

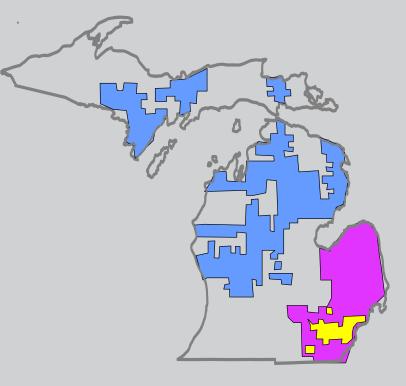
(I believe)

(1 believe)

(INDECEMBER) DTE Energy (Internet) Hydrogen Technology Park

(1 believe)

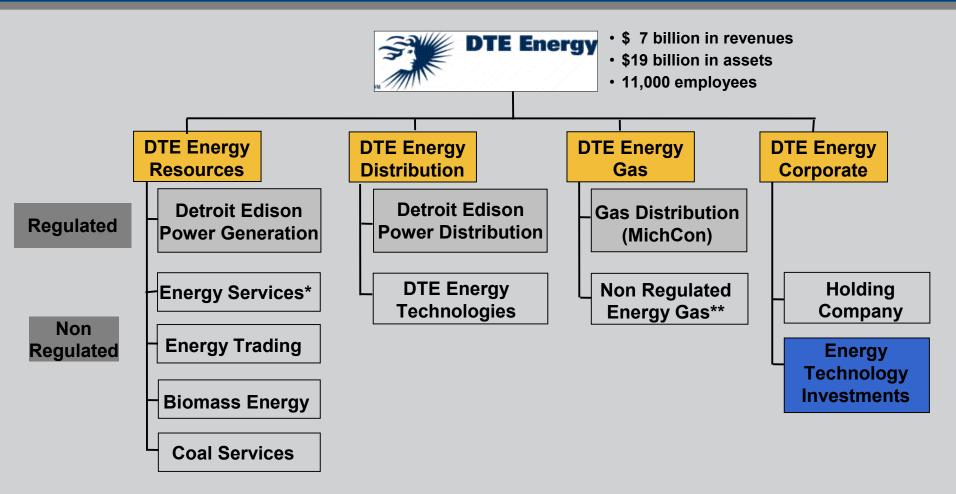
(1 believe)


(1 believe)

DTE Energy - Company Overview

- Full-spectrum regional energy provider
 - An electric and natural gas utility
 - Non-regulated energy related businesses
- Assets of \$19 billion
- Annual revenues over \$7 billion
- 2.6 million customers
- 11,000 MW of generation
- 600 BCF natural gas delivery
- 11,000 employees

Utility Service Territory


📕 Detroit Edison 📲 MichCon

Overlap

2

Diversified Energy and Energy Technology Company

* Energy Services: Coal Based Fuels, Merchant Generation and On-Site Energy Projects

**Non Regulated Energy Gas: Pipelines, Storage & Michigan Gas Production

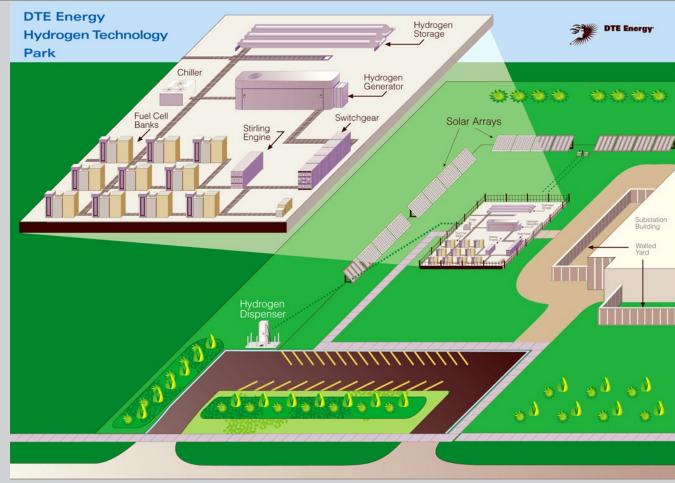
Detroit Edison & Service Area

Service Area: 7,60	0 Sq. Mil	es			
Customers: 2.1 million					
System Peak Load: 12,132 MW Annual Sales: 56,000 GWH 37% Commercial 29% Residential 29% Industrial 5% Wholesale & Interconnection					
Distribution Substations 662					
Distribution Circuits		2,808			
1,876 @ 4.8kV					
932 @ 13.2kV					
Distribution Circuit Miles 38,939					
	20,184 @) 4.8kV			
	18,755 @) 13.2kV			
Subtransmission	2,664 @) 24 kV			
	797 @) 41.6kV			

4

DTE Energy

Given the potential for the commercialization of hydrogen as a replacement energy carrier for fossil fuels, DTE Energy will develop and test a working prototype of a hydrogen-based energy system.


