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Executive Summary 
 
President Bush launched the Hydrogen Fuel Initiative to ensure our nation’s energy security and environmental viability. Pursuant to this 
directive and the President’s National Energy Policy, the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the U.S. 
Department of Energy (DOE) is developing a multi-year plan for research, development and demonstration of advanced technologies.  
This plan is being developed with input from researchers in industry, academia and the national laboratories. 
 
BACKGROUND 
 
Using hydrogen to fuel our economy can reduce U.S. dependence on imported petroleum, diversify energy sources and reduce pollution 
and greenhouse gas emissions.  Fuel cells are an important enabling technology for a future hydrogen economy and have the potential to 
revolutionize the way we power our nation, offering cleaner, more efficient alternatives to today’s technology.  Safe, cost-effective and 
practical means of storing hydrogen is an important component for the advancement of hydrogen and fuel cell power technologies in 
transportation, stationary, and portable power applications.  The Hydrogen Storage program element will focus primarily on the research 
and development of on-board vehicular storage systems that will allow for a driving range of 300 miles or more. In most situations, on-
board hydrogen storage systems are more challenging than off-board due to space, weight and cost limitations.   
 
Under the auspices of the DOE Program, a workshop was held at Argonne National Laboratory to identify on-board storage technical 
barriers and to explore promising research and development options to overcome them.  Approximately one hundred technical experts 
from industry, academia and the national laboratories participated in the workshop.  The specific objectives of the workshop were to: 
 

• Review the current status of hydrogen storage technologies 
• Identify the technical challenges that must be overcome to have safe, cost-effective and practical storage systems 
• Identify promising technical approaches to overcome the challenges 
• Prioritize the R&D needs for each of those promising approaches 

 
The workshop included a plenary session in which the goals of the DOE Program and the perspective of an automotive original 
equipment manufacturer were presented.  In addition, overview presentations of the status of hydrogen storage technology in each of the 
following topic areas were given: 
 

• Advanced/Complex Hydrides 
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• Carbon-Based Materials 
• Chemical Hydride Storage 
• Advanced Concepts 

 
The Advanced Concepts topic area included discussion of innovative materials and approaches for on-board storage that could be 
promising but have not yet received sufficient attention. 
 
DOE and USCAR (U.S. Council for Automotive Research) representatives emphasized that the workshop was to consider hydrogen 
storage at a systems level, recognizing the fact that the weight and volume required to appropriately package a storage material will have 
an impact on fuel efficiency and on both the volumetric and gravimetric storage density.  Thus, the hydrogen storage technical 
performance targets represent the total system, not the storage material alone.   
 
Following the plenary sessions, the attendees participated in four working groups based on their area of expertise.  Led by a facilitator, the 
working groups addressed each of the objectives of the workshop as they applied to their specific area.  The facilitators then presented the 
findings of each of the working groups during the final summary session.  The detailed findings of the working groups are presented in 
the last section of this report “Reports from Breakout Groups”.  The key recommendations that emerged from the four working groups are 
summarized below. 
 
RECOMMENDATIONS 
 
Advanced Complex Hydrides:  Alanates have been the focus of extensive research and are considered to be the most promising of the 
complex hydrides studied to date for on-board hydrogen storage applications.  While sodium alanate will not meet the 2010 targets, a 
thorough thermodynamic and kinetic understanding of the alanate system is needed to serve as the basis for systematically exploring other 
complex hydride systems.  In a parallel effort, engineering studies must be initiated to understand the system level issues and to facilitate 
the design of optimized packaging and interface systems for on-board vehicular applications. 
 
Carbon-Based Materials:  Nanotubes have received considerable attention as possible hydrogen storage materials.  There has been 
controversy regarding the storage capacity for hydrogen in these materials.  Therefore, a coordinated experimental and theoretical effort is 
needed to characterize the materials, to understand the mechanism and extent of hydrogen absorption/adsorption and to improve the 
reproducibility of the measured performance.  These efforts are required to obtain a realistic estimation of the potential to store and to 
release adequate amounts of hydrogen under practical operating conditions.  It is recommended that research not be limited to single-
walled nanotubes and that other carbon-based materials be examined regarding their ability to store and to release hydrogen. 
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Chemical Storage:  Sodium borohydride is the most investigated of this class of materials.  However, significant technical issues remain 
regarding the regeneration of the spent material.  Other chemical storage systems have not been investigated to a similar extent. The 
workshop identified a variety of chemical storage materials that should be screened in the near-term.  Detailed investigation of the process 
chemistry for preparing and regenerating the materials must then be investigated with a particular emphasis on the full fuel chain energy 
efficiency of the process.  Life cycle cost analysis of the promising storage systems is also essential. 
 
Advanced Concepts:  Several classes of materials were identified that could be attractive for hydrogen storage.  Very little experimental 
data are available to base an informed judgment regarding their potential for on-board storage applications.  The workshop’s 
recommendation is to begin a screening process to test their viability as hydrogen storage media. 
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Overview 
 
The President’s National Energy Policy, issued in May 2001, directs the Secretary of Energy “to develop next generation technology 
including hydrogen” and to “focus research and development efforts on integrating current programs regarding hydrogen 
technologies, fuel cells and distribution.”  In response, the U.S. Department of Energy (DOE) initiated a National Hydrogen Vision 
and Roadmap process through which it sought the guidance of stakeholders from industry, academia and the nonprofit sector on the 
vision and on the technical content of a robust R&D program in this crucial area.  The National Hydrogen Roadmap clearly identified 
hydrogen storage as an issue critical to realizing a hydrogen economy.  In particular, on-board hydrogen storage is recognized as a key 
enabling technology for automotive fuel cell systems.  The National Hydrogen Roadmap can be downloaded from 
http://www.eere.energy.gov/hydrogenandfuelcells/.  Figure 1 illustrates how policy documents and stakeholder input from the 
visioning and road mapping processes have been incorporated into the DOE planning activities. The Office of Hydrogen, Fuel Cells 
and Infrastructure Technologies Multi-Year Research, Development and Demonstration Plan is built upon these and other predecessor 
planning documents and is also integrated with other DOE hydrogen R&D plans. 
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FIGURE 1. THE DOE HYDROGEN, FUEL CELLS AND INFRASTRUCTURE TECHNOLOGIES PROGRAM PLAN BUILDS UPON SEVERAL PLANNING 
DOCUMENTS 

 
 
 
The Hydrogen, Fuel Cells and Infrastructure Technologies Program plans to establish a National Hydrogen Storage Project.  A 
workshop on hydrogen storage materials was a first step in identifying a path forward.  Technical experts from industry, academia, 
and the national laboratories were assembled to identify the current status of hydrogen storage technologies and to solicit new ideas.  
Over one hundred technical experts convened at Argonne National Laboratory on August 14 and 15, 2002 for the Workshop on 
Hydrogen Storage Materials.  The output of this workshop was also used to develop a multi-year R&D plan for the program.  These 
proceedings describe the results of this workshop. 
 
