

Fuel Cell Technologies Office American Energy & Manufacturing Competitiveness Partnership

http://www.aemcsummit.compete.org/

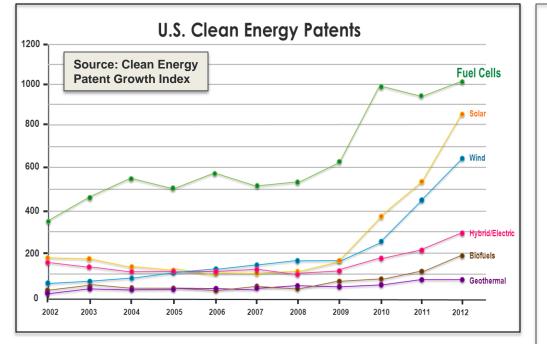
Fuel Cell Manufacturing

Dr. Sunita Satyapal

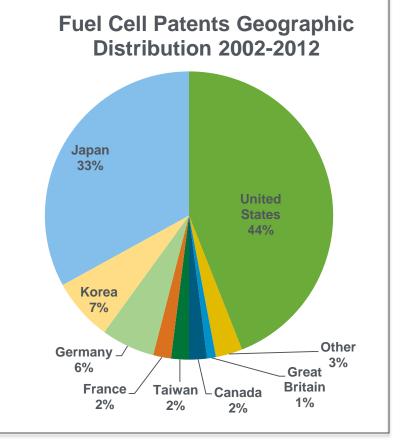
Director, Fuel Cell Technologies Office

Dr. Nancy Garland

Technology Development Manager, Manufacturing R&D, Fuel Cell Technologies Office



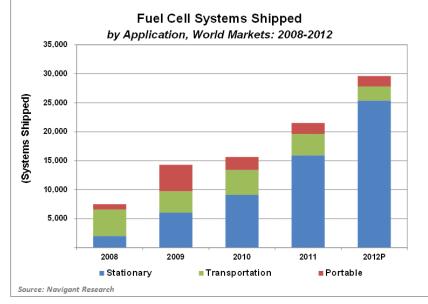
The Future of Fuel Cell Manufacturing Panel Session

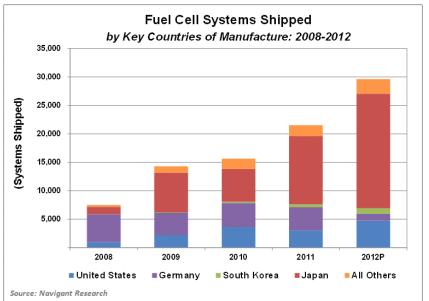

- Federal program: DOE Fuel Cell
 Technologies Office
- National trade association: Fuel Cell & Hydrogen Energy Association
- State Coalition Example: Ohio Fuel Cell Coalition

Overview Fuel Cells – An Emerging Global Industry

Energy Efficiency & Renewable Energy

Top 10 companies for fuel cell patents: GM, Honda, Toyota, Samsung, UTC Power, Nissan, Ballard, Panasonic, Plug Power, Delphi Technologies


U.S. DEPARTMENT OF


ENERGY

- Clean Energy Patent Growth Index^[1] shows growth in all clean energy technology patents
- More than 1,000 fuel cell patents issued in 2012

[1] http://cepgi.typepad.com/heslin_rothenberg_farley_/2013/03/clean-energy-patent-growth-index-2011-year-in-review.html

Fuel Cell Market Overview

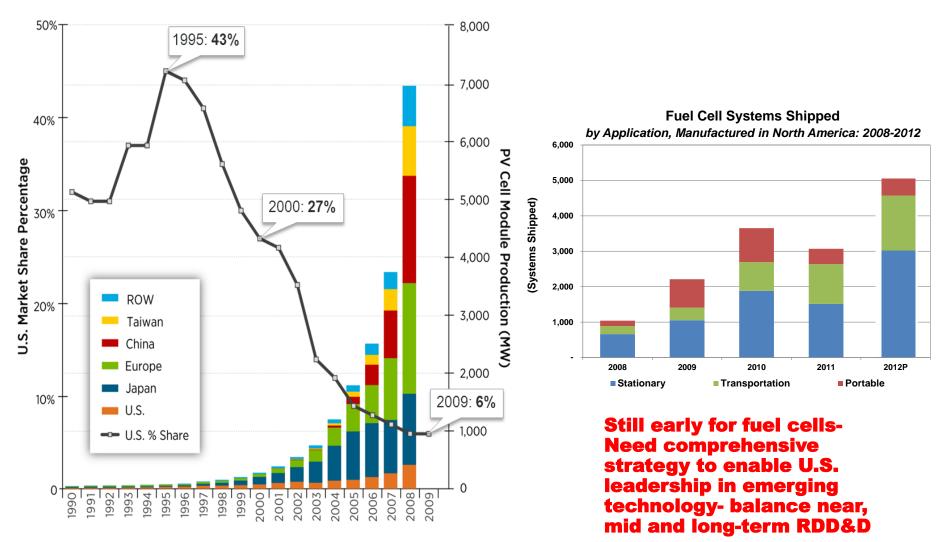
Market Growth

Fuel cell markets continue to grow 48% increase in global MWs shipped 62% increase in North American systems shipped in the last year