The company believes this demonstration project, which models a complete renewable hydrogen system, from hydrogen generation using biomass/solar power to storage to electrical generation and vehicle fueling, will provide meaningful information into the technical and economic challenges of realizing a hydrogen-based economy.

Project Overview

System Attributes:

- End-to-end hydrogen energy system
- Electrolysis-based hydrogen production
- On-site renewable energy source
- Fuel cell-based power generation
- Vehicle re-fueling
- Remotely operated & controlled

Southfield, MI

- Demonstrate an end-to-end, multi-use hydrogen energy station in order to:
 - Test on-site, co-production of hydrogen for stationary fuel cell power and vehicle fueling applications
 - Identify the technical and economic drivers of system performance
 - Validate component and system technologies
 - Develop applications experience in hydrogen energy systems

 Contribute to development of relevant safety standards and protocols for hydrogen-based power systems.

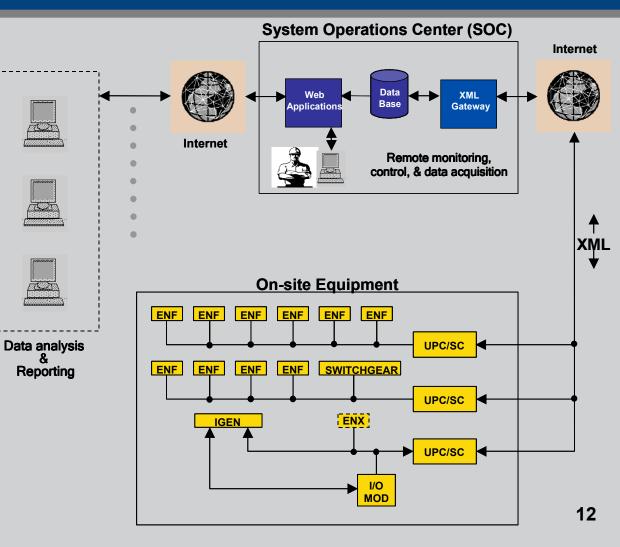
Evaluate the market opportunities for hydrogen energy systems.

• Educate the public on hydrogen-based energy systems.

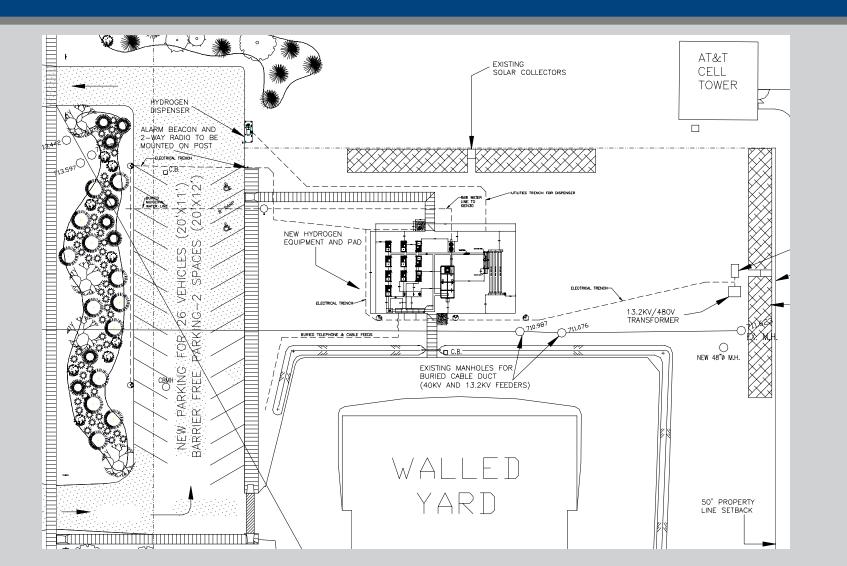
Why Electrolysis?

