Acronyms

А	Amp	CCM	Catalyst Coated Membrane
AAS	Atomic Adsorption Spectroscopy	CEM	Compressor Expander Module
ACR	Autothermal Cyclic Reforming	CEM	Continuous Emissions Monitor
ADVISOR	Advanced Vehicle Simulator	CESI	Catalystic Energy Systems, Inc.
AES	Auger Electron Spectroscopy	CFD	Computational Fluid Dynamics
AFC	Alkaline Fuel Cell	CGO	Gadolinium-Doped Ceria
AFV	Alternative Fuel Vehicle	CH ₂	Compressed Hydrogen Gas
Ag	Silver	CH2-ISS	Compressed Hydrogen Gas
AHC	Ad Hoc Hydrogen Committee	2	Integrated Storage System
AIAA	American Institute for Aeronautics	CH₄	Methane
	and Astronautics	CIDI	Compressed Ignition Direct
Al	Aluminum		Injection
Al/Si	Aluminosilicate	CIGS	Copper-Indium-Gallium-Diselenide
Al ₂ O ₂	Aluminum Oxides	Chl	Chlorophyll
AMS	Accelerator Mass Spectrometry	Cl	Chlorine
ANL	Argonne National Laboratory	CLP	Corner Linked Polyhedral
APCI	Air Products and Chemicals Inc	cm	Centimeters
APU	Auxiliary Power Unit	cm ²	Centimeters Squared
a-Si	Amorphous Silicon	CMC	Carbonxymethylcellulose
a-Si'Ge	Amorphous Silicon/Germanium	CNG	Compressed Natural Gas
a-SiC	Amorphous Silicon Carbide	CO	Carbon Monoxide
ASNT	The American Society for		Cobalt
10111	Nondestructive Testing	CO	Carbon Dioxide
ATDC	After Top Dead Center		Chemical Oxygen Demand
atm	atmospheres	СОРН	Carbon Monovide Dehydrogenase
	Autothermal Reformer	Cr	Chromium
ATR	Auto-Thermal Reformer	CSA	Canadian Standards Association
	Gold	Cu	Copper
RDI	Boothrovd-Dewburst Inc	Cu/7nO	Copper/zinc oxide
BKI	Bevilacqua Knight Inc.		Chemical Vapor Infiltration
bman	Devilacqua-Kinght, Inc. Braka Maan Effactiva Prassura	CWPU	Case Western Peserve University
BN	Boron Nitride	DBM	Dibutyl Maleate
DIN	Di Dhanal Sulfana	da	Direct Current
	Breakthrough Technology Institute		Diebloromothano
C DII	Carbon	DCM	Discal Computing Simulation
°C	Degrees Colging	DCSF	Encility
C plus	Hudroserban gasas containing 2 or	DECSE	Diagol Emission Control Sulfur
C_2 plus	more carbon atoms	DECSE	Effects
СЧ	Ethylono	DED®	Double Floatrade Plate technology
$C_{2}\Pi_{4}$	Computer Aided Drefting	DEF	Design for Manufacturing and
CAD	Collifornia Fuel Coll Partnarshin	Drwia	Assembly
	Calaium Hydrida		Assembly Dimethylomine Derene
	Calcium Hydride	DMAD	Dimethylamine Bolane
	Computer Aided Manufacture	DMFC	Direct Methanol Fuel Cell Diversified Menufacturing Las
	Chlorophyll o Owygorgog		Diversified manufacturing inc.
CADD	California Air Deserves Desert	DOC	Diesei Oxidation Catalyst
CAKB	Change Counted D	DUE	Department of Energy
CCD	Charge-Coupled Device	DPF	Diesel Particulate Filter

DPG	Distributed Power Generation	GaN	Gallium Nitride
DSC	Differential Scanning Calorimeter	GC	Gas Chromatography
EC TC 105	International Electrotechnical	GC/MS	Gas Chromatography/Mass
	Committee Technical Committee for		Spectrometry
	Fuel	GCG	Global Corporation Group
ECA	Electrochemical Surface Area	GDATP	General Dynamic Armaments and
ECD	Energy Conversion Devices, Inc.		Technical Products
ECD-1	Emission Control Diesel-1	GDL	Gas Diffusion Laver
EDS	Energy Dispersive Spectroscopy	GE EER	GE Energy and Environmental
EDX	Electron Dispersive X-Ray		Research Corporation
EGR	Exhaust Gas Recirculation	GHG	Greenhouse Gas
EIHP	European Integrated Hydrogen	GHSV	Gas Hourly Space Velocity
	Project	GJ	Giga-Joule
ELV	End of Life Vehicle	GJ/t	Giga Joule per Metric Ton
EMC	Electro Magnetic Compatibility	gm	Gram
EPAct	Energy Policy Act	GRC	Global Research Center
ESR	Electron Spin Resonance	GREET	Greenhouse gases Regulated
EtOH	Ethanol	UTED I	Emissions and Energy Use in
eV	Electron Volts		Transportation
EXAFS	Extended X-ray Absorption Fine	GTI	Gas Technology Institute
	Structure	GTR	Global Technical Regulation
٥F	Degrees Fahrenheit	GV	Gasoline internal combustion engine
FCC	Face-Centered Cubic	01	Vehicle
FCPS	Fuel Cell Power System	h	Hours
FCV	Fuel Cell Vehicle	Н	Hydrogen
Fe	Iron	h ⁻¹	ner hour
FeOa	Iron Oxide	(HaBNHa)	Polymeric Aminohorane
FFT	Field Effect Transistor	$(HBNH)_{x}$	Borazine
FG	Flared Gas	(HBNH)	Polyborazine
FHDS	Federal Highway Driving Schedule	HaGe So	Dihydrogen Tetragermanium
FI MH	Fluorinated Metal Hydride	11200409	Sulfide
FMFA	Failure Mode and Effects Analysis	HiGerSin	Tetrahydrogen Tetragermanium
FMEA	Failure Mode Evaluation and	114004010	Sulfide
	Analysis	H.Ge.S.onHa	Stetrahydrogen Tetragermanium
FOS	Factor of Safety	114004510 11125	Sulfide with n Molecules of H-S
FPS	Fuel Processing System	H.Ge.S.orH.S	Stetrahydrogen Tetragermanium
FreedomCAR	US Department of Energy	114004010 11120	Sulfide with x Molecules of H-S
TICCOMEAK	Automotive Research Partnershin	HarOa	Hydrogen and Oxygen Gas Mixture
FT	Fischer_Tropsch	H ₂ -0 ₂	Hydrogen
FT100	Neat Fischer-Tropsch fuel	H ₂ H ₂ BNH ₂	Monomeric Aminoborane
FTIR	Fourier Transform Infrared	H ₂ Divit ₂	Water
FTP	Federal Test Procedure	H ₂ O	Hydrogen Sulfide
FUDS	Federal Urban Driving Schedula	H ₂ 5	Sulfurio A aid
FUDS FV	Fiscal Vaar	П2504 Ц рыц	Ammonia Borana Complex
F I G	Cas Phase		Hudrogen Adgerntion/Deservicen
g a/a	Calleng per Second		Hydrogen Adsorption/Desorption
g/s	Ganoral Atomics		Highly Accelerated Life Testing
	Collium Sulfido	HALUP	Hazardous Operations
Ga203	Cormonium Sulfido		Hoat of Combustion
C_{2}	Cormonium Quide	ДП _С	neat of Computing
UeU_2	Germanium Oxide	псі	riyulociilolle Acia

