Combinatorial Discovery of Fuel Cell Electrocatalysts Eugene S. Smotkin University of Puerto Rico @ Rio Piedras

Non-Platinum Electrocatalysts Workshop March 21, 2003 Marriot courtyard – Convention Center New Orleans, Louisiana

Overview

- Parallel Screening methods
 - Optical Screening method
 - Array fuel cell
- Array synthetic methods
- Partial review of non-Pt cathode work

Optical Screening of Electrocatalyst Libraries

Tom Mallouk, Penn. State Univ. Gene Smotkin, IIT

- Catalyst spots deposited on Toray carbon paper
- All array spots are shorted together
- Highest current density at any potential yields highest local ΔpH

 $CH_3OH + H_2O = CO_2 + 6H^+ + 6e^-$

 $O_2 + 4H^+ + 4e^- = 2H_2O$

Optical Screening Method

"Zoom" scans are followed by RDE and fuel cell testing of best catalysts

Discoveries by Optical Screening (DMFCs)

- Within borohydride synthetic regime:
 - PtRuOsIr > PtRuOs > PtRu
 - Typical surface area attained was 20 m²/gram
- In the open field of ranking
 - Single cell testing of commercial ETEK or JM PtRu was superior to borohydride prepared binaries or ternaries.
 - JM PtRu $\approx 85 \text{ m}^2/\text{gram}$
- Optical screening method is reliable.
- Broad array synthetic methods (borohydride reduction) are not.
- Optical method must be decoupled from synthetic methods.

Array fuel cells Renxuan Liu, NuVant Systems Inc. Gene Smotkin, UPR at Rio Piedras

- GDL catalyzed MEA (ink or vapor deposition) fabrication methods.
- Discovery or focus level screening.
- Conventional single cell temperature control and reactant delivery.
- Realistic fuel cell conditioning.

UPR/NuVant Systems Inc. Array Fuel Cell System

Array Flow field designs

- Segmented flow field.
- Segmented gas diffusion layer (GDL disks on array side)
- DMFC
 - Serpentine serial flow fields with high reactant stoichiometric ratios.
- Hydrogen air fuel cells
 - Gas fed parallel flow fields.
 - Pressure dropping inlet manifold ensures uniform flow across the array.

Ranking of catalys ts in DM FC anode operating region

r,	2	
2	4233	3
0	3545	1
2	32.40	3
0	514	Ġ

LABLE 1000 h tripat	en úteg reak:
-----------------------	---------------

Saroose	6/ Å	Distributeon+121 dicg	
Si étakodo)	39(60(3)	0.99%(5)	
Roma E dP.a	3 871 1(?)	0 253(6) 0 252(1)	
Acian PtP.v	2 8908(Ø)		
114 F.C.a	((33%)())	0 349(8)	

Array fuel cell summary

- Screening under fuel cell conditions.
- Any GDL deposition method can be used.
- Pre and Post screen XRD and XPS analysis demonstrated.*
- Liquid feed or gas fed array flow fields available.
- Screening rate (1 instrument): 100 week
 - Arrhenius plots*
 - Tafel plots*
 - Fuel or oxidant stoic ratio dependence (within the "safe" window")*
- Can also screen ink formulation or catalyst deposition methods
- * R. R. Diaz et al., manuscript in prep.

Array synthetic methods

- Vapor deposition upon the GDL
 - Sputtering upon blank & Pt catalyzed GDLS
 - Pulsed laser deposition
 - Chemical vapor deposition
- Robotics development and hybridization of "single beaker" methods followed by ink deposition upon GDLs.
 - Reetz, Watanabe, Bönnemann, Stonehart, Christensen, and H. Tributsch, Adams, others.

Non-Pt chalcogenide cathode work (complete review in progress)

DMFC (methanol tolerance)

- Alonso Vante & Tributsch, Nature 323 (1986) 431
 - Transition metal sulfides; $Mo_{6-x}Ru_xX_8 X = S$, Se, Te (thought to be Chevrel phases)
- Alonso Vante, Tributsch & Solorza-Feria, Electrochim. Acta 40 (1995) 567
 - Report that O_2 reduction on chalcogenides is a 4-electron process direct to H_2O .
- M. Bron^{*},... Tributsch et al., JEAC, 517 (2001), 85 94
 - Showed that Mo not important for Ru based catalysts but Se is.
 - Active catalysts are mixed phase with two or more phases including a Ru metal core and amorphous shell. Catalysts are poorly characterized.
 - Carbon support improves mass specific activity
 - About an order of magnitude lower activity than Pt
- RW Reeve, PA Christensen* et al., Electrochim. Acta 45 (2000) 4237
 - RhRu₅S₅/Ketjen EC600JD (Fig. 4 on page 4242!)
 - 4 M methanol; overlaid Pt performance at 150 mA/cm² at 300mV cell voltage
 - 0.5 bar oxygen versus 1 atm. at the Pt cathode

Acknowledgments

- Collaborative efforts in Combinatorial Discovery
 - Thomas E. Mallouk of Penn. State University
 - NuVant Systems Inc, Chicago Ill.
- Funded by:
 - ARO HUB Program (Optical Method)
 - ARL Collaborative Technology Alliance (Array Fuel Cells)
 - NuVant Systems Inc. (Array Fuel Cells)
 - University of Puerto Rico at Rio Piedras (Robotics)
 - Please see

- T. E. Mallouk, E. S. Smotkin, Combinatorial Catalyst Development Methods. In Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vol 2: Electrocatalysis, ed. W. Vielstich, H Gasteiger, A. Lamm, pp. in press, John Wiley & Sons, Ltd.
- Eugene S. Smotkin and Robert R. Diaz-Morales, "New Electrocatalysts by Combinatorial Methods" in Annu. Rev. Mater. Res., 33, (2003), in press