

Connecticut Fuel Cell Activities: Markets, Programs, & Models

DOE State's Call - December 16, 2009

Joel M. Rinebold

Connecticut Center for Advanced Technology, Inc.

1

Hydrogen Programs

- Connecticut Hydrogen Roadmap (Fuel Cell Economic Development Plan)
- A National "Green Energy" Economic Stimulus Plan based on Investment in the Hydrogen and Fuel Cell Industry
- Connecticut DOT Plan for Hydrogen Stations and Zero Emission Fuel Cell Vehicles (In Development)
- Renewable Portfolio Standards
- Project 150 and Grant Programs
- Connecticut Hydrogen Fuel Cell Economy
- Connecticut Regional Resource Center

2

3

Connecticut Hydrogen Roadmap

Connecticut Market Growth

- In 2006, there were over 900 jobs associated with research and development and manufacture of equipment (1,156 in 2007).
- Over 1,200 indirect jobs in 2006 (over 1,500 in 2007).
- The industry contributed \$29 million in local tax revenue, and over \$340 million in gross state product in 2006.

Connecticut Center for Advanced Technology, Inc.

Economic Multipliers

	Ec	onomic Multipliers	
	Employment	Industry Revenues	Employee Compensation
Multiplier	2.31	1.84	1.72

- For each job the hydrogen and fuel cell industry directly supports, an additional 1.31 jobs are indirectly supported elsewhere in Connecticut.
- For every \$1.00 of revenue generated by industry, and additional 84 cents of revenue is received by the state of Connecticut.
- For every \$1.00 paid to industry employees, an additional 72 cents is paid by other employers in the supply chain.

4

Industry Employment

	Industry En	nployment	
	2006	2007	2010 (Estimated)
Direct Employment	927 Jobs	1,156 Jobs	1,635 Jobs

- Job growth directly associated with the industry is estimated to grow by over 700 jobs between 2006 and 2010, however such growth would be modest compared to potential applications of a mature market.
- Connecticut's hydrogen and fuel cell industry presently employs 1,156 employees, an increase of 229 jobs since early 2006.

Connecticut Center for Advanced Technology, Inc.

5

Potential Mature Global Market

6

- A mature global market could generate between \$43 and \$139 billion annually.
- If Connecticut captures a significant share of the distributed generation and transportation markets, revenues could be between \$14 and \$54 billion annually.
- A mature market would require a Connecticut employment base of tens of thousands.

Connecticut Center for Advanced Technology, Inc.

Emissions Reductions and Energy Savings

• Fuel cell generation facilities can substantially reduce emissions, greenhouse gases, and energy use.

Potential Averag Di	ge Annual Emissions Re splacement of 40 MW o	duction and Energy Savi of Conventional Fossil Fu	ngs Associated with the el Generation
Air Er	nissions	Energ	y Savings
NO _X	224 tons	Btu	1.4 – 1.6 Trillion
SO ₂	187 tons	No. 2 Oil Equivalent	10 - 12 Million Gallons
CO ₂	144,365 tons		

• Fuel cells would increase transportation efficiency by two to three times.

	Α	verage Expecte	d Energy Use (mp	ge)		
Passenger Car		Lig	ht Truck	Transit Bus		
Hydrogen Fuel Cell	Gasoline Powered Car	Hydrogen Fuel Cell	Gasoline Powered Light Truck	Hydrogen Fuel Cell	Diesel Powered Transit Bus	
81.2	29.3	49.2	21.5	7.04	3.9	

Connecticut Center for Advanced Technology, Inc.

7

8

Connecticut Hydrogen Roadmap

Targeted Deployment

- Targeted deployment of hydrogen and fuel cell technology could effectively meet electric power, thermal and transportation needs, reduce emissions, increase energy efficiency, and reduce costs.
- Examples of targets include state public buildings, prisons, universities, hospitals, transit fleets, delivery fleets, major highway fueling stations, etc.

Connecticut Center for Advanced Technology, Inc.