HCN	Hydrochloric Cyanide	КОН	Potassium Hydroxide
HCNG	Hydrogen Enriched Natural Gas	kPa	Kilopascal
hcp	Hexagonal Close Pack	Krpm	Thousands of Rotations per Minute
HĈSCC	Hydrogen Codes and Standards	kŴ	Kilowatt
	Coordinating Committee	kWe	Kilowatt Electrical
HDPE	High Density Polyethylene	L	Liter
HEV	Hybrid Electric Vehicle	LANL	Los Alamos National Laboratory
ΔH_{f}°	Heat of Formation	LCHPP	Low Cost Hydrogen Production
HFA	Hydrogen Fueling Appliance		Platform
HFSF	High-Flux-Solar Furnace	LH_2	Cryogenic Liquid Hydrogen
HGS	Hydrogen Generating System	LHV	Lower Heating Value
HHV	Higher Heating Value	Li	Lithium
H-ICE	Hydrogen- Internal Combustion	Li ₂ SO ₄	Lithium Sulfate
	Engine	$LiBH_4$	Lithium Borohydride
HOGEN	Hydrogen Oxygen Generator	LiCl	Lithium Chloride
HOR	Hydrogen Oxidation Reaction	LiF	Lithium Flouride
ΔH_r	Heat of Reaction	LiH	Lithium Hydride
HRT	Hydraulic Retention Time	LII	Laser-Induced Incandescence
HRTEM	High-Resolution Transmission	LME	London Metals Exchange
	Electron Microscopy	LNG	Liquefied Natural Gas
HTAP	Hydrogen Technical Advisory Panel	LPG	Liquefied Petroleum Gas (Propane)
HTM	High Temperature Membrane	LPM I	Liters Per Minute
HTM	Hydrogen Transport Membrane	LTS	Low Temperature Shift
HTPMWG	High-Temperature Polymer	М	Molar
	Membrane Working Group	M HCIO ₄	Molar Perchloric Acid
HTS	High Temperature Shift	m ² Pa sec	Mole per Meter Squared Pascal
I ² R	Ohmic Resistances		Second (flux unit)
ICC	International Code Council	m ³ /hr	Moles per hour cubed
ICE	Internal Combustion Engine	mA	Milliamps
ICEV	Internal Combustion Engine Vehicle	MBMS	Molecular-Beam Mass Spectrometer
INEEL	Idaho National Engineering &	MCH	Methylcyclohexane
	Environmental Laboratory	MDSC	Modulated Differential Scanning
IPA	Isopropyl Alcohol		Calorimetry
ISO TC 197	International Organization of	MEA	Membrane Electrode Assembly
	Standardization Technical	MECA	Manufacturers of Emission Controls
	Committee for Hydrogen		Association
	Technologies	MEMS	Micro Electro Mechanical Systems
ISS	Integrated Storage System	MFC	Mass Flow Controller
ITM	Ion Transport Membrane	Mg	Magnesium
JEVA	Japanese Electric Vehicle	mg	Milligram
	Association	MHSS	Metal Hydride Storage System
JHU/APL	Johns Hopkins University Applied	ML	Monolayer
	Physics Laboratory	mm	Millimeter
JPL	Jet Propulsion Laboratory	μm	Microns
Κ	Kelvin	MMSCFD	Million Standard Cubic Feet per Day
K ₂ O	Potassium Oxide		Gas Flowrate
kg	Kilogram	Mn	Manganese
kj/mole	Kilo Joule	Мо	Molybdenum
kJ/Mol-kilo	Joule per Mole	MOU	Memorandum of Understanding
km	kilometers	MPR	Modular Pressurized Reformer

