

Advanced Energy Technologies

DEFENSE SCIENCES OFFICE

DoD End User Perspective and DARPA Palm Power Program

DOE Fuel Cell Portable Power Workshop January 15-17, 2002 Phoenix, Arizona

Dr. Robert Nowak

DARPA Defense Sciences Office

rnowak@darpa.mil 703 696-7491

Dr. Karen Swider Lyons
Naval Research Lab

DoD Compact Fuel Cell Evolution

DEFENSE SCIENCES OFFICE

1992 – H₂ Stack • 15 W; 2.3 kg

1996 - H₂ System (metal hydride) • 40 W / 90 Wh; 1.6 kg

1998 - H₂ System (compressed hydrogen

• 50 W/ 2 kW-hr; 3.4 kg

The Future?

Solid-Outline
Solid-Outline
Fuel Tech
Solid-Outline
Fuel Tech
Solid-Outline
Fuel Tech
(insulation)

Solid-Outline
Fuel Tech
(insulation)

Solid-Outline
Fuel Tech
(insulation)

Air Bilayer
Index

<u>2001 – DMFC - System</u>

• 60 W; 6.8 kg; 30% efficiency

"It's the fuel stupid!"

<u>SOFC -Hydrocarbon - System</u>

• 20 W; 0.72 kg; 28% efficiency (Goals)

Marine Corps Air Ground Combat Center 29 Palms, CA, Fall 1999

DEFENSE SCIENCES OFFICE

TRAINING

Fuel Cells aboard Humvee

PRC-119 Radios

MILITARY EXERCISE

Retransmission Site

COST ESTIMATE FOR ONE RETRANS SITE

- BA5590 BATTERIES = \$8000
- FUEL CELLS = \$250

Ball Aerospace & Technologies Corp and H-Power Corp

Direct Methanol Fuel Cell

Brassboard

60 Watt Packaged System

- Operates directly on methanol (no fuel processing required)
- Very low temperature operation (case and cooling air is cool to the touch)
- One gallon of methanol (< \$0.50) equivalent to 100 lbs. batteries (\$4000)
- Technology easily scaled cellular telephones (1 Watt on up)
- Several distributed units could replace unreliable, noisy generators
- Future technology goal operate on logistics fuels

Direct Methanol Fuel Cells for Cellular Phones

Methanol

Electrons

Carbon dioxide

Electrodes

Oxygen

PolyFuel

Motorola

Manhattan Scientifics

NEC

- •One Month Operation?
- No Battery Chargers
- Scaleable Technology for More Power Hungry Devices

Performance Shortfall of Today's Portable Power Sources for DoD Applications

Palm Power

DEFENSE SCIENCES OFFICE

Idea:

 Develop a 20 W power source in a hand-held package having 15 times the energy content of the best battery to meet future power requirements in 2010 and beyond

Technical Challenges:

- Highly efficient energy conversion of liquid fuels
- New materials for thermal management, catalysis
- Novel fabrication tools for highly compact, complex systems

Impact:

- For...Objective Force Warrior, SOCOM
- To...Enable Future Missions
- via...Energy Conversion of High Energy Fuels
- Scale Up Option for Cooling, EXO, etc.

Resource Allocation

Highlights:

- New Start in FY01; Five YearProgram. Phase I 3 Years
- Multidisciplinary teams: Large
 Corporations, Small Businesses,
 Universities, Non-profits
- Transition Partners: PM Soldier, Natick, CECOM, SOCOM, Marine Corps, Navy

Mission Energy Goals

Program Structure

DEFENSE SCIENCES OFFICE

Materials Processing (6%) Components (25%) Integrated Systems (61%) Materials (8%)

- Membranes
- **Ceramic Extrusion**
- U of Colorado
- Georgia Tech
- Electroactive Polymers > Adaptive Materials

- > SRI
- Thermionics
 - > Vanderbuilt
 - > ENECO
- Thermophotovoltaics
 - Draper Laboratory
- Thermoelectrics
 - > RTI

Anode Supported Tubule

Micro Channels for Heat-**Transfer Fluids**

- Small Engine
 - > U of Michigan
- AMTEC
 - > AMPS
- Micro Fuel Processing
 - > RTI
 - > Altex

SOFC

> MSRI

Combustion

> Yale U

- DMFC
 - Ball Aerospace
 - Creare
- SOFC
 - ITN Energy Systems
 - Honeywell/General Electric

Program Philosophy

- Multiple Technologies
- Cross-fertilization of Materials and Components
- Flexible Integration Into Systems

Compact Integrated Multi-Fuel Processors

Ashok S. Damle, Research Triangle Institute Charles J. Call, MesoSystems Technology, Inc.

DEFENSE SCIENCES OFFICE

Overall Objective:

 To develop lightweight, fuel processors to convert liquid logistic fuels to high purity on-demand hydrogen

Hydrogen Generator Targets:

- Capacity 1.5 to 5 kW-hr
- Specific Energy 2 to 3 kWh/kg

Approach:

- Steam reforming of hydrocarbon fuels and thermal decomposition of ammonia in a H₂ selective membrane reactor
- Integrated micro-channel reactor, auxiliary fuel combustor, H₂ membrane, gas/gas heat exchanger heat recovery, and insulation panels for low heat loss.
- Maximized thermal efficiency and hydrogen yield

Status of Current Technologies:

- Integrated Micro-channel reactor/ combustor for hydrogen generation by thermal decomposition of NH₃
- High-flux, high-selectivity Pd-based composite membranes
- Micro-channel gas/gas heat exchangers for high thermal efficiency
- "Additive" manufacturing for lightweight fuel processor components

Proposed SOFC Palm Power System

if necessary)

SOFC

Fuel Delivery

Honeywell/GE SOFC Performance

- 800°C operation
- Open circuit voltages in agreement with theoretical values
- Peak power density:
 - 1.3 W/cm² in hydrogen
 - 0.85 W/cm² in JP-8 syngas

Direct Oxidation of Liquid Hydrocarbons

DEFENSE SCIENCES OFFICE

- Performance on liquid hydrocarbon fuels at 700°C
- Stable operation

Gorte, Vohs, Worrell

Direct Oxidation of Hydrocarbons in SOFCs

DEFENSE SCIENCES OFFICE

I-V for Diesel Fuel at 700°C

0.20 1.0 0.8 Power Density (W/cm²) 0.15 Voltage (V) 0.6 0.10 0.4 0.05 0.2 0.0 0.0 0.00 0.2 0.4 0.6 0.8 Current Density (A/cm²)

Diesel – Performance vs. Time

CPOX for Processing Hydrocarbon Fuels

- Fuels: propane, butane, octane, JP-8, and diesel
- Duration: 700 hours to date
- Thermal cycles: 10
- Sulfur tolerance: 1000 ppm dibenzothiophene in JP-8
- Yield: 70-80% of LHV in JP-8

GOAL: 20 W power source in a *hand-held package* having 15 times the energy content of the best battery

http://www.darpa.mil/dso/thrust/md/palmpower/index.html