HYDROGEN STORAGE IN CARBON NANOTUBES

JOHN E. FISCHER UNIVERSITY OF PENNSYLVANIA

- * SOME BASIC NOTIONS
- * BINDING SITES AND ENERGIES
- * PROCESSING TO ENHANCE CAPACITY:

EX: ELECTROCHEMICAL Li INSERTION

- * PHYSISORPTION vs. CHEMISORPTION
- * MOLECULAR vs. ATOMIC HYDROGEN
- * CONCLUSIONS

Allotropes of Carbon

DENSITIES

diamond	3.3
graphite	2.2
fullerite	1.7
"rope"	1.3

Cross-section of individual SWNT B.W. Smith, Penn

Atomic Resolution STM W. Clauss, Penn

INCLUSION COMPOUNDS OF CARBON HOST MATERIALS

OCTANE: C₈H₁₈ - 15.8 wt.% HYDROGEN or 1.12 H₂ MOLECULES per C ATOM

CLEAN CAR PROJECT REQUIREMENT:

 $6.5 \text{ wt.}\% \text{ or } 1 \text{ H}_2 \text{ per } 2.4 \text{ C ATOMS}$

WHAT DO WE KNOW ABOUT LIMITING COMPOSITIONS FOR OTHER SWNT INCLUSION "COMPOUNDS"?

EXAMPLE: electrochemical insertion of Li into cut SWNT bundles <u>1 Li⁺ per ~2 CARBONS</u>

> BUT: kinetic diameter of H₂ >> diameter of Li⁺. AND: *van der Waals* interaction << ionic bonding.

FILLING NANOTUBES

CAPILLARITY: metals and oxides, large diameters (Ebbesen, others)

IMMERSION IN MOLTEN SALTS: MWNT (Sloan, others)

GAS PHASE: fullerene peapods (Luzzi, others)

DIRECT PROOF OF ENDOHEDRAL ACCESS AND FILLING (PENN 1998)

≈25 nm

A 25 nm diameter rope of (9,9) tubes. The number of surface tubes is an appreciable fraction of the total, and the "groove sites" form 1-D channels with significant binding energy for neutral molecules.

2-D potential energy surface for helium. The channel sites are well localized; the endohedral "site" is actually a ring of He density while the groove-site is quite dispersed on the surface. This suggests the possibility for novel dynamical behavior in the groove sites.

Binding energy (meV)

Thanks to Tobias Hertel

BINDING ENERGIES AND RELATIVE ABUNDANCES OF THE 3 SITES VS. TEMPERATURE AND ROPE DIAMETER

Fig. 1. Rope geometries considered in this work, with computed specific surface area contributions indicated for the endohedral (σ_{ende}), interstitial (σ_{inter}), and outer (σ_{outer}) adsorption sites. The total specific surface area is indicated by σ_{TOT} .

Williams & Eklund 2000

GOAL CAN BE MET AT 133 K and 10 MPa (~ gas cylinder) WITH ISOLATED SWNT

ENHANCED LI STORAGE BY OPENING AND CUTTING

Purified/annealed PLV tubes: well-ordered ropes, long tubes, closed ends (PENN 2000).

3.5 (a) 3 Cell potential (V) 2.5 2 1.5 1 0.5 0 400 800 1200 1600 0 Capacity (mA.h/g)

Ditto, then ball-milled for different times (UNC 2000).

X (in Li_xC₆)

4.0

First Charge

1000.0 1500.0 2000.0

Capacity(mAh/g)

5.0

3.0

cond Discharge

0.0

3.0

2.0

1.0

8:8

Voltage(V)

8:8

2.0

1.0

0.0 L 0.0 1.0

First Discharge

500.0

2.0

Ditto, then sonicated in 3:1 sulfuric/nitric for 10-24 hours (UNC 2002).

Reversible capacities:

LiC₅

LiC_{2.2} @ 10 min

LiC₃@L = 0.5 mm

WHERE ARE WE SO FAR?

- PHYSISORPTION WON'T MEET THE GOAL AT PRACTICAL TEMPERATURES OR PRESSURES – WE NEED SOME INTERACTION STRONGER THAN van der Waals BETWEEN H₂ AND SWNT.
- ACCESS TO TUBE INTERIOR IS AN ABSOLUTE REQUIREMENT; NEED TO CONTROL AND OPTIMIZE POST-SYNTHESIS PROCESSING.
- Li⁺ PROBABLY FILLS SWNT, AND DIFFUSES FAST AT 300K.
 WHAT ABOUT THE MUCH LARGER H₂?

MD SIMULATION: DISTORTED TUBES -> WEAK COVALENT BOND BETWEEN H₂ and CARBON (JACS **2001**, 123, 5845)

J. Am. Chem. Soc. 2001, 123, 5845-5846

Figure 1. A representative time step during the MD simulation of endohedral H_2 adsorption at 300 K. The radial deformation of the SWNT wall and orientation of the H_2 molecules are illustrative of the dynamics observed throughout the simulation.

MOLECULAR HYDROGEN ACTS AS A WEAK ACID, EXTRACTING ELECTRON DENSITY FROM THE SWNT. BUT

AT HIGH LOADING MOST H₂'s DON'T FEEL THE TUBE WALLS.