MSCFD	Thousand Standard Cubic Feet per	NRL	Naval Research Laboratory
	Day Gas Flowrate	O&M	Operating and Maintenance
MSHA	Mine Safety and Health	O ₂	Oxygen Gas or Diatomic Oxygen
	Administration	OECD	Organization for Economic
MSW	Municipal Solid Waste		Cooperation and Development
MTS	Medium Temperature Shift	OEM	Original Equipment Manufacturer
mV	Millivolt	OEP	Octaethyl Porphyrin
mW	Megawatt	ORNL	Oak Ridge National Laboratory
mW/mg	Milliwatts Per Milligram	ORR	Oxygen Reduction Reaction
N	Normal	OTM	Oxygen Transport Membrane
N_2	Diatomic Nitrogen	P&ID	Piping and Instrumentation Diagram
NÃ	North American	PADT	Phoenix Analysis and Design
NaCl	Sodium Chloride		Technologies
NaF	Sodium Flouride	PAH	Polycyclic Aromatic Hydrocarbon
NADP	Nicotinamide Adenine Dinucleotide	PCR	Polymerase Chain Reaction
	Phosphate	Pd	Palladium
NaH	Sodium Hydride	PDF	Pair Distribution Function
NaAlH₄	Sodium Tetrahydroaluminate	PDF	Pair-Density Function
Na ₃ AlH ₆	TriSodium Hexahydroaluminate	PDU	Process Development Unit
Nb	Niobium	PEC	Photoelectrochemical
NCNR	NIST Center for Neutron	PECVD	Plasma-Enhanced Chemical Vapor
	Technology		Disposition
NDIR	Non-Dispersive Infrared	PEM	Polymer Electrolyte Membrane
NEDC	New European Drive Cycle	PEM	Proton Exchange Membrane
NETL	National Energy Technology	PEMFC	Proton Exchange Membrane Fuel
	Laboratory		Cell
NFC	Near Frictionless Carbon	PFA	Personal Fuel Appliance
NG	Natural Gas	PFCT	Porvair Fuel Cell Technology. Inc.
NGASE	Natural-Gas-Assisted Steam	PFD	Process Flow Diagram
	Electrolyzer	p-GaInP ₂	Gallium Indium Phosphide
NGCC	Natural Gas Combined-Cycle	PGM	Platinum Group Metal
NH ₃	Ammonia	PHA	Personal Hazard Analysis
NH₄Cl	Ammonium Chloride	PM	Particulate Matter
$(NH_4)_2SO_4$	Ammonium Sulfate	PM	Precious Metal
NHA	National Hydrogen Association	PMV	Personal Mobility Vehicle
Ni	Nickel	PNNL	Pacific Northwest National
IN151	Tachnalagy	DOEM	Laboratory Dereus Oxide Electrolyte Membrone
NI	Notural Lyminacity		Portial Quidatian
INL Nor	Natural Lummosity	PO_X	Partial Oxidation Steam Deformer
NMUC	Nanometer	POX/SR	Partial Oxidation/Steam Reformer
NMAC	Non-Methane Organia Cases	ррш	Parts per Million Volume
	Non-Wethane Organic Gases	ppmv	Parts per William Weight
	Nuclear Magnetic Resonance	ppmw	Plasta guinana
ININA	Non-North American	rQ	Prastoquinone Professional Quidation
NO _X	Nitrogen Oxides	PRUA	Preferential Oxidation
NU _X EI NDD	Nulugen Oxide Index Neutron Douglar Diffractamentar		Programa Suring Advantian
	Net Dreagent Volue	r SA Dei	Photosystem I
	Netional Density 11 Day	1'51 Dai	Photosystem I
INKEL	National Kenewable Energy	PSI DCLA	Pounds per Square Inch
	Laboratory	PSIA	rounds Per Square Inch Absolute

PSIG	Pounds Per Square Inch Gauge	SMR	Steam Methane Reformer
PSII	Photosystem II	SO_2	Sulfur Dioxide
Pt	Platinum	SOFC	Solid Oxide Fuel Cell
Pt-FeO _x	Platinum-iron oxide	SR	Steam Reformer
PV	Photovoltaic	STAR	Substrate based Transportation
R&D	Research and Development		application Autothermal Reformer
RDE	Rotating-Disk Electrode	SUV	Sport Utility Vehicle
Re	Rhenium	SWNT	Single Walled Nanotube
RFG	Reformulated Gasoline	SWOP	Supercritical Water Partial
RH	Relative Humidity		Oxidation
Rh	Rhodium	SwRI	Southwest Research Institute
ROI	Record of Invention	t/yr	tonnes/year
RPECS	Rapid Prototyping Electronic	Та	Tantalum
	Control System	TBD	To Be Determined
Ru	Ruthenium	TCD	Thermal Conductivity Detector
RuCl ₃	Ruthenium Chloride	TCD	Thermocatalytic Decomposition
Rx	Rubrivivax	TCR	Thermocatalytic Reactor
S	Solid Phase	TCR	Total Capital Requirement
S/C	Steam/Carbon	TCUF	Thermochemical User's Facility
S/cm	Siemens per centimeter	TEA	Technoeconomic Analysis
S_2	Sulfur	TEM	Transmission Electron Microscopy
SĂE	Society of Automotive Engineers	TEM	Transmission Electron
scc/hr/l	Standard Cubic Centimeters per		Photomicrograh
	Hour per Liter	TGA-DSC	Thermogravimetric Analyzer-
sccm	Standard Cubic Centimeters per		Differential Scanning
	Minute	TGA-FTIR	Thermogravimetric Analyzer-
scfd	Standard Cubic Feet per Day		Fourier Transform Infrared
scfh	Standard Cubic Feet per Hour	TGC	Tail Gas Combustor
scfm	Standard Cubic Feet per Minute	THC	Total Hydrocarbons
SCORE	Sandia/Caterpillar Optical Research	Ti	Titanium
	Engine	$(TiAl_{0.1}V_{0.04})$	Metal Hydride Alloy
SCP	Single Cell Protein	TiCl ₂	Titanium Dichloride
SD	Sputter Deposition	TiCl ₃	Titanium Trichloride
SECA	Solid State Energy Conversion	TiF ₃	Titanium Triflouride
	Alliance	TiO ₂	Titanium Dioxide
SEM	Scanning Electron Microscope	tla	truncated light-harvesting Chl
SEP	Subscale Engineering Prototype		antenna
SESHA	Semiconductor Environmental,	TMI	Technology Management, Inc.
	Safety, and Health Association	TPC	Total Plant Cost
SET	Sustainable Energy Technologies	TPGME	Tripropylene Glycol Monomethyl
SF ₆	Sulfur Hexafluoride		Ether
SFTP	Supplemental Federal Test	TPR	Temperature-Programmed
	Procedure		Reduction
SHE	Standard Hydrogen Electrode	T-RFLP	Terminal Restriction Fragment
S-HTS	Scrubber-High Temperature Shift		Length Polymorphism
SiC	Silicon Carbide	TVA	Thermovolumetric analyzer
SINL	Spatially Integrated Natural	UH	University of Hawaii
	Luminosity	UIC	University of Illinois at Chicago
SiO ₂	Silica Dioxide	UTRC	United Technologies Research
slpm	Standard Liters per Minute		Center