The Market Potential

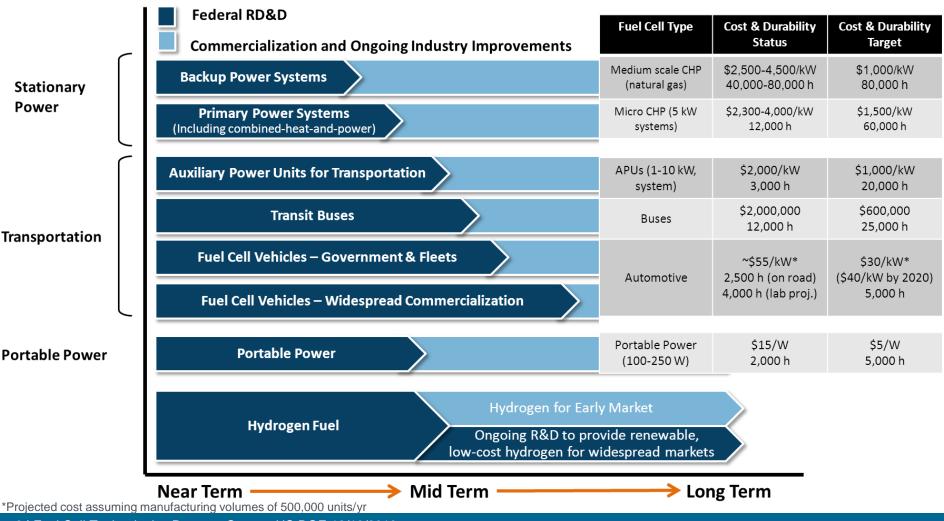
Independent analyses show global markets could mature over the next 10–20 years, with potential for revenues of:

- \$14 \$31 billion/year for stationary power
- \$11 billion/year for portable power
- \$18 \$97 billion/year for transportation


The global hydrogen market is also robust with over 55 Mtons produced in 2011 and over 70 Mtons projected in 2016, a > 30% increase.

Several automakers have announced commercial FCEVs in the 2015-2017 timeframe.

For further details and sources see: *DOE Hydrogen and Fuel Cells Program Plan*, <u>http://www.hydrogen.energy.gov/pdfs/program_plan2011.pdf;</u> FuelCells 2000, Fuel Cell Today, Navigant Research, Markets & Markets


Energy Efficiency & Renewable Energy

Global & U.S. Annual PV Production by Region

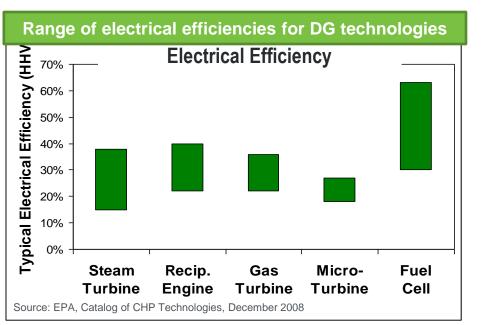
Overview

Mission: Enable widespread commercialization of a portfolio of hydrogen and fuel cell technologies through applied research, technology development and demonstration, and diverse efforts to overcome institutional and market challenges.

6 | Fuel Cell Technologies Program Source: US DOE 12/19/2013

Opportunities for Distributed Generation (DG) and Efficient use of Natural Gas and Biogas