Workshop Organization 
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The workshop included a plenary session in which the goals of the DOE program and the perspective of an automotive original 
equipment manufacturer were presented.  The plenary technical presentations addressed four key approaches for hydrogen storage:  
Advanced/Complex Hydrides, Carbon Materials, Chemical Hydrides and Advanced Concepts.  The attendees then participated in 
working groups based on their area of technical expertise.  The four working groups met in breakout sessions following the plenary 
session for more in-depth deliberation.  The charge to each breakout group was to identify specific storage techniques/approaches 
including their performance and operating requirements and their technical, economic and environmental challenges.  In addition, the 
groups were asked to determine a priority ranking for the storage approaches identified on the basis of the highest probability for 
success in the shortest time period.  The workshop agenda and list of participants are provided in the appendices to this document.   
 
Workshop Objectives 
 
The overall goal of the workshop was to obtain technical input to shape a national activity and to be included as part of a multi-year 
R&D plan.  Specifically, the workshop participants were asked to address the following issues: 
 

• Review the current status of hydrogen storage materials R&D 
• Identify the technical challenges that must be overcome to meet the goals of the FreedomCAR and the Hydrogen Fuel Initiative  
• Identify promising technical approaches to overcome the challenges 
• Prioritize the R&D needs for each of the promising technical approaches 

 
Plenary Session - Introduction and Overview Presentations 
 
Dr. Don Joyce, Deputy to the Director of Argonne National Laboratory, welcomed the participants and emphasized the importance 
that Argonne National Laboratory attaches to hydrogen and fuel cell R&D. 
 
Following the welcoming remarks, the plenary session contained two overview presentations.  The first, by Dr. JoAnn Milliken, 
provided an overview of the DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program.  The second presentation, by Mr. 
Brian Wicke of General Motors, contributed an automotive original equipment manufacturer’s perspective on fuel cell vehicles and 
their hydrogen storage requirements.  These two presentations were followed by several technical status reports summarizing the stage 
of development and performance of various approaches to hydrogen storage.  The following subsection summarizes these technical 
presentations. 
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Overview Presentations 

Overview of the DOE Program 
 
Dr. Milliken provided an overview of the DOE Program activities in hydrogen and fuel cell technologies, covering five topics:  (1) the 
Hydrogen, Fuel Cells and Infrastructure Technologies Program, (2) the Role of FreedomCAR and the Hydrogen Fuel Initiative, (3) 
DOE Fuel Cell & Hydrogen Activities, (4) DOE Targets/Status, and (5) Workshop Objectives. (Viewgraphs from her presentation can 
be found in Appendix B.)  The key points made are summarized below.  

The Hydrogen, Fuel Cells and Infrastructure Technologies Program 
The Hydrogen, Fuel Cells and Infrastructure Technologies Program at DOE was created to implement the directive in the National 
Energy Policy to “focus research and development efforts on integrating current programs regarding hydrogen, fuel cells, and 
distribution….” Three technical teams implement R&D based on the objectives of the program; these are the Fuel Cell, Hydrogen 
Storage and Hydrogen Production teams.  In addition, cross-cutting activities include efforts in the areas of safety/codes and 
standards, technology validation, and education.  An organization chart of the program is shown below. 
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FIGURE 2. HYDROGEN, FUEL CELLS AND INFRASTRUCTURE TECHNOLOGIES PROGRAM ORGANIZATION 

 
 

Role of FreedomCAR and President’s Hydrogen Fuel Initiative 
FreedomCAR’s long-term goal is to develop advanced automotive technologies, which will require no foreign oil and emit no harmful 
pollutants or greenhouse gases. Specifically, the FreedomCAR partnership is focusing on developing technologies to enable mass 
production of affordable hydrogen-powered fuel cell vehicles. The Hydrogen Fuel Initiative is designed to accelerate development of 
advanced technologies for producing, delivering, storing and using hydrogen. 
 

DOE Fuel Cell & Hydrogen Activities 
The Hydrogen Vision and Roadmap Workshops were held in November 2001 and April 2002, respectively, and included the 
participation of a wide spectrum of stakeholders.  The results of these workshops were incorporated into the National Hydrogen 
Roadmap, which can be downloaded from http://www.eere.energy.gov/hydrogenandfuelcells/.   
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The DOE program focuses its R&D activities on removing high-risk technical barriers.  In Fiscal-Year 2002, fuel cell activities were 
funded at $47 million, while the hydrogen activities were funded at $29 million.  Funding appropriations for Fiscal-Year 2003 
represent a 19 percent increase in fuel cell technology R&D and a 38 percent increase for hydrogen technology. Request for Fiscal-
Year 2004 funding will be $88.0 million for hydrogen technology R&D and $77.5 million for fuel cell technology R&D. 
 

DOE Performance Targets/Status 
Through the FreedomCAR partnership, DOE established R&D targets for hydrogen storage; see Table 1. This table lists the targets as 
of June 2003. Minor changes may be made as the targets are analyzed and updated. Updated targets will be included in the hydrogen 
storage solicitation to be released in July 2003.  The primary focus of the program is on-board transportation applications since these 
are technically more challenging compared to off-board storage of hydrogen. 
 

TABLE 1.  DOE TECHNICAL TARGETS, ON-BOARD HYDROGEN STORAGE SYSTEMS 

TECHNICAL TARGETS, ON-BOARD HYDROGEN STORAGE SYSTEMS A, B, C 

STORAGE PARAMETER UNITS 2005 2010 2015 

Usable, specific-energy from H2  
(net useful energy/max system mass)d 

kWh/kg 
(kg H2/kg) 

1.5 
(0.045) 

2 
(0.06) 

3 
(0.09) 

Usable energy density from H2 (net useful 
energy/max system volume) 

kWh/L 
(kg H2/L) 

1.2 
(0.036) 

1.5 
(0.045) 

2.7 
(0.081) 

Storage system cost e $/kWehr net 
($/kg H2) 

6 
(200) 

4 
(133) 

2 
(67) 

Fuel cost f $ per gallon gasoline 
equivalent at pump 

3   1.5 1.5
 

Operating ambient temperatureg °C -20/50 (sun) -30/50 (sun) -40/60 (sun) 

Cycle life   (1/4 tank to full)h Cycles    500 1000 1500

Cycle life variationi % of mean (min) @ % 
confidence 

N/A  90/90
 

99/90 
 

Minimum and Maximum delivery 
temperature of H2 from tank 

°C   -20/100 -30/100
 

-40/100 
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TECHNICAL TARGETS, ON-BOARD HYDROGEN STORAGE SYSTEMS A, B, C 

STORAGE PARAMETER UNITS 2005 2010 2015 

Minimum full flow (g/sec)/kW    0.02 0.02 FC
0.027 ICE 

0.02 FC 
0.033 ICE 

Minimum delivery pressure of H2 from 
tank FC=fuel cell, I=ICE 

Atm (abs) 2.5 FC 
10 ICE 

2.5 FC 
 35 ICE 

2 FC 
35 ICE 

Transient response 10%-90% and 90%-
0% j 

Sec    0.5 0.5 0.5

Start time to full flow at 20°C Sec    4 0.5 0.5

Start time to full flow at minimum ambient Sec    8 4 2

Refueling ratek kg H2/min    0.5 1.5 2

Loss of useable hydrogenl (g/hr)/kg H2 stored 1 0.1 0.05 

Permeation and leakagem  SCCM/hr Federal enclosed-area safety-standard 

Toxicity  Meets or exceeds applicable standards 

Safety  Meets or exceeds applicable standards 

Purityn 98%

a.  Based on the lower heating value of hydrogen and a minimum of 300-mile vehicle range; targets are for the complete system, including tank, material, valves, regulators, 
piping, mounting brackets, insulation, added cooling capacity and/or other balance-of-plant components.   

