H₂ Production by Oxygenic Phototrophs

Eric L. Hegg

Bioresour. Technol. 2011, 102, 8589-8604

Michigan State University
Great Lakes Bioenergy Research Center
Major Challenges to H₂ Photoproduction

- **Technical Challenges**
 - Mixture of H₂ and O₂; H₂ separation and storage
 - CO₂ addition and overall reactor design

- **Biological Challenges**
 - Poor efficiency of H₂ production
 - Poor heterologous expression of H₂-forming enzymes
 - Low quantum yields
 - Competition for reducing equivalents; poor electron coupling
 - Sensitivity of H₂-forming enzymes to O₂

M. Ghirardi, Abstract #1751, Honolulu PRiME 2012
Overcoming Low Efficiency: Improving ET

• Eliminate or down-regulate pathways competing for electron
 • Production of organic acids
 • Formation of NADPH/carbon fixation

Strategy depends on good genetics and an understanding of the metabolic pathways

• Identify endogenous electron transfer partner
 • Which ferredoxin or cytochrome?
Overcoming Low Efficiency: Improving ET

- Engineer improved coupling
 - Mutate docking site for enhanced binding

- Fuse H₂ase to ferredoxin

- Fuse H₂ase directly to PS-I

- Localize to a synthetic protein scaffold

PNAS 2011, 108, 9396-9401

Photochem. Photobiol. 2006, 82, 676-682
Overcoming O_2 Sensitivity

- **Utilize non-oxygenic photosynthesis**
 - Purple bacteria (*Rhodobacter sphaeroides*)
 - Selective light
 - Sulfur-deprivation

- **Engineer enzyme to be less O_2 sensitive**
 - Inhibit diffusion of O_2
 - Alter redox potentials

- **Separate H_2 and O_2 biosynthesis**
 - Temporal separation (e.g. H_2 produced from fermentation)
 - Spatial separation
 - Heterocyst forming bacteria
 - Expression of [FeFe]-H_2ase in *Anabaena* sp. PCC 7120
 - Mutations can increase heterocyst frequency
 - Other compartments? Carboxysomes?

Wolk et al.
Identifying New Organisms

- **Cyanothecae sp. ATCC 51142**
 - H₂ from nitrogenase
 - 465 μmol H₂ per mg chl per hr
 - Simultaneous light-driven H₂ and O₂ production
 - Over 100 hrs in presence of CO₂

- **Volvox carteri**
 - Multicellular green alga with differentiated cells
 - *C. reinhardtii* is most well-characterized relative
 - First multicellular eukaryote discovered to have H₂ metabolism

Nat. Commun. 2010, 1:139