal)
•Energy Efficiency (not including electricity): Energy out in the 
form of H2/Energy in Ethanol + Energy in NG to produce 
steam = 68%
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Total Hydrogen Cost vs. Ethanol Cost – Reforming of 
Ethanol using OTM via Water Splitting (@1500 Kg/day)

Hydrogen Cost vs Ethanol Cost
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Ethanol Cost     Total H2 Cost
($)                         ($/kg) 
0.75                       2.75
1.00                       3.19
1.50                       4.07
2.00                       4.96
2.50                       5.84
3.00                       6.72

Analysis done by 
Jerry Gillette @ Argonne
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H2 Production Cost vs. Membrane Cost @ 500 kg/day
(Reforming of NG using OTM via Water Splitting)
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Analysis done by 
Jerry Gillette @ Argonne
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Membrane Cost  (cents/cm2)

Membrane Cost H2 Production Cost
($/cm2) ($/ft2) ($/kg)
0.10   93 1.06
0.25   231 1.08
0.50   463 1.12
0.75    693 1.15
1.00 925 1.18
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CH4 Air

CH4 + 1/2O2
CO + 2H2

O--

e-

OTM for high pressure steam reforming of ethanol (S. Ahmed)

OTM (mixed conductor)

≈900°C

•No electrical circuitry/power supply
•Non-galvanic
•Single material (no electrodes)
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HTM Membrane: H2 Flux Measured at Ambient & High Feed Gas 
Pressures (≈300 psig)

Measurements at NETL were made by M. Ciocco and R. Killmeyer

High pressure measurements were made 
on ≈0.8-mm-thick cermet membrane, and 
were scaled to 20 μm thickness for 
comparison. Extrapolated values fall in 
line with values measured at high 
pressures at both Argonne and NETL.

pH2(feed) − pH2(sweep) (atm1/2)

20 μm thick

H2 Flux at ≈300 psig Feed Gas Pressures 
(Measured at Argonne and NETL)
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SUMMARY
Oxygen transport membrane (OTM) materials for distributed reforming of 
renewable liquids via water splitting are being developed.

Hydrogen production rate of ≈18 cm3 (STP)/min-cm2 was measured at 900°C.  

Production rate increased with increasing steam pressure, increasing pO2
gradient, and with decreasing membrane thickness.

Preliminary H2A analysis showed the following results for a station capacity of 
1500 kg/day of H2:
– H2 production cost including cost of ethanol (@$1.07/gal) = $2.60/kg
– Total cost of H2 (including costs of production, ethanol, compression, 

storage, & dispensing) = $3.31/kg
– Total cost of H2 increased from $3.19 to $4.96/kg when cost of ethanol 

increased from $1 to $2/gal
– Total capital investment per station = $3.2 M
– Annual operating cost of $1.8 M of which $1 M is for ethanol @$1.07/gal
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Back-up Slides
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Schematic of Distributed Reforming of Renewable Liquids 
using OTM via Water Splitting

Ethanol

Steam
O--

e-

H2O

H2 + H2O

Ethanol

H2, CO, CO2

H2 + H2O Pure H2

H2, CO, CO2
shift 

reactor
CO2, H2

H2O

H2O
CO2

H2 Pipeline
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H2 production rate vs. pO2 differential across the membrane
(T = 900°C) 

Decreasing membrane thickness should enhance H2 production rate

New membrane

≈20-μm thick new 
membrane on 
porous support 
exhibited H2
production rate ≈18 
cc/min/cm2

In this model experiment,
H2 instead of CH4 was 
used on the fuel side to 
calculate the effect of 
pO2
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Dependence of Hydrogen Production
Rate on Temperature of OTM
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OTM Thickness = 0.10 mm

In this model experiment,
H2 instead of CH4 was used 
on the fuel side to study the 
effect of temperature.
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