U.S. DEPARTMENT OF

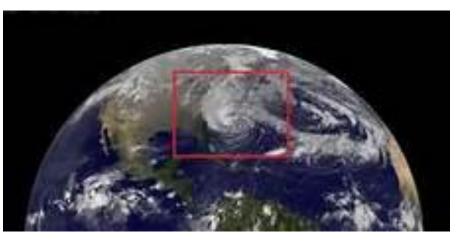

Energy Efficiency & Renewable Energy

Critical Loads- e.g. banks, hospitals, data centers

EMERGENCY

New World Trade Center will use **12 fuel** cells totaling 4.8MW

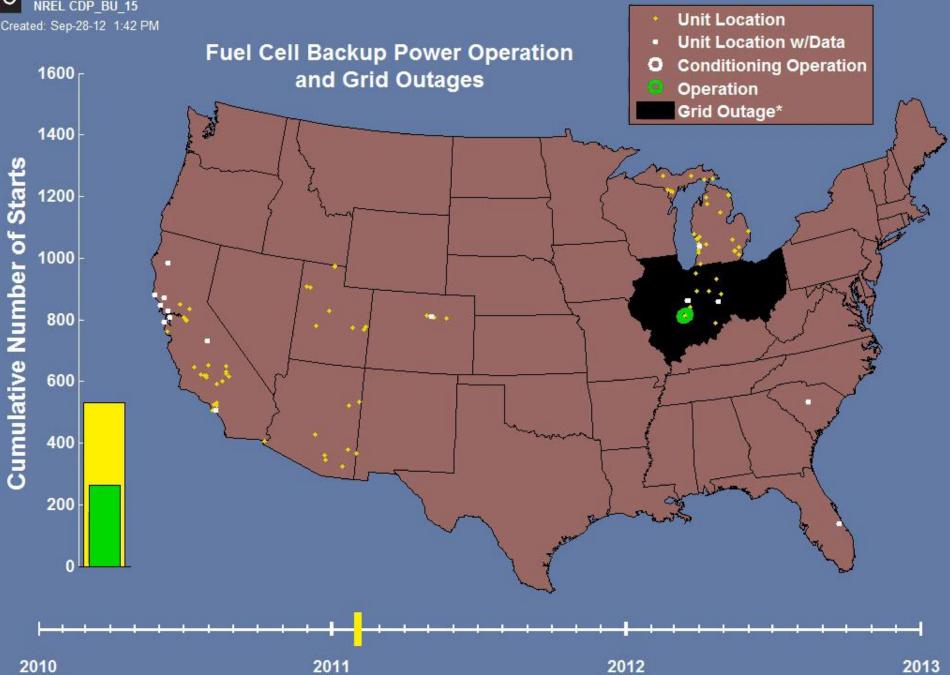
Supermarkets one of several in the food industry interested

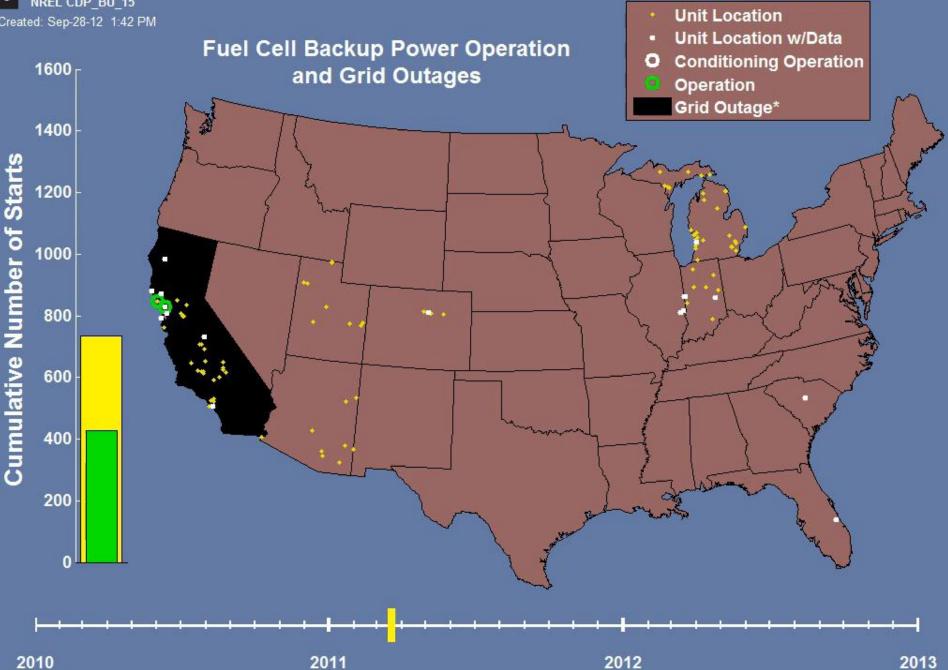

During Hurricane Sandy, fuel cells were instrumental in providing backup power for many in NY, NJ, and CT.

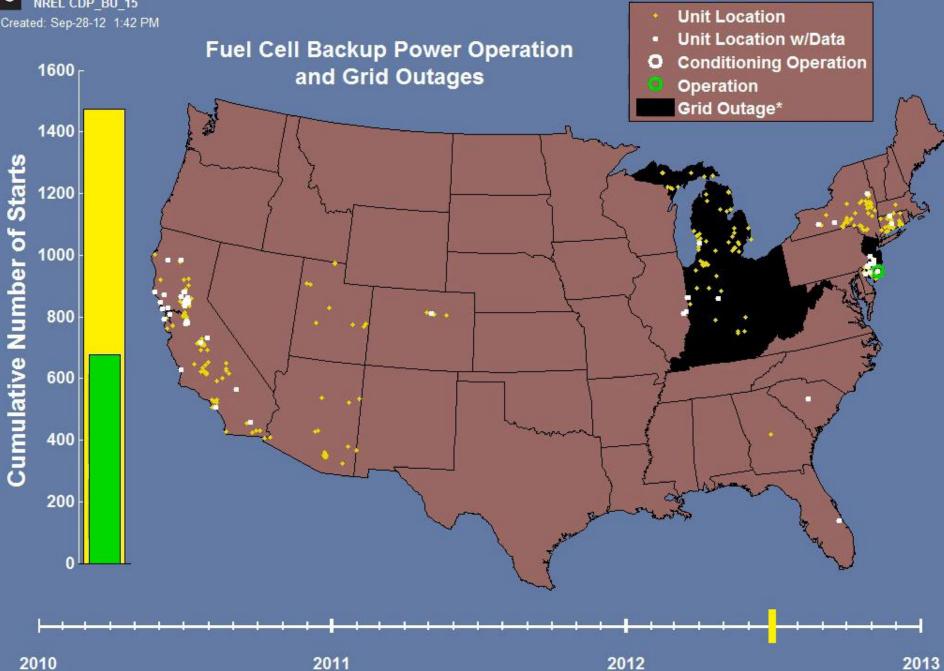
- >60 fuel cells acted as backup power for cell phone towers.
- >20 fuel cells systems provided continuous power to buildings