V	Vanadium
V	Volt
VC	Vulcan carbon, XC-72
VFA	Volatile Fatty Acids
VNT®	Variable Nozzle Turbine
VO _x	Vanadium Oxide
VRA	Vehicle Refueling Appliance
W	Tungsten
W	Watt
WGS	Water-Gas Shift
WHEC	World Hydrogen Energy Conference
WHSV	Weekly Hourly Space Velocity
WO ₃	Tungsten Oxide
Wt	Weight
Wt%	Weight Percent
WTW	Well-to-Wheels
XAS	X-ray Absorption Spectroscopy
XPS	X-ray Photoelectron Spectroscopy
XRD	X-ray Diffraction
XRF	X-ray Fluorescense
ZEV	Zero-Emission Vehicle
Zn	Zinc
ZnO	Zinc Oxide
Zr	Zirconium
ZrO _x	Zirconia Dioxide
Ωcm^2	Ohm-centimeter-squared

Appendix A. Draft DOE Technical Targets

Tables 1 through 3 list the DOE technical targets for PEM fuel cell stack systems, fuel-flexible fuel processors, and integrated fuel cell power systems operating on gasoline. Target values listed in these tables represent a self-consistent set and must be achieved simultaneously. Targets for 2010 are R&D milestones for the purpose of measuring progress, not necessarily the targets required for successful commercialization of the technology. Table 4 lists the DOE technical targets for on-board hydrogen storage, and Table 6 lists the technical targets for off-board hydrogen production and dispensing infrastructure. Tables 7 through 10 list technical targets for fuel cell stack and fuel processor components. All targets were developed with industry through preliminary vehicle system analyses and will be refined further as the technology matures and power system trade-offs are identified. Targets for hydrocarbon-based systems are based on operation with reformulated gasoline containing an average of 30 ppm sulfur (80 ppm maximum); except for the hydrogen storage targets in Table 5, all power target values indicate electric power (We).

Targets are reviewed on an annual basis and updated as necessary based on new information.

Table 1. Technical targets: fuel cell stack systems operating on hydrogen-containing fuel from a fuel processor (gasoline reformate) in 50 kWe (net) fuel cell systems

(Excludes fuel processing/delivery system) (Includes fuel cell ancillaries: thermal, water, air management systems) All targets must be achieved simultaneously and are consistent with those of FreedomCAR

		Calendar year			
Characteristics	Units	2001 status	2005	2010	
Stack system power density ^{a, b}	W/L	200	400	550	
Stack system specific power	W/kg	200	400	550	
Stack system efficiency c @ 25% of rated power	%	45	50	55	
Stack system efficiency ^c @ rated power	%	40	42	44	
Precious metal loading ^d	g/rated kW	2.0	0.6	0.2	
Cost ^e	\$/kW	200	100	35	
Durability	hours	1000 ^g	>2000 ^h	>5000 ⁱ	
Transient response (time for 10% to 90% of rated power)	sec	3	2	1	
Cold start-up time to rated power @ -20°C ambient temperature @ +20°C ambient temperature	min min	2 1	1 0.5	0.5 0.25	
Survivability	°C	-20	-30	-40	
CO tolerance ^k steady state (with 2% maximum air bleed) transient	ppm ppm	50 100	500 500	500 1000	

^aPow er refers to net power (i.e., stack power minus auxiliary power requirements).

^bVolume is "box" volume, including dead space, and is defined as the water-displaced volume times 1.5 (packaging factor). Pow er density includes ancillaries (sensors, controllers, electronics, radiator, compressor, expander, and air, thermal and water management) for stand alone operation.

^cRatio of output DC energy to lower heating value of hydrogen-rich fuel stream (includes converter for 300 V bus); ratio of rated power to 25% of rated power efficiencies unchanged, assuming continued proportional reduction in stack efficiency at higher current and proportional increase in compressor efficiency at higher flow rates.

^aEquivalent total precious metal loading (anode+cathode): 0.1 mg/cm² by 2010 at rated power. Precious metal target based on cost target of <\$3/kW precious metals in MEA [@\$450/troy ounce (\$15/g), <0.2 g/kW]

^eHigh-volume production: 500,000 units per year.

^PPerformance targets must be achieved at the conclusion of the durability period; durability includes tolerance to CO, H₂S and NH₃ impurities.

^gContinuous operation (pertains to full power spectrum).

^hIncludes thermal cycling.

ⁱIncludes thermal and realistic driving cycles.

Performance targets must be achieved at the end of 8-hour cold-soak at temperature.