b.  Unless otherwise indicated, all targets are for both internal combustion engine and for fuel cell use, based on the low likelihood of power-plant specific fuel being commercially 
viable.  

c.  Systems must be energy efficient - for reversible systems, greater than 90% energy efficient; for systems generated off-board, greater than 70% life-cycle efficiency. Useful 
constants: 0.2778 kWh/MJ, 33.3 kWh/gal gasoline equivalent. 

d.  Generally the ‘full’ mass (including hydrogen) is used, for systems that gain weight, the highest mass during discharge is used. 
e.  2003 U.S. $; total cost includes any component replacement if needed over 15 years or 150,000 mile life. 
f.  2001 U.S. $; includes off-board costs such as liquefaction, compression, regeneration, etc; 2015 target based on H2 production cost of $1.50/gasoline gallon equivalent untaxed. 
g.  Stated ambient temperature plus full solar load 
h.  Equivalent to 100,000; 200,000; and 300,000 miles respectively (current gasoline tank spec).  
i.  All targets must be achieved at end of life 
j.  At operating temperature. 
k.  2015 target is equivalent to 3-5 minutes refueling time. 
l.  Total hydrogen lost from the storage system, including leaked or vented hydrogen; relates to loss of range. 
m Total hydrogen lost into the environment as H2; relates to hydrogen accumulation in enclosed spaces Storage system must comply with CSA/NGV2 standards for vehicular
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TECHNICAL TARGETS, ON-BOARD HYDROGEN STORAGE SYSTEMS A, B, C 

STORAGE PARAMETER UNITS 2005 2010 2015 

tanks. This includes any coating or enclosure that incorporates the envelope of the storage system. 
n.  For fuel cell systems:  less than 10 ppb sulfur, 1 ppm carbon monoxide, 1 ppm carbon dioxide, 1ppm ammonia, 100 ppm hydrocarbons; and oxygen, nitrogen and argon can not 

exceed 2% on a dry basis. 

 

Perspective from an Automotive Original Equipment Manufacturer (OEM) – Automotive Fuel Cell 
Systems 

Presented by Mr. Brian Wicke, General Motors R&D and Planning 
 
Mr. Wicke of General Motors (GM) presented an overview of automotive fuel cell systems and hydrogen storage requirements from 
the perspective of an automotive OEM.  Mr. Wicke emphasized the need to consider the challenges facing the automobile industry 
and was frank about the industry’s primary goals – satisfying customers and making a profit.   
 
GM’s fuel cell vehicle goal is to be the first company to profitably sell one million fuel cell vehicles.  However, to succeed at GM, 
fuel cell vehicles must be affordable, suitable for a broad range of customer usage and vehicle styles and have safety performance 
comparable to today’s vehicles.  In addition, they must exhibit uncompromised performance and reliability.  These fuel cell vehicles 
will be developed with evolutionary and revolutionary vehicle designs. 
 
The GM Autonomy is an example of revolutionary vehicle design.  
The vehicle disassembles and its tops or skins may be 
interchanged (chassis adaptation), e.g., from a sports car to a 
family sedan.  It currently caters to a niche market, but keeps the 
public excited about revolutionary vehicle concepts. 
 
GM’s focus is on PEM fuel cell technology.  GM takes a systems 
approach to its analysis of fuel cells, considering all unique 
requirements for storage, including the fuel delivery system 
support hardware.  With respect to hydrogen storage 
requirements, it is the energy density that is critical.  Error! 
Reference source not found., which has been modified slightly 
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from that presented by GM, illustrates the on-board hydrogen storage requirements, based on GM’s perspective, and relative to the 
previous DOE target of 6 weight percent. 
 
 
 

FIGURE 3.  HYDROGEN STORAGE REQUIREMENTS AND STATUS FROM AN OEM PERSPECTIVE 
 

 

0 5   

 
 

The minimum ance for one or two light-duty vehicle platforms is 6 MJ/L and 6 MJ/L.  To meet the needs of a  
broad range of vehicle platforms, the goal is about 12 MJ/L and 12 MJ/L.  (These targets were subsequently modified by the 
FreedomCAR Hydrogen Storage Technical Team, which includes representatives from DaimlerChrysler, Ford, GM, and DOE.)  Other 
requirements noted by GM at the workshop and addressed in the FreedomCAR targets include the following: 
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• Refueling time less than 5 minutes 
• Durability (total miles maintaining 80% capacity) of 150,000 miles 
• Hydrogen release rate of 0.025 g/s * kWmax  (e.g. 1.25 g/s @ 50 kW) 
• Hydrogen release temperature less than 80ºC  
• Energy penalty for hydrogen release less than 5 percent 
• On-board heat dissipation during refueling equivalent to 0 kW 

 
Technical Presentations 

Advanced Hydrogen Storage: A System’s Perspective and Some Thoughts on Fundamentals 
Presented by Dr. W. Peter Teagan and Dr. Mehmet Rona, TIAX LLC 

 
TIAX stressed the importance of systems-level analysis and fundamental materials improvement for hydrogen storage, stating that, 
“Fundamental material properties and their impact on system design are both critical.”  TIAX is involved in performing technical due 
diligence activities for advanced hydrogen storage systems, investigating on-board storage options and modeling of advanced 
materials. TIAX contributed the following insights.   
 

• Advanced hydrogen storage requires a complex thermal and flow management system that has an impact on the system weight, 
volume and cost.  For example, with current metal hydride technology, the material itself comprises less than half of the system 
volume, while the remaining volume consists of packaging, insulation, etc. 

• Due to system-level limitations, current hydrogen storage systems meet some of the requirements but none meet all of the 
requirements. Figure 4 is taken from the TIAX presentation; it illustrates how various current approaches for hydrogen storage 
compare to the 2010 DOE targets of 6 wt% (2 kWh/kg) and 1.1 kWh/L. As shown in the figure, current storage materials do not 
appear to offer clear advantages over compressed or liquid hydrogen storage. (It must be noted that the 2015 DOE performance 
targets are even more aggressive than that shown in Figure 4.) 
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FIGURE 4. TIAX CONTRIBUTED EXAMPLE OF CURRENT STATUS OF HYDROGEN STORAGE APPROACHES 

 
 
The following bullet points summarize the rest of the TIAX presentation: 
 

• Current high-density storage material systems also appear to require higher energy either to store or to liberate the hydrogen.  
This is an important trade-off that must be considered. Thermodynamically stabilized systems have higher capacity with a 
deeper storage well and require work input to release hydrogen in the free gas form. Examples include metal hydrides, carbon 
and liquefied hydrogen. Kinetically stabilized systems have higher capacity with higher stored chemical potential; examples 
include compressed hydrogen and chemical hydrides. 