Connecticut Supply Chain

- There are opportunities for further supply chain development for fuel cell manufacturing in Connecticut.
- There are over 150 Connecticut companies that have the capability to be part of the fuel cell supply chain.
- The future state of a Connecticut supply chain can conceivably consist of hundreds of suppliers and tens of thousands of employees.

Connecticut (DEM Activities
What do Connecticut OEMs currently do?	What do Connecticut OEMs currently make?
 Manufacture Repair Refurbish Test Assemble Install 	 Turn-key fuel cell systems Fuel cell stacks Fuel cell plates BOP equipment Hydrogen production equipment

9

Connecticut Center for Advanced Technology, Inc.

Industry Employment

Connecticut Center for Advanced Technology, Inc.

10

Industry Employment

Results:

 Approximately 7,100 direct, indirect and induced jobs per 50 MW of consistent annual production of hydrogen and fuel cell manufacturing.

Connecticut Center for Advanced Technology, Inc.

Gross Domestic Product

Connecticut Center for Advanced Technology, Inc.

12

Gross Domestic Product

Results:

 Approximately \$1 billion in gross domestic product per the annual production of 50 MW of hydrogen and fuel cell manufacturing.

Connecticut Center for Advanced Technology, Inc.

Local, State and Federal Tax Revenue

Connecticut Center for Advanced Technology, Inc.

14

Local, State and Federal Tax Revenue

Results:

 Approximately \$400 million in federal, state, and local taxes annually for 50 MW of annual hydrogen and fuel cell production.

Reducing Production Cost

Connecticut Center for Advanced Technology, Inc.

16

DOT Transportation Plan: PA 09-186

Plan Outline:

I. Introduction

- A. Hydrogen and Fuel Cell Vehicles: Value
- B. Demand for Hydrogen and Vehicles
- C. Costs and Development
 - i. Hydrogen Generation
 - ii. Refueling Stations
 - iii. Transit Buses
 - iv. Passenger Vehicles
- D. Technology
 - i. Hydrogen Generation
 - ii. Refueling Stations
 - iii. Transit Buses
 - iv. Passenger Vehicles

II. Infrastructure

- A. Station/facility characteristics
 - i. Pressure
 - ii. Volume
 - iii. Hydrogen Production, Delivery, Storage
 - iv. Codes & Standards
 - v. Permits & Approvals
 - vi. Connecticut laws and regulations

III. Strategies

- A. Passenger vehicle strategy
- B. Transit vehicle strategy
- C. Expansion and availability
 - i. Clustering
 - ii. Fleets
 - iii. Vehicle manufacturers
 - iv. Station distribution/deployment
 - 1. Public
 - 2. Private
- D. Station locations and fuel demand
- E. Schedule and costs
- F. Products and infrastructure principally manufactured in Connecticut
- G. Program evaluation

IV. Funding/Financial

- A. Examination of appropriate funding
 - i. Federal
 - ii. State
 - iii. Private
- B. Federal and private cost sharing
- V. Conclusion

Connecticut Center for Advanced Technology, Inc.

www.ccat.us

17

DOT Transportation Plan: PA 09-186

Phased Infrastructure Deployment

Connecticut Center for Advanced Technology, Inc.

18

On-Site Distributed Generation Program

Connecticut Clean Energy Fund

- Grants up to \$4M per project
- Incentive cap = \$2.50 per Watt
- Pays approx. 25-50% of total system cost
- Limitations:

19

- Site must have base load greater than fuel cell output
- Site must be able to use at least 50% of thermal energy
- Must have access to natural gas service or other fuel

Source: Connecticut Clean Energy Fund

Connecticut Center for Advanced Technology, Inc.

Renewable Portfolio Standards

Annual Percentage Increase of Connecticut's RPS

1. Energy Growth Estimates are based on the compound Growth Rate of .98 % as provided by The Connecticut Siting Council. 2. Based on 100% load factor

20

Connecticut Center for Advanced Technology, Inc.

Renewable Portfolio Standards

Projected Average Annual Capacity Increase of Connecticut's RPS

Projected Capacity from Year to Year Based on the Renewable Portfolio Standards Percent Increase as Mandated by the State of Connecticut from Renewable Energy from Class I¹

Connecticut Center for Advanced Technology, Inc.