^kCO tolerance requirements assume capability of fuel processor to reduce CO. Targets for the stack CO tolerance are subject to trade-offs between reducing CO in the fuel processor and enhancing CO tolerance in the stack. It is assumed that H₂S is removed in the fuel processor.

Table 2. Technical targets: fuel processors^a to generate hydrogen-containing fuel gas from reformulated gasoline containing 30 ppm sulfur, average, for 50 kWe (net) fuel cell systems

(Excludes fuel storage; includes controls, shift reactors, CO cleanup, heat exchangers) All targets must be achieved simultaneously and are consistent with those of FreedomCAR

		Calendar year		
Characteristics	Units	2001 status ^b	2005	2010
Energy efficiency ^c	%	78	78	80
Power density	W/L	500	700	800
Specific power	W/kg	450	700	800
Cost ^d	\$/kW	85	25	10
Cold start-up time to maximum power @ –20°C ambient temperature @+20°C ambient temperature	min min	TBD <10	2.0 <1	1.0 <0.5
Transient response (time for 10% to 90% power)	sec	15	5	1
Emissions ^e		<tier 2<br="">Bin 5</tier>	<tier 2<br="">Bin 5</tier>	<tier 2<br="">Bin 5</tier>
Durability	hours	1000 ^g	4000 ^{<i>h</i>}	5000 ⁱ
Survivability	°C	TBD	-30	-40
CO content in product stream ^k steady state transient	ppm ppm	10 100	10 100	10 100
H ₂ S content in product stream	ppb	<200	<50	<10
NH ₃ content in product stream	ppm	<10	<0.5	<0.1

^aWith catalyst system suitable for use in vehicles.

^bProjected status for system to be delivered in late 2002: 80% efficiency, 900 W/L, 550 W/kg.

^cFuel processor efficiency = total fuel cell system efficiency/fuel cell stack system efficiency, where total fuel cell system efficiency accounts for thermal integration. For purposes of testing fuel-processor-only systems, the efficiency can be estimated by measuring the derated heating value efficiency (lower heating value of $H_2 \times 0.95$ / lower heating value of the fuel in) where the derating factor represents parasitic system pow er losses attributable to the fuel processor.

^aHigh-volume production: 500,000 units per year.

^e0.07 g/mile NO_x and 0.01 g/mile PM (particulate matter).

Time betw een catalyst and major component replacement; performance targets must be achieved at the end of the durability period.

^gContinuous operation.

^hIncludes thermal cycling.

Includes thermal and realistic driving cycles.

/Performance targets must be achieved at the end of an 8-hour cold-soak at specified temperature.

^kDependent on stack development (CO tolerance) progress.

Table 3. Technical targets: 50 kWe (net) integrated fuel cell power systems operating on Tier 2gasoline containing 30 ppm sulfur, average

(Including fuel processor, stack, auxiliaries) (Excluding gasoline tank and vehicle traction electronics) All targets must be achieved simultaneously and are consistent with those of FreedomCAR

		Calendar year			
Characteristics	Units	2001 status	2005	2010	
Energy efficiency ^a @ 25% of rated power	%	34	40	45	
Energy efficiency @ rated power	%	31	33	35	
Power density	W/L	140	250	325	
Specific power	W/kg	140	250	325	
Cost ^b	\$/kW	300	125	45	
Transient response (time from 10 to 90% power)	sec	15	5	1	
Cold start-up time to rated power @ –20°C ambient temperature @+20°C ambient temperature	min min	TBD <10	2 1	1 <0.5	
Survivability ^c	۰C	TBD	-30	-40	
Emissions ^d		<tier 2<br="">Bin 5^e</tier>	<tier 2<br="">Bin 5^e</tier>	<tier 2<br="">Bin 5^e</tier>	
Durability	hours	1000 ^g	2000 ^h	5000 ⁱ	
Greenhouse Gases	One-third reduction compared with conventional SI- IC engines in similar type vehicles				

^aRatio of dc output energy to the lower heating value of the input fuel (gasoline).

^bIncludes projected cost advantage of high-volume production (500,000 units per year) and includes cost for assembling/integrating the fuel cell system and fuel processor.

Achieve performance targets at 8-hour cold-soak at temperature.

^aEmissions levels will comply with emissions regulations projected to be in place when the technology is available for market introduction.

 $^{\circ}0.07 \text{ NO}_{x}$ g/mile and 0.01 PM g/mile.

Performance targets must be achieved at the end of the durability time period.

^gContinuous operation.

^hIncludes thermal cycling.

Includes thermal and realistic drive cycles.

Table 4. Technical targets: 50 kWe (net) integrated fuel cell power systems operating on directhydrogen ^a					
All targets must be achieved simultaneously and	l are consiste	nt with those	of Freedom	CAR	
Calendar year					
Characteristics	Units	2001 status	2005	2010	
Energy efficiency ^b @ 25% of rated power	%	59	60	60	
Energy efficiency @ rated power	%	50	50	50	
Power density excluding H ₂ storage including H ₂ storage	W/L W/L	400 TBD	500 150	650 220	
Specific power excluding H ₂ storage including H ₂ storage	W/kg W/kg	400 TBD	500 250	650 325	
$Cost^{c}$ (including H ₂ storage)	\$/kW	200	125	45	
Transient response (time from 10% to 90% of rated power)	sec	3	2	1	
Cold start-up time to maximum power @ –20°C ambient temperature @+20°C ambient temperature	sec sec	120 60	60 30	30 15	
Emissions		Zero	Zero	Zero	
Durability ^d	hours	1000	2000 ^e	5000 ^f	
Survivability ^g	°C	-20	-30	-40	
^a Targets are based on hydrogen storage targets in an aerodynamic 2500-lb vehicle. ^b Ratio of DC output energy to the low er heating value of the input fuel (hydrogen). ^c Includes projected cost advantage of high-volume production (500,000 units per year). ^d Performance targets must be achieved at the end of the durability time period. ^e Includes thermal cycling. ^f Includes thermal and realistic drive cycles. ^g Achieve performance targets at 8-hour cold-soak at temperature.					