• Improving storage capacity will require improvements in material performance that will also enable a better system design. 
Better storage materials will have lower weight, smaller volume, lower cost and better stability.  In addition, better materials will 
require lower energy use for hydrogen liberation, easy and energy-efficient “recharging” or recycling and low temperature and 
low pressure operation. 

• The fundamental characteristics of storage materials can be estimated using a combination of first principles-based models. As a 
preliminary step, TIAX modeled a hydrogen molecule between two graphitic planes and found that, although there is some 
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electron charge transfer from the graphite to the H2 molecule, there is no localization potential pinning the hydrogen molecule. 
They saw that any charge transfer in or out of the graphitic planes results in a decrease of the in-plane lattice vector’s magnitude. 
From their previous work on doped graphite, they expected the (inter-plane) c-spacing to diminish with electron charge transfer 
from graphite to the hydrogen molecule. This preliminary step suggests that it may be more fruitful to look at interactions of 
hydrogen with irregular clusters of doped-carbon. 

Carbon Materials—Hydrogen Storage in Carbon Nanotubes  
Presented by Professor John E. Fischer, University of Pennsylvania 

 
Hydrogen storage in carbon nanotubes is an active and controversial area of research.  The theory to explain hydrogen 
absorption/adsorption in carbon nanotubes has been evolving.  Much of the controversy arises from the fact that materials are often 
poorly characterized.  In addition, critical experiments to determine the nature of hydrogen bonding to the nanotubes have not yet 
been accomplished under well-defined, reproducible conditions.  
 
Dr. Fischer provided a broad overview of the current status of 
research on hydrogen absorption/desorption on carbon nanotubes. 
As shown in the figure on the right, nanotubes are one example of 
the many allotropes of carbon. Nanotubes can be single-walled or 
be formed of multiple concentric tubes of carbon or multi-walled. 
Single-walled nanotubes of carbon are currently favored because 
it has been difficult to demonstrate storage of hydrogen in 
between the concentric layers of carbon in the tube. Thus these 
extra layers of carbon are rendered inefficient in terms of their 
storage ability and contribute to extra weight to the system. Single 
walled nanotubes can be isolated as individual strands or be 
present in bundles; a picture of a bundle is shown below to the 
right. 

 

TEM of a single walled nanotube, 
typical tube diameter is 1.4 nm, taken 
from http://cnst.rice.edu
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Dr. Fischer outlined critical experiments that need to be conducted to identify the nature of the bonding of hydrogen and carbon in the 
nanotubes.  Once that is established, it would be possible to estimate the maximum amount of hydrogen that can be stored in these 
types of materials.  Some of the issues raised in Dr. Fischer’s presentation were: 
 

• Theoretical calculations indicate that physisorption of hydrogen on the exterior surfaces of carbon nanotubes is insufficient to 
achieve the storage density required at practical operating temperatures and pressures. The interactions between hydrogen and 
the carbon surface needs to be stronger than that of van der Waals forces.  

• Practical storage densities can only be achieved if hydrogen is able to occupy the interior and exterior volumes of the nanotubes. 
In addition, the hydrogen/surface bond strength must be sufficient in order to fill and to release hydrogen at operating 
temperatures and pressures compatible with PEM fuel cell systems. 

• Experimental efforts must therefore be focused on understanding the nature of sites of hydrogen bonding on carbon nanotube 
surfaces. 

¾ There are three commonly accepted bonding sites 
on doped nanotubes:  grooved, endohedral and 
interstitial channel. 

¾ There are three methods for filling nanotubes:  
capillarity (with metals and oxides in large 
diameter tubes), immersion in molten salts (use in 
multi-walled carbon nanotubes shown) and gas 
phase (shown with fullerene peapods). 

 
• Binding energies and relative abundances of the three types of binding sites have shown that a single, isolated single-walled 

nanotube can achieve over 5.5 weight percent excess gravimetric storage of hydrogen at 133 K and 10 MPa. The challenge is to 
demonstrate that bulk materials operating at practical temperatures and pressures can achieve acceptable storage densities. 

• Another challenge for preparation and isolation of these materials is cutting the domed ends of the tubes so that the interior 
volumes of the tubes can be accessed for storage. Techniques that prove that the ends have been cut and storage is occurring 
inside the tubes need to be proven. 

• Experiments have shown that lithium ion (Li+1) could fill the interior of single-walled nanotubes and has fast diffusion properties 
at 300K. It has not been proven that diatomic hydrogen (which has a larger kinetic diameter than Li+1) could fill the interior of 
the tubes. 
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• In the literature1, a MD simulation at 300K has shown a weak covalent bond between diatomic hydrogen and carbon inside 
distorted single-walled carbon tubes. However, at high loadings, most hydrogen molecules will not “feel” or interact with the 
tube walls. 

• There are a number of experimental hydrogen specific probes that should be used to complement theoretical approaches to 
studying and characterizing these materials: 

¾ Temperature programmed desorption (TPD) with mass spectrometry 
¾ In situ proton NMR 
¾ In situ spectroscopy such as Raman and IR (characterizes diatomic hydrogen molecular vibrations) 
¾ Elastic neutron scattering with diatomic deuterium substitution (locates molecules in the structure) 
¾ Incoherent inelastic neutron scattering (identifies binding sites and molecular dynamics and diffusion) 
¾ Electrochemical charge and discharge 

Advanced/Complex Hydrides  
Presented by Dr. George Thomas, Sandia National Laboratories – Livermore 

 
The challenge for complex hydrides is to identify those materials that not only meet the stringent storage density requirements but also 
demonstrate reversibility so that the hydrogen can be stored (uptake) and released under practical operating temperatures and 
pressures. A large number of metal hydrides have been investigated as hydrogen storage media.  The website Hydpark.@.sandia.gov 
is a database that lists over 2,000 elements, alloys and compounds that form hydrides.  They generally fall into two categories: 
transition metals and light metals. Transition metals (Group IIIB, IVB, and VB) form metallic bond hydrides with moderate 
temperature/pressure properties. The equilibrium properties can be adjusted over a wide range by alloying. These materials have good 
kinetics for interstitial hydrogen but low capacity (H/M ratio). Light metals (Group IA, IIA) form ionic or covalent bond hydrides. 
They have high energy bonds (high temperature, low pressure) and have high capacity. 
 
Dr. Thomas provided an overview of the current status of research on reversible hydride materials. The issues raised in his 
presentation include: 
 

• Complex hydrides consist of a hydrogen-metal complex with an additional bonding element. Hydrogen complexes include 
alanates [(AlH4)-] in which the hydrogen is covalently bonded to aluminum and borohydrides [(BH4)-] in which the hydrogen is 
bonded to boron.  These anionic entities are complexed with Group VIII elements.  A wide variety of complex hydrides are 
available but only the alanates have been studied in detail to date. Figure 5 is a table taken from Dr. Thomas’ presentation 
showing example hydrogen content in example alanates. 