21

Project 150

Project 150

22

- Initiative to develop 150 MW of renewable generating capacity in CT
- Long Term EPA by the Department of Public Utility Control

Fuel Cell Projects Round 2:

- DFC-EPG Milford (Milford) 9 MW
- Stamford Hospital (Stamford) 4.8 MW
- Waterbury Hospital (Waterbury) 2.4 MW Round 3:
- Bridgeport Fuel Cell Park (Bridgeport) 14.9 MW
- DFC-ERG Bloomfield (Bloomfield) 3.6 MW
- DFC-ERG Glastonbury (Glastonbury) 3.4 MW
- DFC-ERG Trumbull (Trumbull) 3.4 MW
- EPG Fuel Cell (Danbury) 3.4 MW

Other Programs

Renewable Energy Credits

• RECs awarded for renewable energy projects including fuel cells

Low Interest Loans for Customer Side DG

- Interest rate 1% below applicable rate or no more prime rate
- DPUC/Banc of America

23

Discounts from Natural Gas

• Distribution charges waived for DG projects

ISO-NE Demand Response Program

 Backup rates and demand ratchets are eliminated for customers who install projects

Connecticut Fuel Cell Locations

Connecticut Center for Advanced Technology, Inc.

24

CT Hydrogen Fuel Cell Economy

Project Analysis

- Define problem/opportunities
- Identify community solutions
- Collect detailed information
- Identify application for fuel cells
- Initiate economic model

25

Connecticut Center for Advanced Technology, Inc.

Project Analysis

				E	Electric Consu	mption		Demand	1	Hours	Total	Unit	
	Dates		#	On-Peak	Off-Peak	Total	30-day avg	On-Peak	Off-Peak	Use	Cost	Cost	
Fro	m	То	Days	(kwh)	(kwh)	(kwh)	(kwh)	(kw)	(kw)	(hrs)	\$	(\$/kwh)
12/8	8/2005	1/10/2006	33	213,626	141,920	355,546	323,224	869.2	642.8	372	38,648	3.	109
1/10	0/2006	2/7/2006	28	198,766	119,078	317,844	340,547	1005.3	748.7	339	43,604	۱ .	137
2/	7/2006	3/8/2006	29	200,241	121,652	321,893	332,993	911.1	645	365	43,121	ı .	134
3/0	8/2006	4/6/2006	29	210,470	119,737	330,207	341,593	1054.9	669.6	324	47,723	3.	145
4/6	6/2006	5/7/2006	31	231,349	144,819	376,168	364,034	1118	854.5	326	52,132	2 .	139
5/3	7/2006	6/7/2006	31	264,476	146,459	410,935	397,679	1306.8	1128.8	304	56,937		139
6/7	7/2006	7/9/2006	32	291,478	184,120	475,598	445,873	1341.8	1208.7	332	63,753	3	134
7/9	9/2006	8/8/2006	30	321,126	196,720	517,846	517,846	1347.8	1204.4	384	70,413	3	136
8/8	8/2006	9/7/2006	30	279,436	161,991	Billing			Gas Con	sumption		Total	Unit
9/3	7/2006	10/5/2006	28	250,136	144,103	Dates		#	Total	30-day	y Avg	Cost	Cost
10/	5/2006	11/5/2006	31	219,233	147,768	From	То	Days	(Ccf)	(Co	cf)	(\$)	(\$/Ccf)
11/	5/2006	12/6/2006	31	249,024	136,473	12/31/200	5 1/31/200	6 3	1 14	,653	14,180	23,495.95	1.603
12/0	6/2006	1/8/2007	33	219,404	143,193	1/31/200	6 2/28/200	6 2	8 14	,239	15,256	18,757.67	1.317
1/8	8/2007	2/6/2007	29	200,563	126,252	2/28/200	6 3/31/200	6 3	1 12	2,343	11,945	14,457.48	1.17
_						3/31/200	6 4/30/200)6 3 vc 3	0 6	,893	6,893	8,891.74	1.29
F)rr	wide	ט ג	no		4/30/200	5 5/31/200	16 J	1 4	,135	4,002	5,976.04	1.44:
		Jviuc				5/31/200	6 5/30/200	10 J	0 1 4	,077	766	3,056.33	2.750
		. .	_		_ 、	7/31/200	6 8/31/200	6 3	1 1	206	1 167	2,104.01	2.750
N		ar (1'	2 r	nont	hc)	8/31/200	6 9/30/200	6 3	0 3	,200	3,194	4.691.52	1.469
У		יון וג				9/30/200	6 10/31/200	6 3	1 9	,457	9,152	13,985.00	1.479
	-		_			10/31/200	6 11/30/200	6 3	0 9	,430	9,430	11,274.37	1.196
ſ	st i	ıtility	n v	ata		11/30/200	6 12/31/200	6 3	1 13	,447	13,013	15,508.31	1.153
26 v		activity	u u	ulu		12/31/200	6 1/31/200	7 3	1 17	,225	16,669	19,081.11	1.108