Table 5. Technical targets for on-board hydrogen storage ^{a,b} subsystem						
Characteristic	Units	Target	2001 Status Physical storage ^c	2001 Status Chemical storage ^d		
Storage capacity ^e	wt%	6	5.2	3.4		
Recoverable usable amount ^f	%	90	99.7	>90		
Energy density ^g	Wh/L ^h	1100 ^{<i>h</i>}	813	1300		
Specific energy	Wh/kg ^h	2000	1745	1080		
Cosť	\$/kWh	5	50 ^k	18 [′]		
Cycle life	cycles	500	>500	20-50		
Operating temperature ^m	°C	–40° to +50°C	–40° to +50°C	20 °C to 50 °C		
Start-up time to full flow @+20°C @-20°C	sec sec	15 30	<1 TBD	<15 TBD		
Refueling time	min	<5	TBD	TBD		
Hydrogen loss	scc/hour/L	<1.0	<1.0	<1.0		

^aBased on lower heating value of hydrogen; includes both physical and chemical methods of hydrogen storage; enables greater than 300-mile range, based on an aerodynamic, 2500-lb vehicle.

^bR&D carried out in collaboration with DOE Hydrogen Program.

^cIncludes compressed gas and cryogenic liquid tanks.

^aProjected from laboratory-scale (100 g) test beds and proposed system designs.

^eWeight percent H_2 is the weight of H_2 divided by the weight of $(H_2 + tank)$.

⁷Recoverable stored hydrogen, e.g. in a 100-kg H_2 storage system containing 6 kg of stored hydrogen, at least 5.4 kg of useful hydrogen must be recoverable.

⁹Based on 5 kg hydrogen for >300 mile range at 10,000 psia (volume of stored hydrogen is 135 L). Allow ing for 10% containment volume, system volume is 150 L.

hWatts thermal.

'Specific energy is the lower heating value energy of H_2 contained, divided by the weight of (H_2 + tank).

^jBased on high-volume production of 500,000 units per year.

^kBased on individual tanks.

Projected hydride material cost only; based on 100-200 kg alanate production.

"Hydrogen storage system must provide hydrogen to the fuel cell at these ambient temperatures.

Table 6. Technical targets for off-board hydrogen production and dispensing infrastructure						
Component	Characteristic (LHV Basis)	Units	Current Status ^ª	2005	2010	
	Cost	\$/GJ H ₂	9.9	8.8	7.7 ^b	
Reforming	WTW GHGs	g/km	75	70	65	
	Primary Energy Eff.	% (LHV)	80 ^c	82	85	
	Cost	\$/GJ H ₂	0.56	0.56	0.56 ^d	
Purification	WTW GHGs ^e	g/km	1.1	1.1	1.1	
	Primary Energy Eff.	% (LHV)	75 ^f	82	90	
	Cost	\$/GJ H ₂	2.6	2.3	2.0 ^g	
Compression	WTW GHGs	g/km	14	11	8	
	Primary Energy Eff.	% (LHV)	82 ^{<i>h</i>}	85	88	
	Cost	\$/GJ H ₂	2.7 ^{<i>i</i>}	2.7	2.7 ^j	
Storage & Dispensing	WTW GHGs	g/km	0	0	0	
	Primary Energy Eff.	% (LHV)	100 ^{<i>k</i>}	100	100	
	Cosť	\$/GJ H ₂	19.2	17.2	16.2 ^{<i>m</i>}	
Total	WTW GHGs	g/km	90	82	75	
	Primary Energy Eff.	% (LHV)	62	68	75	

Notes: Well-to-wheel greenhouse gas (WTW GHG) emissions are weighted by their global warming potential. Assumes 84-mpeg fuel economy in a direct hydrogen FCV and on-site power from the US average grid mix. Primary energy efficiency is defined as Hydrogen Output LHV / Primary Energy Input LHV of the process step. Primary energy associated with on-site power use assumes a 35% production and transmission efficiency penalty (typical US grid mix).

^a Assumes state-of-the-art technology that is feasible but not necessarily available in a complete system today. This assumption is consistent with the automotive fuel cell performance target assumptions.

Assumes energy cost reductions by way of higher efficiency and a 50% equipment cost reduction from the current scenario. Small-scale reformers are assumed to come down significantly in price with projected advances in materials and designs.

Assuming a steam methane reformer operating at 10 atm.

^D Assumes no equipment cost reduction from the current scenario. Conventional equipment (PSAs) will not likely come down significantly in price, especially with higher efficiency requirements. Advanced technologies may provide higher efficiencies, but are unlikely to be cheaper. ^E Assumes 100% of the purification purge stream (primarily CO2, H2, CH4, and CO) is recycled to the production step, where the purge stream is

burned to generate heat for the reforming process. There may be some additional purification emissions in other system configurations, but the total sum of emissions from the production and purification steps will remain the same.

 ^F Assuming a small-scale PSA system operating at reformer outlet pressure.
 ^G Assumes energy cost reductions by way of higher efficiency but no equipment cost reduction from the current scenario. Conventional equipment (gas compressors) will not likely come down significantly in price, especially with higher efficiency requirements. Advanced technologies may provide higher efficiencies, but are unlikely to be cheaper.

Assuming conventional compressors are used from the PSA outlet pressure to 3600-psi maximum on-site storage pressure and accumulatorty pe compressors are used from the storage pressure to 5000 psi on-board storage.

Based on 3600-psi on-site gas storage.

Assumes no equipment cost reduction from the current scenario. Conventional equipment (high-pressure gas storage tanks) will not likely come down significantly in price. Advanced technologies may provide higher ov erall efficiencies, but are unlikely to be cheaper.