                                                           
1 JACS 2001, 123, 5845 
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FIGURE 5. TOTAL HYDROGEN CONTENT OF EXAMPLE ALANATES 

 
 

• Complex hydrides must exhibit the following characteristics:  reversibility (usually requiring a catalyst or dopant), favorable 
thermodynamics (at acceptable pressures and temperatures), fast kinetics, cyclic stability, viable synthesis methods, 
compatibility and safety in use. 

• Understanding sodium alanate [NaAlH4] “charge/discharge” mechanisms will help in developing higher capacity hydrides.  
There is renewed interest in sodium alanate since reversibility has been demonstrated with a titanium catalyst.  Major R&D 
efforts are underway in the United States, Germany, Canada and Japan. 

• Three factors affect the performance of catalysts/dopants:  the specific catalyst/dopant, the method of introduction (e.g. wet or 
dry preparation and precursor) and the amount of catalyst or dopant.  There is also a trade-off to consider because higher levels 
of catalyst promote faster kinetics but also reduce hydrogen storage capacity. 

• Another complex hydride receiving significant attention is based on borohydrides [(BH4)-].  Millennium Cell is developing a 
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proprietary system that demonstrates 4 to 10 weight percent capacity. Reversibility is an issue; the impact of possible off-board 
regeneration of the spent material needs to be understood. 

• The capacity of most hydrides to date appears limited to 5 weight percent.  Accordingly, modifications or new complexes, as 
well as improvements from system engineering, are needed. 

Chemical Hydride Storage 
Presented by Dr. Ali T-Raissi, Florida Solar Energy Center 

 
Dr. T-Raissi presented an overview of chemical hydride storage systems.  Chemical hydrides provide secondary storage methods, in 
which the storage medium is expended upon use (and regenerated either on or off the vehicle).  An example system is a chemical 
reaction of a reactant containing hydrogen in the “minus-1” oxidation state (e.g. a hydride) with a co-reactant containing hydrogen in 
the “plus-1” oxidation state (e.g. H2O, NH3 and H2S).  To be feasible, a chemical storage system must be thermodynamically 
spontaneous (∆G less than zero) and kinetically tractable. It should use readily available reactants and produce hydrogen of purity 
compatible with PEM fuel cells. Finally, the system should be able to operate in a load following mode (applicable to all hydrogen 
storage methods), i.e., provide hydrogen to the fuel cell as needed. 
 
Hydrogen generation by hydrolysis is impressive, in terms of capacity, compared to batteries.  The reactions are spontaneous, highly 
exothermic and irreversible. Figure 6 contains examples of hydrolysis reactions of hydrides yielding hydrogen. 

 
FIGURE 6. EXAMPLES OF HYDROGEN GENERATION BY HYDROLYSIS 
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The by-products require recycling/regeneration or disposal to complete the cycle.  The issues are the control of the rate of reaction and 
the choice of the lightest possible system.  Generally, the rate of hydrolysis is inhibited by high pH and the insolubility of the 
products.  
 
Another method of hydrogen generation from hydrides is by pyrolysis or thermal decomposition. One application combines primary 
hydrides with NH4Cl or a similar halide salt: 

NH4F  +  LiBH4  =  LiF  +  BN  +  4 H2 
 

This particular system yields a material hydrogen storage density of 13.6 weight percent.  [NH4X + MH] formulations render the 
compound storable and insensitive to air and moisture. However, these pyrolytic reactions are highly exothermic and can not be 
stopped once initiated. In general, it is important to find a system that is stable at room temperature range conditions and could be 
initiated using waste heat from a PEM fuel cell system. 
 
The inorganic hydrides (e.g., lithium alanate, LiAlH4) and common reactants (e.g., water or ammonia) may have the best chance to 
meet cost goals.  Successful implementation of chemical hydrides for fuel cell vehicle applications requires a substantial reduction in 
production costs, development of new synthesis routes for their preparation and development of feasible regeneration/recycling 
methods for the spent material. 

Advanced Concepts for Hydrogen Storage 
Presented by Dr. John Petrovic, Los Alamos National Laboratory 

 
Dr. Petrovic’s literature review revealed seven new material areas that have potential for improved hydrogen storage.  These 
materials/concepts are described below.  Further details are provided in the summary of the Advanced Concepts breakout group. It 
should be noted that disagreement exists concerning the potential for some of the proposed approaches to meet the DOE targets. 

 
• Advanced hydride materials are the most promising in terms of volumetric and gravimetric hydrogen storage densities, e.g., 

LiBH4 and [Al(BH4)3]. Lithium tetrahydroboride (LiBH4) is a salt-like, hydroscopic crystalline material.  The change of free 
energy of reaction becomes negative at 450°C. Below these temperatures, the reaction is endothermic with a total release 
potential of 13.8 weight percent hydrogen. However a low temperature H2 release has been observed (2.3 wt. % hydrogen 
released at 118°C). One issue to resolve is whether this lower temperature release could be made reversible.  

• Hydride “alcoholysis,” (chemical reaction of hydrides with alcohols) provides for controlled production of hydrogen at or below 
room temperature.  The highest capacity (in terms of weight percent including the alcohol methanol) is with LiBH4. 

• Boron nitride nanotubes. These materials can be synthesized through a chemical vapor deposition process by pyrolyzing a B-N-
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O precursor at 1730°C in a N2/NH3 atmosphere. Hydrogen uptake measurements yielded 1.8 weight percent hydrogen at 10MPa 
and 20°C. 

• Zeolites/Alumina silicates:  Zeolite ZSM-5 is commercially available and absorbs 0.7 weight percent hydrogen by physisorption 
at 77K and 1 bar pressure. Modeling suggests that Zeolite A can store at least 2 weight percent hydrogen if all cage sites are 
filled (at 10 MPa at T* of 8.0). Hydrogen storage in large pore zeolites such as UTD-1 has not been examined.   

• Ordered carbon molecular sieves obtained through template synthesis techniques should be explored. An example is mesoporous 
silica molecular sieve MCM-48 impregnated with sucrose and then pyrolyzed. 

• Silica dioxide aerogels and xerogels have not been explored as hydrogen storage materials. 
• Other mesoporous materials include:  metal-organic MOF-5 and organosilica material (e.g. benzene-silica hybrid material) 
• Nano-scale metal and ceramic powders are commercially available at ten to one-hundred nanometer diameters.  Nano-scale 

metal powders include: Au, Ag, Ni, Ti, Mo, Pt and W; while nano-scale ceramic powders include Al2O3, ZrO2, CeO2, CuO, 
MgO, SiO2 and TiO2. The literature reports synthesis of single benzene-1,4-dithiolate molecule between atomically-sharp gold 
electrodes. This approach could be explored for hydrogen storage with nano-scale metal powders. 

• Hydrogen may also be produced from iron hydrolysis and by the optimized milling of iron powders, with hydrogen storage in 
modified iron oxides.  For this process, 3.3 weight percent hydrogen has been shown, including both Fe and H2O from the 
reaction, 3Fe + 4H2O = Fe3O4 + 4H2.  