Table 1. The Energies (kcal mol^{-1}) of Adsorption of H₂ in SWNT's

al	exohedral	endohedral	temp, K
,	-4.79	-3.94	77
5	-6.75	-7.51	300
ĺ.	-10.91	-3.86	600

5845

5846 J. Am. Chem. Soc., Vol. 123, No. 24, 2001

EXPERIMENTAL TESTS OF PARTIAL COVALENT BONDS

PERTURBED TUBE SYMMETRIES and RAMAN SCATTERING: RADIAL BREATHING MODES SHOULD BE GONE; TANGENTIAL MODE FREQUENCIES WILL CHANGE, DUE MOSTLY TO MODIFIED BOND BENDING FORCE CONSTANTS.

NEGATIVE CHARGE ADDED TO H₂ SIGMA ORBITALS: EXPANDED H – H BOND from RAMAN, IR, NEUTRON VIBRATIONAL SPECTROSCOPY.

p-DOPING THE SWNT BY DEPLETING pseudo-PI ORBITALS: RAMAN G₂ BAND SHOULD BLUESHIFT; RESISTIVITY SHOULD DECREASE, THERMOPOWER SHOULD REVEAL E_F DOWNSHIFT.

¹³C and proton NMR *in situ* : SENSITIVE AND DIRECT PROBE.

RAMAN SPECTROSCOPY RESULTS

H₂ S and Q branches (Penn State 2002)

Q-branch: BOTH RED - and BLUESHIFTED COMPONENTS AFTER *in situ* EXPOSURE; MAXIMUM REDSHIFT 2 cm⁻¹; ".. no transfer.....". 0.008 hole / C . SWNT G-band (NREL)

3 cm⁻¹ BLUESHIFT CORRESPONDS TO 0.08 e⁻⁻ / H₂ , and evidence for charge

THERMOPOWER AS A PROBE OF FERMI ENERGY DEPRESSION BY ACCEPTOR DOPING: DIFFUSION vs. PHONON DRAG CONTRIBUTIONS

H₂ as acceptor dopant (NREL)

Strong acids (PENN, RICE)

TEP IN DEGASSED SWNT DOMINATED BY DIFFUSION TERM: EXTRINSIC HOLE DOPING BY DEFECTS and/or RESIDUAL OXYGEN. EF IS DEPRESSED BY p-DOPING; THIS CUTS OFF ELECTRON-PHONON INTERACTION BELOW A CUTOFF TEMPERATURE RELATED TO PEAK IN DERIVATIVE CURVES. EF DEPRESSION BY H₂ IS MINIMAL.

ANOTHER MODEL STARTING WITH ATOMIC HYDROGEN (Lee and Lee, 1990x)

FIG. 2. The repulsive energies between CNT wall- H_2 molecules (triangles) and between H_2 - H_2 molecules (circles) inside the CNT.

AT HIGH COVERAGES, EXO-H "FLIPS" INSIDE TO FORM H_2 – MAX CAPACITY 16.7 wt.% for (10,10) @ T = 0, ENDO ONLY! IN THIS MODEL, C-H₂ INTERACTION IS <u>NIL</u> OR WEAKLY REPULSIVE

ELECTROCHEMICAL STORAGE OF ATOMIC H in Li-SWNT (CHONBUK UNIVERSITY, KOREA 2001)

LASER ABLATION SWNT: 1.6 wt.% neat 2.3 wt.% lithiated @ 300 K

Fig. 3. Charge-discharge capacities of (a) CVD, (b) AD, and (c) LA grown CNT electrodes in 6 M KOH electrolyte.

Fig. 4. Charge-discharge capacities of (a) CVD, (b) AD, and (c) LA grown Li- doped-CNT electrodes in 6 M KOH electrolyte.

CONCLUSIONS

CONFIRM THE POSSIBILITY OF *INTRINSIC* 6.5% CAPACITY: COMPLEMENTARY THEORETICAL APPROACHES INCISIVE MICROSCOPIC EXPERIMENTS REPEATABILITY and REPRODUCIBILITY: ROUND-ROBIN OF SAMPLES MORE *IN SITU* EXPERIMENTS

MATERIALS NEED TO BE OPTIMIZED: SINGLE TUBES SEEM TO BE THE BEST OPTIMUM DIAMETER: TOO BIG – ENDOHEDRAL LH₂ TOO SMALL – DENSITY **1** FASTER THAN # SITES/TUBE CUTTING MECHANISM AND PROCESSING

IF STORAGE IN SWNT ISN'T *INTRINSIC*, FIND A CHEAPER FORM OF CARBON AND ENGINEER THE DEFECTS/IMPURITIES!

HYDROGEN-SPECIFIC PROBES

- TPD with MASS SPECTROMETRY
- *in situ* PROTON NMR (UNC)
- In situ SPECTROSCOPY (RAMAN, IR): H₂ molecular vibrations (Penn State)
- ELASTIC NEUTRON SCATTERING w/D₂ SUBSTITUTION: locate molecules in the structure
- INCOHERENT INELASTIC NEUTRON SCATTERING: identify binding sites; molecular dynamics/diffusion (NIST, Penn State, ANL, Karlsruhe)
- ELECTROCHEMICAL CHARGE/DISCHARGE