Assuming high-pressure gas storage with no leaks during storage or dispensing.

^L Includes operation, site prep, and central control costs.

^M Costs are based on a hydrogen fueling station serving 300 vehicles per day (~10,000 std m3 per day) with on-site production. Capital equipment costs assume mature production volumes of 100 units per year. Production volumes of 100 units/year were also studied by DTI with analgous economic predictions. Production volumes of 10,000 units per year will reduce capital costs substantially to \$13/GJ (See "Integrated Vehicle Analysis" DTI, 1998). Energy costs assume a natural gas price of \$5/GJ (HHV) and power price of \$0.07/kWh.

Table 7. Technical targets for fuel cell stack components		
Component	Requirement	
Membranes	Cost: \$5/kW Stability: <2 mV w/RH 20–100% , <10% swelling H ₂ crossover: <1 mA/cm ² O ₂ crossover: <3 mA/cm ² Area specific resistance: 0.1 ohm-cm ²	
Electrodes	Cost: $5/kW$ CO tolerance: 500 ppm steady state, 1000 ppm transient with 0.2 g Pt/rated kW Durability: 5000 hours Utilization: 85% H ₂ , 60% O ₂	
Membrane-Electrode Assembly	Performance: On hydrogen 400 mA/cm ² at 0.80 V (at rated power) 100 mA/cm ² at 0.85 V (at quarter power) On gasoline reformate 500 mA/cm ² at 0.75 V (at rated power, 30 psig) 125 mA/cm ² at 0.83 V (at quarter power, 9 psig) Cost: \$10/kW	
Bipolar Plates	Cost: \$10/kW; <1kg/kW H ₂ permeation rate: <2 × 10 ⁻⁶ cm ³ sec ⁻¹ cm ⁻² @ 80°C, 3 atm (Equivalent to <0.1 mA/cm ²) Corros ion limit: <16 m icroam ps/cm ² Resistivity: 0.02 ohm/cm ²	

Table 8. Technical targets for sensors for automotive fuel cell systems ^a		
Sensor	Requirements	
Carbon Monoxide	 (a) 1–100 ppm reformate pre-stack sensor Operational temperature: <150 °C Response time: 0.1–1 sec Gas environment: high-humidity reformer/partial oxidation gas: H₂ 30– 75%, CO₂, CO, N₂, H₂O at 1–3 atm total pressure Accuracy: 1–10% full scale 	
	 (b) 100–1000 ppm CO sensors Operational temperature: 250 °C Response time: 0.1–1 sec Gas environment: high-humidity reformer/partial oxidation gas: H₂ 30–75%, CO₂, CO, N₂, H₂O at 1–3 atm total pressure Accuracy: 1–10% full scale 	
	 (c) 0.1–2% CO sensor 250–800°C Operational temperature: 250–800°C. Response time: 0.1–1 sec Gas environment: high-humidity reformer/partial oxidation gas: H₂ 30–75%, CO₂, CO, N₂, H₂O at 1–3 atm total pressure Accuracy: 1–10% full scale 	
Hydrogen in fuel processor output	 Measurement range: 1–100% Operating temperature: 70–150 °C Response time: 0.1–1 sec for 90% response to step change Gas environment: 1–3 atm total pressure, 10–30 mol % water, 30–75% total H₂, CO₂, N₂ Accuracy: 1–10% full scale 	
Hydrogen in ambient air (safety sensor)	 Measurement range: 0.1–10% Temperature range: -30 to 80 °C Response time: under 1 sec Accuracy: 5% Gas environment: ambient air, 10–98% RH range Lifetime: 5 years Interference resistant (e.g., hydrocarbons) 	
Sulfur compounds (H ₂ S, SO ₂ , organic sulfur)	 Operating temperature: up to 400°C Measurement range: 0.05–0.5 ppm Response time: <1 min at 0.05 ppm Gas environment: Hydrogen, CO, CO₂, hydrocarbons, water vapor 	
Flow rate of fuel processor output	 Flow rate range: 30–300 standard L/min Temperature: 80 °C Gas environment: high-humidity reformer/partial oxidation gas: H₂ 30– 75%, CO₂, N₂, H₂O, CO at 1–3 atm total pressure 	
Ammonia	 Operating temperature: 70–150 °C Measurement range: 1–10 ppm Selectivity: <1 ppm from matrix gases Lifetime: 5–10 years Response time: seconds Gas environment: high-humidity reformer/partial oxidation gas: H₂ 30–75%, CO₂, N₂, H₂O, CO at 1–3 atm total pressure 	

Table 8. Te	schnical targets for sensors for automotive fuel cell systems ^a
Sensor	Requirements
Temperature	 Operating range: -40 to 150 °C Response time: in the -40 to 100 °C range <0.5 sec with 1.5% accuracy; in the 100-150 °C range, a response time <1 sec with 2% accuracy Gas environment: high-humidity reformer/partial oxidation gas: H₂ 30-75%, CO₂, N₂, H₂O, CO at 1-3 atm total pressure Insensitive to flow velocity
Relative humidity for cathode and anode gas streams	 Operating temperature: 30–110 °C Relative humidity: 20–100% Accuracy: 1% Gas environment: high-humidity reformer/partial oxidation gas: H₂ 30– 75%, CO₂, N₂, H₂O, CO at 1–3 atm
Oxygen in fuel processor and at cathode exit	 (a) Oxygen sensors for fuel processor reactor control Operating temperature: 200-800 °C Measurement range: 0-20% O₂ Response time: <0.5 sec Accuracy: 2% of full scale Gas environment: high-humidity reformer/partial oxidation gas: H₂ 30-75%, CO₂, N₂, H₂O, CO at 1-3 atm (b) Oxygen sensors at the cathode exit Measurement range: 0-50% O₂ Operating temperature: 30-110 °C Response time: <0.5 sec Accuracy: 1% of full scale Gas environment: H₂, CO₂, N₂, H₂O at 1-3 atm total pressure
Differential pressure in fuel cell stack	 Range: 0–1 psi or (0–10 or 1–3 psi, depending on the design of the fuel cell system) Temperature range: 30–100 °C Survivability: -40 °C Response time: <1 sec Accuracy: 1% of full scale Size: ≤1 in², usable in any orientation Other: Withstand and measure liquid and gas phases
^a Sensors must conform to	size, weight, and cost constraints of automotive applications.