7 | Fuel Cell Technologies Program Source: US DOE 12/19/2013

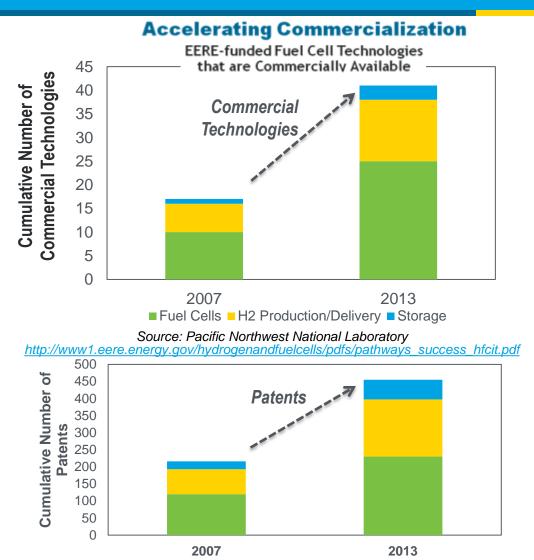
ENERGY Energy Efficiency & Renewable Energy

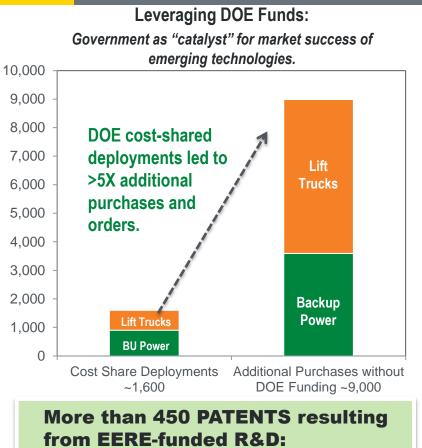

Hurricane Sandy was the largest Atlantic hurricane on record. Winds spanning more than 1,100 miles


>\$60 billion in damages
Fuel cells demonstrated the ability to provide reliable power in numerous examples


3 NREL CDP BU 15

3 NREL CDP BU 15 Created: Sep-28-12 1:42 PM




3 NREL CDP BU 15

Assessing the Impact of DOE Funding

DOE funding has led to 40 commercial hydrogen and fuel cell technologies and 65 emerging technologies.

- Includes technologies for hydrogen production and delivery, hydrogen storage, and fuel cells

http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/pathways_2013.pdf

12 | Fuel Cell Technologies Program Source: US DOE 12/19/2013

Energy Efficiency &

Renewable Energy

Fuel cells in the spotlight- examples

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

President Obama inspects a fuel cartridge while at the Swedish Royal Institute of Technology.

Business case is emerging for fuel cell forklifts and ground support equipment

Fuel cells in the spotlight- examples

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Hydrogen fuel cell powers lights at entertainment industry events.

Hydrogen fuel cell powered light tower at Space Shuttle launch

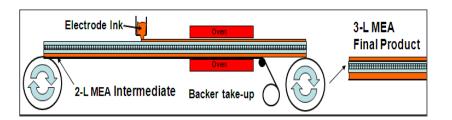
Co-Launched H₂USA Public-Private Partnership – May 2013

Mission: To promote the commercial introduction and widespread adoption of FCEVs across America through creation of a public-private partnership to overcome the hurdle of establishing hydrogen infrastructure.

H₂USA

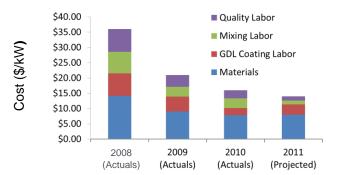
More than 25 Partners Current partners include (additional in process):

Energy Efficiency &


Renewable Energy

NERGY

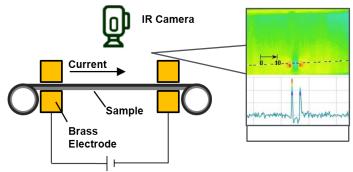
Manufacturing R&D—Overview and Highlights ENERGY Energy Efficiency & Renewable Energy


Goal: Research and develop technologies and processes that reduce the cost of manufacturing hydrogen production, delivery, storage, and fuel cell systems.