 
Reports from Breakout Groups 
 
A facilitator directed the discussions of each of the four breakout groups listed below, and a scribe assisted by keeping notes of the 
group’s deliberations.  The full list of participants is provided in Appendix C to this report.   
 

Advanced/Complex Hydrides Breakout Group 
Facilitator:  Gary Sandrock (SunaTech) 
Scribe:  Carolyn Elam (NREL) 
 
Carbon Materials Breakout Group 
Facilitator:  Jim Ohi (NREL)  
Scribe:  Matthew Rowles (SENTECH) 
 
Chemical Storage Breakout Group 
Facilitator:  Ken Stroh (LANL) 

Hydrogen Storage Materials Workshop     21           



 

Scribe: Cathy Gregoire Padró (NREL)  
 
Advanced Concepts Breakout Group 
Facilitator:  John Petrovic (LANL) 
Scribe:  Sherry Marin (SENTECH)  
 

The four breakout groups addressed research and development issues regarding potential hydrogen storage systems that are in various 
stages of development.  For example, some systems using chemical hydrides are in a prototype stage of development, while other 
systems such as those discussed in the Advanced Concepts Group are in the exploratory phase.  Thus, the levels of discussions in the 
four breakout groups were significantly different.  Although an effort has been made to present the findings in a standardized format, 
considerable differences do exist in what was reported from the four breakout groups.  
 
Advanced/Complex Hydrides 

Objective 
 
The objective of this session was to review the current state of complex metal hydrides for hydrogen storage and to identify 
opportunities for reversible hydrides.  In particular, the goal was a material hydrogen storage capacity of at least 8 weight percent with 
acceptable charging and discharging kinetics.  It was important that the material could utilize waste heat from a PEM fuel cell to 
discharge the hydrogen.  The material must demonstrate 8-weight percent storage capacity if the 2010 system level goal of 6-weight 
percent is to be achieved.  The following performance guidelines were suggested.  Please note that these guidelines were suggested by 
the breakout group and do not necessarily agree with the DOE performance targets (see Table 1). 
 

• At least 8 percent reversible hydrogen storage capacity for the material is needed with an interim goal of 6 percent hydrogen 
storage capacity by 2008. 

• The materials need to have sufficient charging/discharging kinetics:  less than 5-minute tank fill and 0.025 g/sec per kW 
discharge. 

• The hydrogen should discharge at nominally 1 atm and at less than 80°C (current standard); at less than 110°C for higher fuel 
cell operating temperature. 

• Retention of 80 percent capacity over 500 charging/discharging cycles is required. 
• The safety of the hydride tank needs to be comparable to that of a passenger car gasoline tank. 
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Approach  
 
To date, the storage performance of sodium alanate is closest to meeting the targets.  However, an 8-weight percent reversible storage 
capacity would not be possible with sodium alanate. Therefore, other complex hydrides, such as lithium complexes, will need to be 
addressed to meet the necessary targets.  The group agreed that a rigorous fundamental effort using model materials is required in 
order to develop a robust understanding of how the materials can be manipulated and fine-tuned.  Sodium alanate was suggested as a 
model system.  The impact of poisons and impurities and the system safety issues related to their use on-board vehicles must also be 
understood.  The knowledge of the model systems could then be used to design other complex hydride systems. The group 
recommended that this fundamental effort be fifty percent of the focus for metal hydride work over the next 2 to 3 years.   
 
In parallel, screening of other materials for their potential to meet the targets should continue.  The reversibility of lithium 
borohydride and other borohydrides should be studied.  Other transition metal complexes should also be screened.  Aluminum hydride 
was identified as a possibility for being reversible at low temperature and pressure typical of a PEM-based system.  The group 
recommended that a standing research group be available to screen and to test materials and high-risk ideas.   
 
Once a fundamental understanding is established, ninety percent of the metal hydride effort should be focused on a few materials that 
have the highest probability of achieving greater than 6-weight percent hydrogen storage.  However, screening of other materials 
should also continue.   
 
By 2008, a material should be available that can provide 6 weight percent reversible hydrogen storage under the charging/discharging 
parameters discussed above.  The effort should then focus on engineering 1 to 2 materials that have a potential for 8 weight percent or 
greater hydrogen storage capacity. 
 
In addition to materials development, the group pointed out that reactor or bed engineering is needed.  The storage system needs to be, 
at least, 90 percent efficient overall.  Lower efficiencies will require greater storage capacity for the material development effort.  
Uniform heat and mass transfer is a concern.  Safety testing must also be a priority. 
 
Finally, the group recommended that a mechanism be in place to quickly pursue novel ideas and opportunities, e.g., small, one-year 
projects.  Funding mechanisms that require long time lags for proposals and awards and cost-share, etc., are barriers to pursuing many 
of the ideas that could lead to a breakthrough. 
 
In addition to research and development directly related to hydride materials, other research areas suggested included: 
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• Non-thermal discharge mechanisms – Although heat has been the primary mechanism for discharging hydrogen, other 

discharging means should also be investigated, including mechanical, chemical and electrical means.  These could enable the use 
of the higher temperature hydrides with higher storage capacities. 

• Scalability – Cost-sensitivity analyses need to be performed to understand the major cost drivers for materials synthesis and for 
scaling up hydride production.  The materials may need to be doped; it is unclear how this will be done cost effectively or at 
large scale.   

• First principle calculations should be employed for evaluating and designing materials. 
• Understanding the decomposition or hydrogen discharge pathways for the materials and how this impacts safety is important. 
• Nanocomposites are showing promise in a number of areas and should be addressed. 
• Hybridized Systems – It is possible that no single material will be able to meet the targets.  Hybridized systems should be 

investigated as a means of overcoming the barriers in order to achieve the needed properties. 
• A combinatorial screening approach to material synthesis should be used. 

R&D Priorities 
 

Material Development: 
• Fundamental studies on NaAlH4. The mechanisms by which these materials are made reversible and optimized for storage 

capacity and how to apply this understanding to other compounds should be better understood.   
• Achieve 8 weight percent (by 2010) for the storage material. A material with 8-weight percent (or greater) hydrogen storage 

capacity that also meets the charging/discharging targets should be developed.  The material should be suitable for on-board use.  
An intermediate target should be materials that achieve 6 weight percent and are suitable for on-board use by 2008. 

Storage System: 
• Engineering studies on reactor engineering and system integration should be conducted on a laboratory-scale system with a 

capacity of 40-gram hydrogen and over time progress to a full-size vehicle prototype with a 5-kg hydrogen capacity.  
• Preliminary system cost analysis should be completed using the 5-kg hydrogen bed as the basis.  Large-scale material production 

should be modeled and the economics assessed. 
• Full-size vehicle reactor bed meeting the 6 weight percent system criteria needs to be certified. 
• An independent safety consultant and/or laboratory should be identified during the early prototype work.  The 

consultant/laboratory should provide an independent evaluation of the safety issues and support certification of the reactor/bed 
for vehicle use. 
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Summary 
 
The group recommended fundamental studies on sodium alanate be, at a minimum, doubled within the next year.  They also 
recommended a similar doubling of effort on the screening of new materials.  A sustained facility and/or research group needs to be 
established to facilitate the rapid testing and screening of materials.  The facility/group needs to be independent of the material 
developers.  Testing protocols and evaluation tools will need to be established and agreed upon by the technical community.  
Intellectual property issues will need to be addressed.  Industry involvement in the field needs to be strengthened.  Industry should 
also be directly involved in the cost evaluations for scale-up, system optimization, reactor engineering and certification. 
 