Table 9. Technical targets for compressor/expander (C/E) units for automotive fuel cell systems ^a			
Characteristic	Units	Target	
Input power ^b at full flow	kW	4.3	
Efficiency at full flow Compressor (at 3.2 pressure ratio) ^c Expander	% %	75 90	
Efficiency @ 20% of full flow Compressor (at 1.6 pressure ratio) ^c Expander	% %	65 80	
Volume ^d	L	4	
Weight ^d	kg	3	
Cost ^{d,e}	\$	200	
Turndown ratio		10	
Noise	db	<80	

aTargets are being reviewed as a result of the Compressor Peer Review. ^bInput pow er to the controller to pow er a compressor/expander system producing 76 g/sec (dry) maximum flow. This flow rate roughly corresponds to maximum pow er for a 50-kW fuel cell system. A 25% flow is 19 g/sec. Expander inlet conditions are assumed to be: 82 g/sec, 150°C, and 2.8 atm (at full flow).

°The pressure ratio is allow ed to float as a function of load on the fuel cell system (i.e., as a function of the flow through the compressor/expander unit).

"Weight, volume, and cost do not include the motor/controller or heat rejection (if required). "Cost target based on a manufacturing volume of 100,000 units per year.

Table 10. Technical targets for fuel processor catalysts and reactors (for reforming Tier II gasoline containing 30 ppm Sulfur)^a

Characteristic	Units	Autothermal reformer	Sulfur removal	Water gas shift	CO preferential oxidation
GHSV [♭]	per hour	200,000	50,000	30,000	150,000
Conversion ^c	%	>99.9	>99.95	>90	>99.8
H2 selectivity ^d (or consumption)	%	>80	<0.1	>99	<0.2
Volume ^e	L/kWe	<0.013	<0.06	<0.1	<0.02
Weight ^e	kg/kWe	<0.015	<0.06	<0.1	<0.03
Durability	hours	5000	5000	5000	5000
Cost	\$/kWe	<5	<1	<1	<1

^aGHSV (gas hourly space velocity) = the volumetric flow rate of the product gases reduced to 25°C and 1 atm, divided by the bulk volume of the catalyst.

^bTarget values are guidelines for single reactor R&D; system/subsystem targets take precedence.

^cConversion: (moles of reactant in – moles of reactant out) \times 100/(moles of reactant in).

^{*d*}Selectivity: At the autothermal reformer: (moles of H₂ in product) \times 100/(moles of H₂ "extractable" from the reformer feed); at the shift reactor: (moles CO converted to H₂) \times 100/(total moles of CO converted).

"The volume and w eight targets include only the catalysts, not the hardware needed to house the catalysts or any heat exchangers.

^fOver standard driving cycles.

Index of Primary Contacts

A

Friedland, Robert J
Fuchs, Michel
G
Garzon, Fernando 156, 468
Gee, Mark K
Ghirardi, Maria
Gross, Karl
Guro, David E
H
Haack, David
Hartmann, Judith B
Heben, M.J
Heung, Kit
Ho, W.S. Winston
I
Irvin, Joseph J
Irving, Patricia
J
James, Brian D
Jensen, Craig M
K
Klett, J. W
Knight, Brian A
Kopasz, John P
Krause, Theodore
Kumar, Ravi
Kumar, Romesh
L
Lasher, Stephen
Lau, Francis S
Lessing, Paul A
Liss, William E
Liu, Hongtan
Lutz, Andrew
M
MacQueen, Brent
Mann, Margaret K
Mark G. Roelofs
Martin, Steve W
McFarland, Eric W
Melis, Tasios
Miller, Eric L
Miller, Karen

Milliken, Christopher148
Muradov, Nazim
Myers, Deborah J
Ν
Narayanan, S. R
Nenoff, Tina M115
0
Ohi, Jim
O'Neill, Hugh404
Р
Page, Richard A
Parish, Richard
Pederson, Larry R
Pham, Ai-Quoc 152, 473
Pitts, J. Roland
Pyke, Steve
R
Raman, Venki
Read, Carole J
Rehg, Tim
Ross, Philip N. Jr
S
Sapru, Krishna
Schefer, Robert
Schoenung, Susan M
Selecman, George E
Sirosh, Neel
Slattery, Darlene K
Smith, Murdo J
Spritzer, Michael H
Sung, Shihwu
Swain, Michael R
Swartz, Scott L
Swider Lyons, Karen
Т
Thompson, Levi
T-Raissi, Ali
Turner, J.A
U
Unnasch, Stefan
Uribe, Francisco A
V
Van Blarigan, Peter
W
Wang, Michael
Weimer, Alan W76

Weisberg, Andrew
Wilson, Mahlon S
Wipke, Keith
Wolfrum, Edward J
Wozniak, John
Y
Yuh, Chao-Yi
Z
Zawodzinski, Thomas A
Zelenay, Piotr
Zidan, Ragaiy

This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Hydrogen, Fuel Cells and Infrastructure Technologies Program 2002 Annual Progress Report

WWW.EREN.DOE.GOV/HYDROGEN

DOE/EERE/HFIT - 2002/001