Roll-to-Roll MEA Processing at W.L. Gore

- Increase MEA performance
- Eliminate intermediate backing material
- Reduce number of coating passes
- Direct coating of catalyst onto ionomer

Optimized Fabrication of GDLs at Ballard


- Demonstrated 4x increase in production capacity and >50% decrease in GDL cost
- Improved production yields and efficiency
- Move to full width production

Tank Manufacturing at Quantum Technologies

- Reduced carbon fiber use while maintaining structural integrity
- Integrate new, lowcost, composite fiber
- Increase manufacturing
 efficiency

In-Line Diagnostics Techniques at NREL

- Developing in-line diagnostic techniques for MEA component quality control
- Investigating effects of manufacturing defects on MEA performance

•Held 8/11 in Washington, D.C. with representatives from industry, academia, lab, and government

- Identified and prioritized needs and barriers to manufacturing
- •Outputs support potential FY13 FOA for H₂ & FC Manufacturing R&D

Issue	Votes
PEM Fuel Cells/Electrolyzers BOP: Facilitate a manufacturing group for DOE to expand supply chain.	21
Electrodes: How to apply ink directly to membrane; dual direct coating of CCM; <i>membrane dimensional change with deposition of current inks (Fuel cell R&D)</i>	20
PEM Fuel Cells/Electrolyzers BOP: Develop low cost manufacturing of natural gas reformers (Fuel cell R&D)	18
Stack Assembly: High volume stack assembly processes: reduced labor, improved automation	15
Quality/Inspection/Process Control: Develop methods of identifying coating defects on a moving web, then rejecting single pieces downstream; defect detection after MEA assembly when defect may no longer be visible; ability to separate materials with defects from rolled goods with minimum production of scrap	15
SOFC: Multi-layer/component sintering	14

Energy Efficiency & Renewable Energy

Thank You

American Energy & Manufacturing Competitiveness Partnership

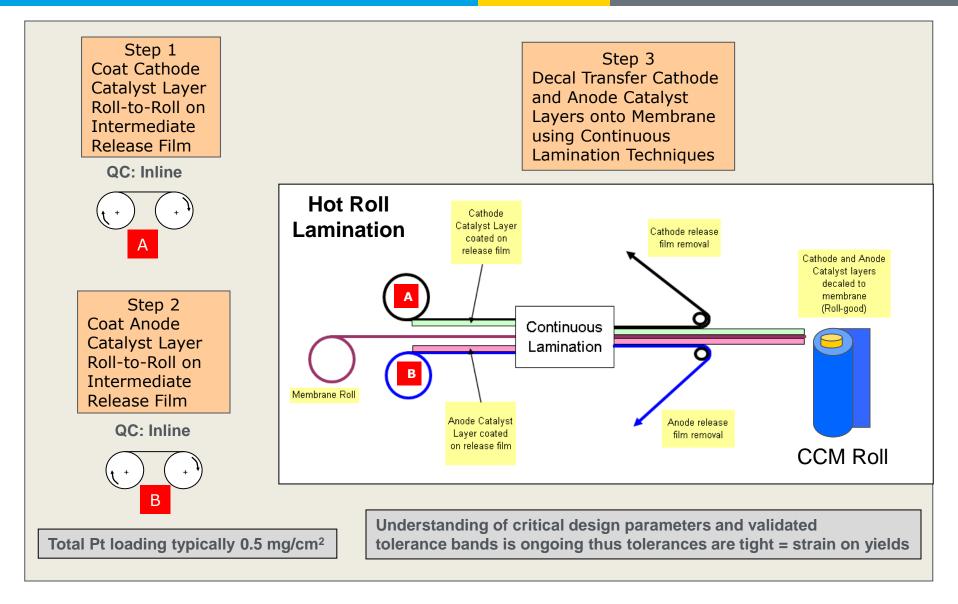
http://www.aemcsummit.compete.org/

Sunita.Satyapal@ee.doe.gov

hydrogenandfuelcells.energy.gov

Additional Information

The Big Picture


Fuel cell vehicles per year (10% of world market in 2030)	15 million
MEAs per year (300 MEAs/stack)	4.5 billion
Manufacturing operation	8000 hrs/yr, 80% up-time
MEA production rate	11,700 MEAs/minute
Line speed (assuming 20 production lines)	20 meters/min
Quality requirement (MEAs) for 0.1% stack failure	1 critical MEA failure in 300,000 (this is approximately six sigma quality)
Quality requirement (MEAs) for six sigma stack quality	1 critical MEA failure in ~90 million (this is approximately "seven sigma")

High speed manufacturing and quality will be critical!

Source: Debe, Nature, 486 (7 June 2012), pp. 43-51.

State-of-the-art MEA Manufacturing

U.S. DEPARTMENT OF

Source: Ballard

Manufacturing R&D

We are developing and demonstrating technologies and processes to:

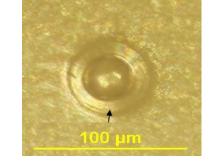
- Reduce cost of fuel cell components and systems, as well as components and systems for producing and storing hydrogen
- Grow domestic supplier base

Near-term Goal for Early Markets

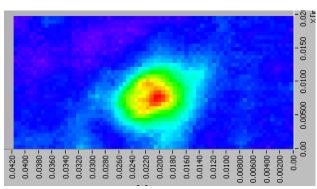
Lower fuel cell stack manufacturing cost by \$1000/kW (from \$3,000/kW to \$2,000/kW, for low-volume manufacturing)