Carbon Materials  
 

Objectives 
 
The carbon materials breakout group discussed the current state of the technology with the objective of: 

 
• Identifying approaches to develop these materials 
• Identifying the barriers to their development and eventual commercialization 
• Developing priorities for a R&D program on carbon-based materials 

Approach 
 
The breakout group suggested two key areas of focus for the DOE program: 

 
• Strengthen the understanding of scientific principles governing carbon materials and their hydrogen storage capacity 
• Conduct the search for new materials guided by a fundamental understanding of hydrogen storage charge/discharge mechanisms 

in carbon-based materials 
 
The consensus was that DOE should not focus exclusively on single-walled nanotubes; but rather, investigate a broad spectrum of 
carbon-based materials. The panel suggested that a major effort be made to integrate theory, experiment and engineering.  There is a 
continuous need for groups working in all three areas to be aware of developments among their peers. 
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The basic interactions of hydrogen with carbon materials, such as the effect of curvature, should be understood.  A fundamental 
understanding of these types of interactions ranging from physisorption to chemisorption would provide guidance for designing new 
materials and in modifying existing materials. The DOE program should consider other carbon-based materials such as: 
 

• Chemically modified nanotubes 
• Chemically modified nanoporous carbons 
• Strained mix-hybridized carbons 
• C-60 fullerenes as a model of a highly curved system 
• Random amorphous carbons 
• Polymer precursors 
• Carbon metal hybrids 
• Multi-walled tubes or carbon fibers 

R&D Priorities 
 

The group recommended that R&D focus on the following areas:  

Theory 
• Provide “directional” guidance for experiments (and vice-versa). It was felt that theory could guide experimentation and 

engineering, by modeling situations that could be favorable for increased storage.  This can also work in the reverse, with 
engineering or experimentation highlighting certain systems that should be modeled. 

• Provide baseline theory to elucidate parameters affecting the type and number of binding sites and the heat of adsorption of H2 
for a broad range of modified carbon materials. One of the most significant issues facing researchers in the area of carbon 
materials and their hydrogen uptake is the lack of a baseline example for comparison.  Thus, the panel suggested that a baseline 
be created so that results could be better characterized and potential new structures and modifications could be identified.  

• Understand the effect of modifying shape and the degree of curvature on hydrogen adsorption. 
• Predict heat and entropy of hydrogen adsorption to rank order candidate materials. 
• Understand the chemical and electronic effects of additives and defects; optimize capacity by structural design. 

Experimentation 
• Conduct definitive experiments to show where and how hydrogen is stored in single-walled nanotubes and in other forms of 

carbon materials. The group felt that it was important to characterize single-walled nanotubes. However, there was a strong 
opinion that other carbon materials also be considered so that new possibilities are not overlooked.  Several specific studies were 
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suggested: 
 

¾ Develop 2 to 3 pure single-walled nanotube standards for synthesis, purification, activation and hydrogen 
adsorption/desorption measurements.  This will help to determine the validity of measurement techniques and to 
standardize results. 

¾ Conduct round robin testing.  This could be accomplished by providing samples to labs for measurement and by 
soliciting feedback for a database.  The roles of research institutes, national labs, universities and industry need to be 
defined to address issues such as ownership of intellectual property. 

¾ Measure isosteric heat at low temperature and low pressure. 
¾ Develop adsorption isotherms at high pressure. 
¾ Characterize samples using in-situ Raman and IR spectroscopy and neutron diffraction. 

 
• Conduct definitive experiments to show where and how hydrogen is stored 

¾ Measure IR stretch. 
¾ Measure rate, path and mechanism of hydrogen diffusion. 
¾ Vary material properties systematically for evaluation, particularly diameter of nanotubes and chirality. 

 
• Develop reproducible syntheses and process routes. 
• Develop standard reproducible measurement techniques. 
• Develop a measurement on perturbation of hydrogen-hydrogen and carbon-carbon bonds with degree of interaction. 
• Synthesize and evaluate new compositions, especially highly curved carbons. 

 

Engineering 
• Conduct system analysis to determine trade-offs among hydrogen storage capacity and fundamental material properties. 
• Address parameters for system engineering development 
• Address cyclability and durability of carbon materials. 
• Address system poisoning. 

 

Coordination 
• Create a secure website to post information and to enhance the efficiency of information exchange. 
• Establish a Carbon Materials Working Group. 
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Chemical Hydride Storage 
 

Objectives 
 
The chemical storage breakout group discussed the current state of technology with the objective of: 
 

• Identifying recycling/recovery options by building on existing chemical hydride storage technologies. 
• Identifying additional chemical hydrides that have the potential to meet storage goals. 
• Identifying the barriers to development and to eventual commercialization. 
• Drafting an R&D plan. 

Approach 
 
The group identified several challenges that are discussed below. 

   
Critical Research and Engineering Issues.  System integration, e.g. water self-sufficiency and heat rejection, is an important 
engineering issue.  For chemical hydride systems, regeneration of the spent material is another key issue.  It was agreed that small 
companies might not have resources to explore the fundamental chemistry of a large number of chemical hydride systems.  Chemistry 
is the first priority, followed by industrial process development for the recycling of the spent chemical hydride. 
 
Addressing the Challenges.  The regeneration process for various chemical hydride cycles needs to be identified and developed.  
Alternatively, a disposable “waste” such as nitrogen from ammonia decomposition could be considered.  The group felt that the 
quantification of externalities is an important issue for all hydrogen production and storage systems and should play a role in any 
selection criteria. A full life cycle analysis for materials needs to be performed for each chemical hydride with respect to energy 
requirements, process integration, efficiency and cost. 
 
Approaches.  Only a few complexes have been thoroughly studied – additional R&D on a large number of compounds and cycles is 
needed to develop synthesis/regeneration processes and to engineer packaged systems.  As a first cut, the thermodynamic limit of 
efficiency and of energy density for each cycle can be determined, since this represents the theoretical maximum. 
 