Connecticut Center for Advanced Technology, Inc.

CT Hydrogen Fuel Cell Economy

Utility Inputs

Project Analysis

	Combined Heat a	
	Connec	
		Electric Domand
UTC FC	Technology	
1,328	KWAC Peak Host Demand Capacity	
47%	Host approximate Load Factor	
4,728,797	kWhs Host Average Energy Demand	
0%	Host Expected Retun on Equity	Thormal Domand
1,198,139	btu/hr Average Host Heat Demand	
400	KWAC Fuel Cell Installation	
97.00%	Capacity Factor	
8,126	Average Heat Rate	
27,620	mmbtu Heat Input Per Year Required	
3,398,880	Fuel Cell Gen is 71.9% of Host Requirement	
1,560,229	btu/hr Average generated by UTC FC	
15.32	Utility Avoided Energy Cost ¢/kWh	
3.0%	Utility & Nat Gas & LFG Esc. Rate	
3.0%	O&M Esc. Rate	
\$11.95	Natural Gas \$/mmbtu	
\$0.00	Fuel Oil Cost \$/mmbtu	
\$11.95	Natural Gas and Fuel Oil Cost \$/mmblu	
\$30.00	Recs Market Value De-Esc @2%	
2.00	Natural Cas of Oil Fired Boiler Efficiency	
15	- Number of Vears in the Analysis	Litility Datas
rate 58	Host CI &P Electric Rate	
Third Party Rate	0.00	
	1	

27

Connecticut Center for Advanced Technology, Inc.

CT Hydrogen Fuel Cell Economy

Economic Financial Analysis

Financial Variables

- Payback term
- Cash flow
- Net present value
- Depreciation
- Internal rate of return
- Financing method
- Capital costs
- Installation and restacking cost
- Investment tax credits

Connecticut Center for Advanced Technology, Inc.

Regional Resource Center A Connecticut Center for Advanced Technology/US DOE Partnership Initiative

DOE State's Call - December 16, 2009

Tom Drejer

Connecticut Center for Advanced Technology, Inc.

www.ccat.us

29

CCAT/US DOE Partnership Initiative

Partnership Initiative

- Promote hydrogen/fuel cell applications
- Target state and local government officials
 Goals
- Reduce energy costs

30

- Improved energy reliability
- Enhance environmental performance

CCAT/US DOE Partnership Initiative

Outreach

- Educate stakeholders on benefits
- Explain Regional Resource Center
- Review assisted modeling capabilities
- Provide examples of modeling and projects
- Review available funding
- Provide additional resources and potential partners

Regional Resource Center

Functions:

32

- Provides online information, models, tools
- Targets: local and state planners
- Subjects: quantified costs and benefits
- Identification of potential sites
- Ensures planners have the right information
- Ensures appropriate application of technology
- Information sharing and case studies

U.S. DOE Partnership Online Models -Economic/Cost Model

- Heating and Electricity Cost Savings
- -Energy Management Model
 - Efficiency Benefits
- -Distributed Technology Comparison
 - Compares Fuel Cells to Other Technologies
- -Hydrogen Generation from Renewable Technology
 - Cost of Hydrogen from Renewable Resources
- -Environmental Model

33

• Stationary and Transportation Emissions

Connecticut Center for Advanced Technology, Inc.