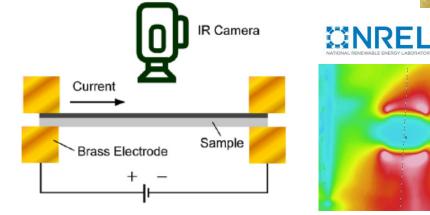
This is the first time a scanning XRF has been used on GDEs – BASF

Project Emphasis


- Electrode Deposition
 - BASF, PNNL
- High Pressure Storage
 - Quantum Technologies
- MEA Manufacturing
 - Gore, LBNL, RPI
- Gas Diffusion Layer (GDL)
 Fabrication
 - Ballard
- Effective Testing of Fuel Cell Stacks
 - PNNL, UltraCell
- Effective Measurement of Fuel Cell Stacks
 - NREL, NIST

ENERGY Energy Efficiency & Renewable Energy


"Just four sequential process steps with 90% yields would increase costs by 30%..."


Need MEA production rate of 11,700 MEAs/min @ 20 m/min

- Optical diagnostics for fuel cells developed at NREL for PV cell QC
- Bubble in fuel cell membrane detected using optical diagnostics

36.0 32.5 30.0 27.5 25.0 22.5

 In-plane DC excitation/IR detection reveals bare spot in fuel cell electrode

The tools needed to find the bad stuff at speed are not all there!

*Debe, Nature, 486, 2012, pp. 43-51.

Progress - Manufacturing

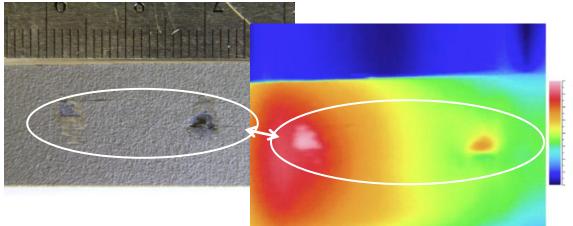
Achieved areal image of catalyst layer uniformity

Developing in-line diagnostics for MEA component quality control

Investigating effects of manufacturing defects on MEA performance to understand the accuracy requirements for diagnostics

U.S. DEPARTMENT OF

Energy Efficiency &


Renewable Energy

QC System

Example:

- DC excitation of catalyst coated membrane causes thermal response
- Defects alter catalyst layer
 resistance and thermal response
- IR camera provides rapid, quantifiable 2D data

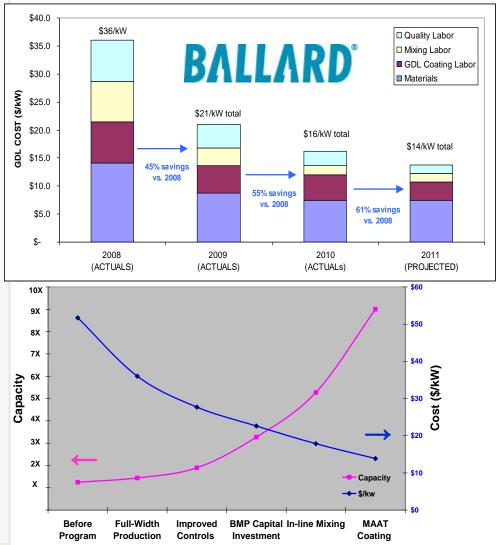
24 | Fuel Cell Technologies Program Source: US DOE 12/19/2013

GDL Fabrication Cost Reduction

Energy Efficiency & Renewable Energy

Reduced cost of GDLs by more than 50% and increased manufacturing capacity more than 4x since 2008

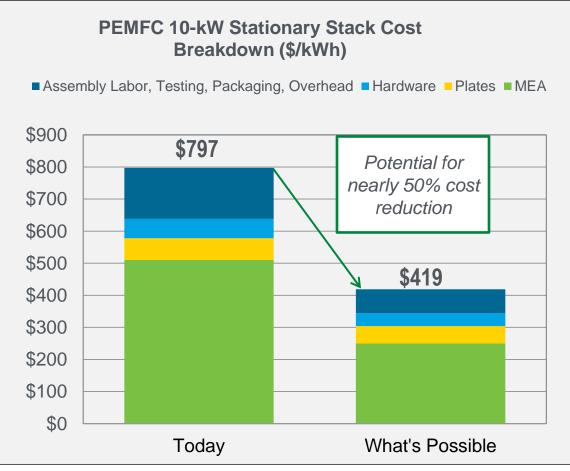
Project Approach:

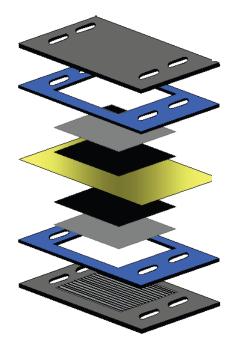

- Reduce high material & manufacturing costs:
 - Eliminate process steps, improve production yields, reduce scrap and increase production efficiency

Develop high-volume MEA (GDL) processes:

Process modifications introduced in this project have increased production volumes nearly 4-fold