- Established, time-tested technology
- Allows modeling of renewable energy system
- Allows analysis of multiple power sources (i.e. solar, wind, gas, coal, nuclear)
- Tests peak-shaving application
- Leverages available infrastructure (substation)
- Minimizes/eliminates fuel purity concerns

Process Flow Diagram

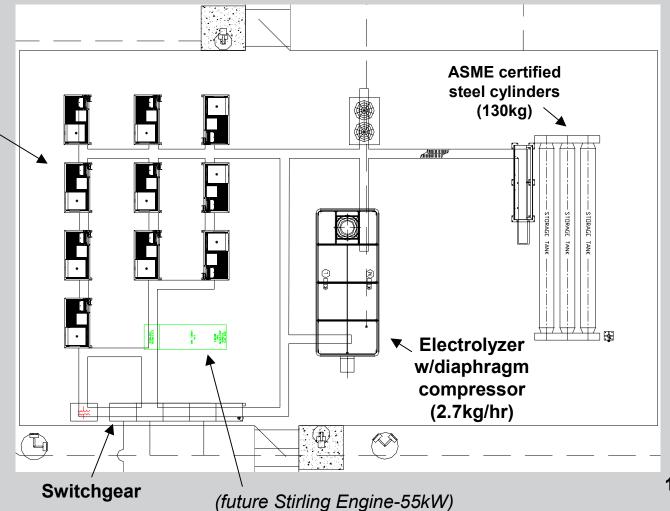


Remote Monitoring & Control System



- System capable of remotely monitoring and recording all relevant system parameters including:
 - -Runtimes
 - -Power consumed
 - –Hydrogen mass produced/consumed
 - -Alarms & warnings

Site Layout



13

Equipment Pad

- 10 stationary fuel cell subsystems
- Operate in tandem for AC power generation (40-50kW)

Project Site

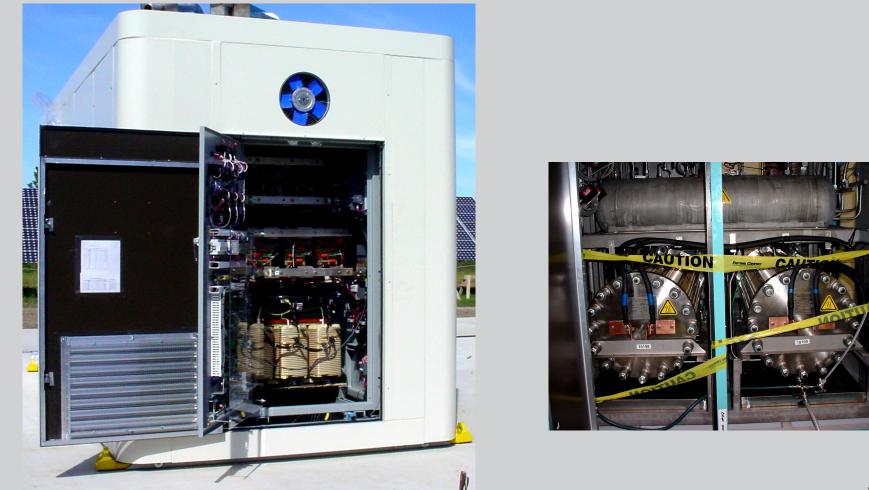
Southfield Substation

Start of Construction

Fuel Cell System

10 subsystems

Fuel Cell Subsystem



Front

Back

Electrolyzer

Storage

Dispenser

example

Installed System

Project Review

Enterprise wide initiative:

- DTE Energy Ventures –Technology Investments (project sponsor)
- DTE Energy Technologies integrated DG solutions
- Detroit Edison electric utility
- MichCon gas utility
- DTE Biomass Energy non-regulated renewable energy provider

Interactions & Collaborations

Lawrence Technological University

- Data collection & analysis lead
- Project to serve as 'working laboratory' in new alternative energy curriculum

BP

- Infrastructure partner for DOE Hydrogen Fleet Demonstration project
- Providing best practices/lessons learned from EU and other hydrogen refueling installation experiences

DaimlerChrysler

 Vehicle partner for DOE Hydrogen Fleet Demonstration project

BOC

 Collaborator on gas handling, system optimization, & commercial off-take opportunities

DAIMLERCHRYSLER

LAWRENCE TECHNOLOGICAL UNIVERSITY

Delivering solutions globally

Project Timeline

0	ct'02	Fall)4		Sep'05
	Phase I	Phase II		Phase III	
	Select Team Establish optimal technologies and sources Develop work plan & budget Establish codes & standards framework Select Site	Design system & obtain permits Procure equipment Install, commission and operate system Develop educational program	system Develop te Assess ec business j	nonitor, and maintain echnical report conomics and develop plan t and publish project	DOE follow-on project '05 – '08
	[complete]	[in progress]	[planned]		