34

Connecticut Center for Advanced Technology, Inc.

Energy Management Model

ABOUT CCAT	SERVICES	VENTS	PUE	LICATIONS/NEWS	
Energy Overview	Regional Resource Cer	nter - E	nergy Manag	ement Model	
Services	The energy management model ass	esses the	efficiency benefits of	stationary fuel cell applicatio	ins.
Contact Energy	Use the interface below to select the fossil fuel equivalent for the potential	stationary energy sav	fuel cell output and th /ings using a fuel cel	nen select the fuel type to see Il to replace conventional	e the
Hydrogen Advancement	electricity generating technologies.				
Fuel Cells for	Choose Fuel Cell Power Output: 3	00 kW	*		
U.S. DOE Energy	Oil Equivalent Savings (Gal/Yea)	r)			
Partnership - Regional Resource Center	Coal Equivalent Savings (Short	Tons)			
Connecticut Hydrogen-Fuel Cell Coalition	O Natural Gas Equivalent Savings	(CF)			_
Energy &		Btu/kWhr	Savings (Gal/Year)	Savings (MMBtu/Year)	
Center for Energy Solutions and Applications	Potential Energy Savings from Replacement of Oil-Fired Generation	4,609	87,219	12,112	
Renewable Energy	Potential Energy Savings from Replacement of Coal-Fired Generation	4,288	81, <mark>144</mark>	11,269	
Energy Events	Potential Energy Savings from Replacement of Natural Gas-Fired Generation	3,976	75,240	10,449	
	Potential Average Energy Savings from Replacement of Conventional Fossil Fuel Generation	4,171	78,930	10,961	
	** This is not a life cycle analysis Sources: Fuel Cell Economic Development Plan: Hy 2008	ydrogen Roa	dmap, Connecticut Cent	ter for Advanced Technology, Inc	

Connecticut Center for Advanced Technology, Inc.

36

Distributed Technology Comparison

37

Connecticut Center for Advanced Technology, Inc.

Hydrogen Generation

Connecticut Center for Advanced Technology, Inc.

38

Hydrogen Generation

U.S. Department of Energy and the Connecticut Center for Advanced Technology Inc. State and Local Government Partnership Building

Enter Data into the yellow cells then click the link below for results

Vind turbine power will be compared equally among the three renewable technologies (e.g. a 1500k¥ wind turbine will automatically select 1500k¥ of photovoltaics and hydroelectric turbines.

Tilla La	nome		Photovo	ntaics	nguroe	lectric		Hadroolectricita	
Select a Wind Turbine	100 kW (NWD 100)		Panel Rated Capacity (kW)	100	Enter the estimated average flow rate of water based on peak flows	70	Cubic	Vind Power Photovoltaics	Yearly .
Jnit Rated Capacity (kW)	100	Max rated capcity only met at wind speeds greater than "34 mph	Enter Capacity Factor (%)	14%	Enter Pressure Head Height (Feet	50		Hydroelectricity Hydrogen Prod	uctivity
Please select wind class at 50 m (164 (t)	1		Yearly Maintenance Cost (\$/kWh)	\$0.008	System efficiency (%)	54%			
No Entry Needed, Value is Disregarded	19.7		Installed Cost (\$/k₩)	\$7,400	Capacity Factor (%)	50%		17,41	1
Enter Number of Turbines	1				Yearly Maintenance Cost (\$/k∀)	\$100		-	
Installed Cost (\$/k∀)	\$1,800				Installed Cost (\$/k∀)	\$2,500		- -	
Yearly Maintenance & Miscellaneous Costs (cents/kWh)	\$0.01				Turbine Power (Horsepower)	103.95			3
Enter Capacity Factor (%)	30%				Turbine Power (kW)	77.52		≤ <u>0</u> 20,000	4
Coefficient of Performance (35% maximum)	25%				Number of Turbines Needed	2			
Rho (air density Ib/f^3)	0.076				kWh/Year	679,036			
Generator Efficiency	80%							Hydroelestrisity \$2	2.85
Gearbox Bearings Efficiency	95%							S	2.85
Financial As:	sumptions]	Financial As	sumptions	Financial As	sumptions]	Photovoltaics	
Interest Rate	7%		Interest Rate	7%	Interest Rate	7%	4		
% Liebt	100%		74 Liebt	100%	74 Liebt	100%	-	-	1
Finance Ferm	15		Finance Ferm	15	Finance Term	15			-
[rears]	CI I	1	[[rears]	CI	[[(ears]	GI	-	Wind Power	0.0
Energy Produc	ction Costs		Energy Produ	ction Costs	Energy Produ	ction Costs	1		- \$6.
Yearly Debt			Yearly Debt		Yearly Debt				1
Dourmont	1 \$446 537 88		l Paument	\$1,835,766,86	Payment	\$41,820.70	1		
r aginent			,	*			1	CO 00 CC	00 64