Improve low levels of quality control and inflexible processes:


- Introduce new quality control technologies such as mass flow meters to control MPL loadings, provide more uniform properties and reduce the amount of ex situ testing required
- Add an in-line visual inspection station as a final quality tool to improve processing efficiency and accuracy


Example: Stationary FC Stack Cost Breakdown

Key Goals:

- Automotive fuel cell systems: 5,000 hr durability, \$30/kW (2017)
- µ-CHP fuel cell systems: 45% electrical efficiency, 60,000 hr durability, \$1500/kW (2020)

Source: Ballard

Energy Efficiency &

Renewable Energy

Membrane electrode assembly

Source: 3M

U.S. DEPARTMENT OF

ENERGY

PEMFC Manufacturing: Status vs. Needs

Energy Efficiency & Renewable Energy

Status of current PEMFC manufacturing technology and potential effect of technology injection

Current

Advancements

MEA:

- Decal transfer of electrode to membrane
- Large batch mixing
- Roll-to-roll processes for membrane, electrode, and GDL fabrication
- Manual assembly of MEA with seals
- Hot pressing

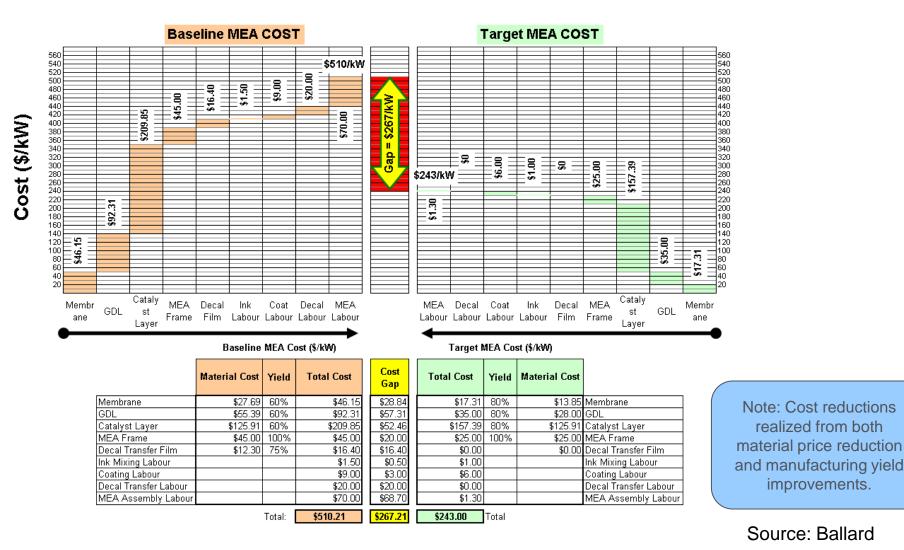
- Direct coating of electrode on membrane
- Continuous mixing
- Robotic or roll-to-roll assembly of MEAs with seals
- Hot-roll lamination or improved pressing

Stack:

- Manual assembly
- Manual leak/performance test

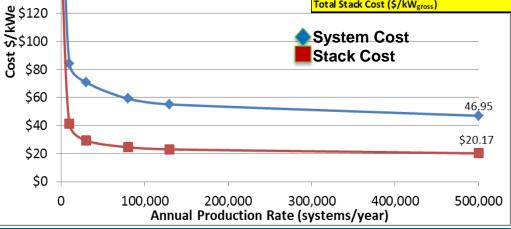
Automated assemblyAutomatic leak/performance test

BOP:


- Lean manufacturing cells and flow
- Unique components

- Standardized designs
- Robotic BOP/system assembly line

- Our success on the web-line convinced our PV group to construct and verify a conveyor-based platform for PV cells
 - Same line camera, encoder, software mods
- Now, they are developing a dual light source system that should improve accuracy
- When development is complete, will be integrated back into our motion-stage and web-line setups


Identify gaps in MEA manufacturing technology: How much better can we do?

- U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy
- The MEA was readily identified as the major cost driver in a 10 kW stationary stack.
- The precious metal catalyst electrode is the major cost driver for the MEA.