the Connecticut Center for Advanced Technology Inc. State and Local Government Partnership Building Yearly Average Kilograms Yearly Average Kilograms Produced (Low Estimate) Produced (High Estimate) Vind Power 17,003 69,981 Photovoltaics 72,326 72,326 17,411 17,411 verage Cost/kg (Low Yearly Average Cost/kg (High Estimate) Estimate) \$6.77 \$27.87 \$25.70 \$25.70 \$2.85 \$2.85

U.S. Department of Energy and

Connecticut Center for Advanced Technology, Inc.

Environmental Model

Connecticut Cer	nter for Advanced Tech	nnology, Inc.	USER	PASSWORD	
ABOUT COAT	SERVICES	EVENTS			3
		1			
Energy Overview	Regional Resou	rce Center - E	nvironme	ental Model	
Services	The environmental model	assesses the enviror	mental benefit	ts of hydrogen and fuel cell	
Contact Energy	applications compared wi the stationary or transport	th other conventional t ation application, then	echnologies. L choose the po	Use the interface below to select over output or vehicle type to fin	ct eith d out
Hydrogen Advancement	the potential emissions re	ductions using hydro	gen and fuel ce	ell technology.	
Fuel Cells for Municipalities	Choose Application: Sta	tionary	~		
U.S. DOE Energy	Choose Power Output:	400 kW	*		
 Partnership - Regional Resource Center 	Click here for results				
Connecticut Hydrogen-Fuel Cell Coalition	Stationary power is the m backup power, power for	ost mature application remote locations, star	n for fuel cells. Id-alone power	Stationary fuel cell units are us r plants for towns and cities,	ed for
	distributed deneration for	nulldinge and co.dor	relation (in whi	ch excess thermal energy from	1
Energy & Infrastructure Planning	electricity generation is u	sed for heat).			
Energy & Infrastructure Planning Center for Energy	electricity generation is us	sed for heat).			
Energy & Infrastructure Planning Center for Energy Solutions and Applications	electricity generation is us STATIONARY OUTPUT Potential Average Ann	sed for heat). * ual Emissions Reduc	tions Using Fu	el Cell Technology Compared	to
Energy & Infrastructure Planning Center for Energy Solutions and Applications Renewable Energy	electricity generation is us STATIONARY OUTPUT Potential Average Ann Existing New England	sed for heat). * ual Emissions Reduc Fossil Fuel Electric G	tions Using Fu eneration	el Cell Technology Compared	to
Energy & Infrastructure Planning Center for Energy Solutions and Applications Renewable Energy Biodiesel Grant Program	electricity generation is us STATIONARY OUTPUT Potential Average Ann Existing New England	r * ual Emissions Reduc Fossil Fuel Electric G NOx (Ibs) 3, SO2 (Ibs) 12	tions Using Fu eneration 523.20 ,938.78	el Cell Technology Compared	to

Connecticut Center for Advanced Technology, Inc.

40

Environmental Model

Continen	nogional neocoal of o		
 Services 	The environmental model assesse	es the environmental	I benefits of hydrogen and fuel cell
Contact Energy	applications compared with other of	conventional technol	ogies. Use the interface below to select eithe
	the stationary or transportation app the notential emissions reductions	s using hydrogen and	e the power output or vehicle type to find out
 Hydrogen Advancement 	the potential emissions reductions	o using nyarogen and	a laci con technology.
Fuel Cells for	Choose Application: Transporta	tion 💌	
ILS DOF Energy	Choose Vehicle Comparison: T	ransit Bus	*
Partnership - Regional Resource Center	Enter Expected Number of Miles D	priven: 30000	
Connecticut Hydrogen-Fuel Cell Coalition	Click here for results		
Energy &	2 7 9 9 9 99 99	nronulsion or auvilia	ry power for many transportation applications
Infrastructure Planning	Fuel cells can be used to provide (propersion of advina	
Infrastructure Planning Center for Energy	Aside from spacecraft, which typic	ally use alkaline fuel	cells for onboard power, polymer electrolyte
Infrastructure Planning Center for Energy Solutions and	Aside from spacecraft, which typic membrane (PEM) fuel cells are the	ally use alkaline fuel e primary type used i	cells for onboard power, polymer electrolyte in transportation.
Infrastructure Planning Center for Energy Solutions and Applications	Aside from spacecraft, which typic membrane (PEM) fuel cells are the TRANSPORTATION OUTPUT *	ally use alkaline fuel e primary type used i	cells for onboard power, polymer electrolyte in transportation.
Infrastructure Planning Center for Energy Solutions and Applications Renewable Energy	Aside from spacecraft, which typic membrane (PEM) fuel cells are the TRANSPORTATION OUTPUT * Potential Emissions Reduction	ally use alkaline fuel e primary type used i ns Using Hydrogen F	cells for onboard power, polymer electrolyte in transportation.
 Infrastructure Planning Center for Energy Solutions and Applications Renewable Energy Biodiesel Grant Program 	Aside from spacecraft, which typic membrane (PEM) fuel cells are the TRANSPORTATION OUTPUT * Potential Emissions Reduction Compared To A Transit Bus	ally use alkaline fuel e primary type used i ns Using Hydrogen F	cells for onboard power, polymer electrolyte in transportation. Fuel Cell Propulsion Systems When
Infrastructure Planning Center for Energy Solutions and Applications Renewable Energy Biodiesel Grant Program	Aside from spacecraft, which typic membrane (PEM) fuel cells are the TRANSPORTATION OUTPUT * Potential Emissions Reduction Compared To A Transit Bus NOx (Ibs)	ally use alkaline fuel e primary type used i ns Using Hydrogen F 826.734	cells for onboard power, polymer electrolyte in transportation. Fuel Cell Propulsion Systems When
Infrastructure Planning Center for Energy Solutions and Applications Renewable Energy Biodiesel Grant Program Energy Events	Aside from spacecraft, which typic membrane (PEM) fuel cells are the TRANSPORTATION OUTPUT * Potential Emissions Reduction Compared To A Transit Bus NOx (lbs) SO2 (lbs)	ally use alkaline fuel e primary type used i ns Using Hydrogen F 826.734 1.416	cells for onboard power, polymer electrolyte in transportation. Fuel Cell Propulsion Systems When
Infrastructure Planning Center for Energy Solutions and Applications Renewable Energy Biodiesel Grant Program Energy Events	Aside from spacecraft, which typic membrane (PEM) fuel cells are the TRANSPORTATION OUTPUT * Potential Emissions Reduction Compared To A Transit Bus NOx (lbs) SO2 (lbs) CO2 (lbs)	ally use alkaline fuel e primary type used i ns Using Hydrogen F 826.734 1.416 148.329.216	cells for onboard power, polymer electrolyte in transportation. Fuel Cell Propulsion Systems When