Stack Component Cost

			2012 Automotive System					
		Annual Production Rate	1,000	10,000	30,000	80,000	130,000	500,000
		System Net Electric Power (Output)	80	80	80	80	80	80
		System Gross Electric Power (Output)	88.24	88.24	88.24	88.24	88.24	88.24
		Bipolar Plates (Stamped)	\$1,819.33	\$436.67	\$411.17	\$395.16	\$395.55	\$392.33
		MEAs	\$9,082.91	\$2,623.29	\$1,758.30	\$1,415.04	\$1,307.39	\$1,103.35
		Membranes	\$3,518.73	\$882.16	\$495.01	\$336.62	\$276.84	\$171.17
Stack	Cost and	Catalyst Ink & Application (NSTF)	\$1,452.68	\$816.70	\$770.79	\$764.76	\$763.42	\$759.85
		GDLs	\$2,137.41	\$638.84	\$359.04	\$214.65	\$166.39	\$82.09
Total	System Cost	M & E Hot Pressing	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
ισιαι	Jystem Cust	M & E Cutting & Slitting	\$487.44	\$50.71	\$18.36	\$8.24	\$5.91	\$3.15
		MEA Frame/Gaskets	\$1,486.64	\$234.87	\$115.10	\$90.78	\$94.83	\$87.10
		Coolant Gaskets (Laser Welding)	\$212.59	\$41.52	\$28.59	\$26.98	\$26.60	\$26.01
		End Gaskets (Screen Printing)	\$149.48	\$15.04	\$5.08	\$1.97	\$1.25	\$0.53
\$200		End Plates	\$96.65	\$33.18	\$29.35	\$24.93	\$22.55	\$17.12
\$200		Current Collectors	\$52.57	\$11.40	\$7.61	\$5.74	\$5.16	\$4.53
\$180		Compression Bands	\$10.00	\$9.00	\$8.00	\$6.00	\$5.50	\$5.00
2100		Stack Housing	\$60.50	\$60.50	\$60.50	\$60.50	\$60.50	\$60.50
\$160		Stack Assembly	\$76.12	\$59.00	\$40.69	\$34.95	\$33.62	\$32.06
		Stack Conditioning	\$170.88	\$56.78	\$53.87	\$47.18	\$41.38	\$28.06
\$140		Total Stack Cost	\$11,731.03	\$3,296.20	\$2,349.26	\$1,963.46	\$1,843.95	\$1,613.36
ΥT-10		Total Stack Cost (\$/kWnet)	\$146.64	\$41.20	\$29.37	\$24.54	\$23.05	\$20.17
\$ \$120 -		Total Stack Cost (\$/kWgross)	\$132.94	\$37.35	\$26.62	\$22.25	\$20.90	\$18.28

Major cost drivers at low volume include membranes, GDLs, bipolar plates, catalyst ink, and MEA frame/gaskets

Source: SA, Inc.

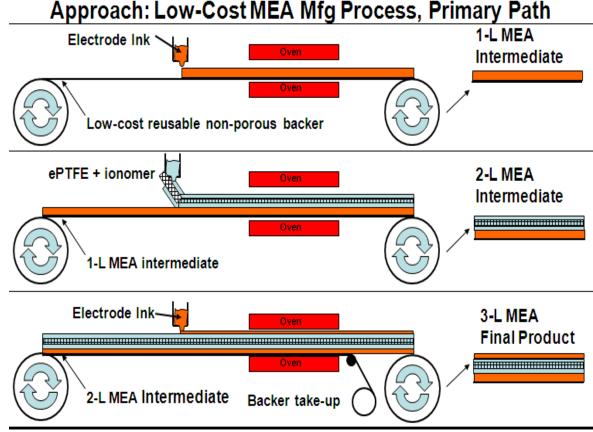
30 | Fuel Cell Technologies Program Source: US DOE 12/19/2013

U.S. DEPARTMENT OF

Source: DTI Automotive DFMA Task Report _Tasks 4 1 1-4 1 5_ FINAL.pdfDTI Automotive DFMA Task Report _Tasks 4 1 1-4 1 5

Stack Manufacturing Machinery Capital Costs						
Step	Cost \$/Process Train	No. of Process Trains	Capital Cost			
Bipolar Plate Stamping	\$393,057	41	\$16,115,331			
Bipolar Plate Coating	\$68,529,662	~20*	\$68,529,662			
Membrane Production	\$30,000,000	1	\$30,000,000			
NSTF Coating	\$1,284,255	12	\$15,411,056			
Microporous GDL Creation	\$1,271,840	17	\$21,621,283			
M & E Hot Pressing	\$187,542	37	\$6,939,065			
M & E Cutting & Slitting	\$130,958	2	\$261,917			
MEA Frame/Gaskets	\$598,772	154	\$92,210,849			
Coolant Gaskets (Laser Welding)	\$789,955	32	\$25,278,555			
End Gaskets (Screen Printing)	\$630,187	1	\$630,187			
End Plates	\$333,760	3	\$1,001,280			
Current Collectors	\$67,089	1	\$67,089			
Compression Bands	\$521,983	2	\$1,043,965			
Stack Assembly	\$799,418	51	\$40,770,338			
Stack Conditioning	\$147,516	145	\$21,389,879			
Stack Total \$341,270,457						

Progress – Manufacturing


Energy Efficiency & Renewable Energy

Increased performance by 200 mA/cm² at 0.4 V by improving the membrane/anode interface through direct coating

- W. L. Gore increased performance and reduced MEA and stack cost
 - Eliminated intermediate backer materials
 - Reduced number of coating passes
 - Minimized solvent use
 - Reduced conditioning time

Enabling Technologies:

- Direct coating to form membrane-electrode interface
- Gore's ePTFE membrane reinforcement & PFSA ionomers enable durable, highperformance MEAs
- Modeling of mechanical stress and heat / water management
- Advanced fuel cell testing & diagnostics

Next Steps: Explore new 3-Layer MEA Process

- Equipment configuration for MEA production
- Raw material formulations
- Map process windows for each layer of the MEA