 Infrastructure Planning Center for Energy Solutions and Applications Renewable Energy Biodiesel Grant Program Energy Events 	Aside from spacecraft, which typic membrane (PEM) fuel cells are the TRANSPORTATION OUTPUT * Potential Emissions Reduction Compared To A Transit Bus NOx (Ibs) SO2 (Ibs) CO2 (Ibs) Gallon Equivalent Savings	ally use alkaline fuel e primary type used i ns Using Hydrogen F 826.734 1.416 148,329.216 3,510	cells for onboard power, polymer electrolyte in transportation. Fuel Cell Propulsion Systems When
 Infrastructure Planning Center for Energy Solutions and Applications Renewable Energy Biodiesel Grant Program Energy Events 	Aside from spacecraft, which typic membrane (PEM) fuel cells are the TRANSPORTATION OUTPUT * Potential Emissions Reduction Compared To A Transit Bus NOx (lbs) SO2 (lbs) CO2 (lbs) Gallon Equivalent Savings * Model assumes availability of	ally use alkaline fuel e primary type used i s Using Hydrogen F 826.734 1.416 148,329.216 3,510 f hydrogen from rene	cells for onboard power, polymer electrolyte in transportation. Fuel Cell Propulsion Systems When
 Infrastructure Planning Center for Energy Solutions and Applications Renewable Energy Biodiesel Grant Program Energy Events 	Aside from spacecraft, which typic membrane (PEM) fuel cells are the TRANSPORTATION OUTPUT * Potential Emissions Reduction Compared To A Transit Bus NOx (lbs) SO2 (lbs) CO2 (lbs) Gallon Equivalent Savings * Model assumes availability of	ally use alkaline fuel e primary type used i s Using Hydrogen F 826.734 1.416 148,329.216 3,510 f hydrogen from rene	cells for onboard power, polymer electrolyte in transportation. Fuel Cell Propulsion Systems When
 Infrastructure Planning Center for Energy Solutions and Applications Renewable Energy Biodiesel Grant Program Energy Events 	Aside from spacecraft, which typic membrane (PEM) fuel cells are the TRANSPORTATION OUTPUT * Potential Emissions Reduction Compared To A Transit Bus NOx (lbs) SO2 (lbs) CO2 (lbs) Gallon Equivalent Savings * Model assumes availability of	ally use alkaline fuel e primary type used i s Using Hydrogen F 826.734 1.416 148,329.216 3,510 f hydrogen from rene	cells for onboard power, polymer electrolyte in transportation. Tuel Cell Propulsion Systems When
 Infrastructure Planning Center for Energy Solutions and Applications Renewable Energy Biodiesel Grant Program Energy Events 	Aside from spacecraft, which typic membrane (PEM) fuel cells are the TRANSPORTATION OUTPUT * Potential Emissions Reduction Compared To A Transit Bus NOx (lbs) SO2 (lbs) CO2 (lbs) Gallon Equivalent Savings * Model assumes availability of Comparison of C	ally use alkaline fuel e primary type used i us Using Hydrogen F 826.734 1.416 148.329.216 3,510 f hydrogen from rene	cells for onboard power, polymer electrolyte in transportation. Fuel Cell Propulsion Systems When wable resources
 Infrastructure Planning Center for Energy Solutions and Applications Renewable Energy Biodiesel Grant Program Energy Events 	Aside from spacecraft, which typic membrane (PEM) fuel cells are the TRANSPORTATION OUTPUT * Potential Emissions Reduction Compared To A Transit Bus NOx (Ibs) SO2 (Ibs) CO2 (Ibs) Gallon Equivalent Savings * Model assumes availability of Comparison of C Conventional Transit Bus	ally use alkaline fuel e primary type used i s Using Hydrogen F 826.734 1.416 148.329.216 3,510 f hydrogen from rene Conventional Techno us mile per gallon	cells for onboard power, polymer electrolyte in transportation. Fuel Cell Propulsion Systems When ewable resources

www.ccat.us

41

Fuel Cells for Municipalities

Potential Partners

- Connecticut Center for Advanced Technology
- Connecticut Clean Energy Fund
- Connecticut Siting Council
- Northeast Utilities
- United Illuminating
- FuelCell Energy
- UTC Power

42

• U.S. Department of Energy

Joel M. Rinebold Email: jrinebold@ccat.us

Tom Drejer Email: tdrejer@ccat.us

Telephone: (860)-291-8832 Web: www.ccat.us

Connecticut Center for Advanced Technology (CCAT)

43

Connecticut Center for Advanced Technology, Inc.