Potential near-term complexes include (but are not limited to): 
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• NaH 
• LiAlH4 
• NaBH4 
• Al 
• NaAlH4  
• Cyclohexane (e.g. cyclohexane  → benzene + 3H2) 
• Na 
• NH3BH3 
• Al (BH4)3 
• CH3OH 
• NH3 
• LiH 

R&D Priorities 
   

The Chemical Hydride group’s recommended R&D plan includes four phases with a go/no-go decision point between phases 1 and 2:  
 

Phase 1:  Screen a large number of chemical complexes for: 
• Hydrogen storage density potential (without system considerations) 
• Thermodynamic energy requirements including regeneration 
• Availability of basic components 
• Safety 
• Down-select to a “manageable” number of systems (approximately 10) 

 
Phase 2: For the subset of systems identified above, investigate improved/new process chemistry 

• Identify routes and energy requirements 
• Develop processes, including catalysts and operating window conditions (temperature and pressure) 

 
Phase 3a:  Develop process designs for “best” complexes and evaluate economic potential 

• Reactor engineering, including safety issues 
• Energy-efficient new processes 
• Overall emissions for entire cycle 

Hydrogen Storage Materials Workshop     29           



 

• Cost of delivered fuel 
 
Phase 3b: Develop detailed life cycle analyses of top complexes 

• Primary energy use  
• Cost, emissions and resource depletion 

 
Phase 4: Demonstrate (industry-government partnership) 

• Scale-up process for production and recovery 
• Optimize system integration for energy efficiency and cost. 
• Conduct fleet demonstration to assess consumer interface/acceptability. 

 
Advanced Concepts 
 

Objective 
 
The advanced concepts breakout group discussed thirteen proposed areas for research with the objective of prioritizing the 
approaches. It should be noted that disagreement exists concerning the potential for some of the proposed approaches to meet the 
DOE targets. 
 

R&D Priorities 
 
It should be noted that the group felt that a more useful priority ranking of the Advanced Concepts would require far more in-depth 
consideration. This is a preliminary ranking; several overarching R&D needs were identified which apply to any/all of the advanced 
concepts.  These are:  
 

• Maximum storage capacity – theoretical predictions 
• Energy balance / life cycle analysis 
• Hydrogen absorption / desorption kinetics 
• Preliminary cost analysis – potential for low-cost, high-volume manufacturing 
• Safety 

Hydrogen Storage Materials Workshop     30           



 

Crystalline Nanoporous Materials 
Dr. David Sholl of Carnegie Mellon University took the lead on presenting crystalline nanoporous materials for hydrogen storage.  He 
described them and their current status as: 
 

• Advanced zeolites 
• Maximum H2 capacity measured to date: 2.5 wt.%, 5.1 kg/m3 
• H2 capacity at practical conditions (e.g., T=77K, P=1atm): 1.3 wt%, 2.6 kg/m3 for NaA, 0.7 wt.%, 13.4 kg/m3 for ZSM-5 
• H2 adsorbs much more weakly in zeolites compared to other common gases. 
• Evidence points to physisorption alone 

 
The advantages are:  they are readily available at low cost; chemically and thermally robust; good structural reproducibility; 
modifiable; and environmentally benign and safe.  Six R&D needs were identified: 
 

• Maximum weight percent of H2 that can be absorbed by physisorption 
• Chemical modifications of zeolite surfaces for hydrogen chemisorption 
• Best structures for maximum absorption – e.g. small versus large pore 
• Characterization of internal surface structures 
• Advanced material characterization 
• Zeolite chemistry (e.g., Si/Al ratio) 

Polymer Microspheres 
Robert Dye of LANL took the lead on presenting polymer microspheres for hydrogen storage.  He described them and their current 
status as: 
 

• Hollow spheres from glassy polymers 
• Hydrogen membranes, e.g. high temperature polymer meniscus membrane 
• Segmented polymers hold H2 at room temperature 
• Goal: Hold liquid H2 at room temperature 
• Operate greater than 300 atm  
• PTMSP has very high gas permeability 
• For each polymer, there is an optimum permeability at a set operating condition 
• Permeation curve as a function of temperature – starting at zero permeation at room temperature 
• Metal, boron spheres: 4 wt% 
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• Material costs inexpensive  
 
The advantages are: microspheres are flowable (which is consistent with conventional automobile designs); portable; safe (due to 
microencapsulation); light; inexpensive and rechargeable/recyclable.  Five R&D needs were identified: 
 

• Pressure inside the sphere 
• Means and rate for H2 transport into and out of the microspheres  
• Identifying correct polymer 
• Initiation and cessation of hydrogen flow 
• Room temperature leak rate 

Self-Assembled Nanocomposites 
Robert Botto of ANL took the lead on presenting self-assembled nanocomposites for hydrogen storage.  He described them and their 
current status as: 
 

• Aerogels are the scaffold; template with organic functional groups; physisorption, acid-base reaction 
• Usable capacity ratio (wt% absorbed in material compared to cylinder):  1.4 
• Roughly a few wt% hydrogen storage 
• Adsorption/desorption exchange rate: 0.8 seconds; 100% desorption 

 
The advantages are:  they are lightweight; self assembly takes place in a one-step process; flexibility to control properties (including 
the chemistry of surface groups, pore structure, and incorporation of dispersed metallic clusters); the materials are stable; 
environmentally benign and inexpensive.  Four R&D needs were identified for self-assembled nanocomposites, as follows: 
 

• Studying silica aerogels 
• Modifying aerogels 
• Theoretical modeling - various chemical structures / materials 
• Functionalization strategies 

Advanced Hydride Materials 
The nature and status of advanced hydride materials were summarized as follows: 
 

• LiBH4 = LiH + B + 1.5H2(g): endothermic reaction; 13.8 wt% H2 released 
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• A low temperature H2 release has been observed: 2.3 wt% H2 released at 118°C 
• LiBH4 combined with organics – to reduce the severity and heat of the hydrolysis reaction: 2.5 wt% H2 produced from one 

compound 
 
The advantages of these materials include their high weight percent hydrogen storage potential, light weight and reversibility potential 
(to be explored).  Three R&D needs were identified for advanced hydride materials, as follows: 
 

• Hydrogen generation from LiBH4. 
• Understanding of hydrogen uptake and release. 
• Incorporation of LiBH4 into nanoporous materials to see effects on the chemical reaction (for lowering reaction temperature). 

Metal Organics 
Christopher Marshall of ANL took the lead on presenting metal organics for hydrogen storage.  He described them and their current 
status as: 
 

• Zeolite materials using carbon as the backbone, polymeric synthesis, using carbon and metals; cross between carbon and zeolite 
materials; organic microporous 

• Form large cage-like structures, approximately the size of a methane molecule 
• MOF-5 optimized for methane: 3% methane 
• Want strong van der Waals interactions. 

 
The advantages of metal organics include:  flexibility in material composition/structure; larger pore structures with tailored properties; 
and potential to incorporate functional groups and capillary effect.  Two R&D needs were identified for metal organics, as follows: 
 

• Initial studies of weight percent hydrogen absorption 
• Chemical modification – functional groups 

Boron Nitride Nanotubes 
The nature and status of boron nitride nanotubes were summarized as follows: 
 

• Nanotubes based on boron nitride instead of carbon. 
• Roughly equivalent to carbon nanotubes in terms of advantages, but less pyrophoric. 
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Four R&D needs were identified for boron nitride nanotubes, as follows: 
 

• Verify weight density of hydrogen storage 
• Understand adsorption mechanisms 
• Estimate costs  
• Understand desorption behavior 

Bulk Amorphous Materials 
C.T. Liu of ORNL took the lead on presenting bulk amorphous materials for hydrogen storage.  He described them and their current 
status as: 
 

• A new approach – new class of metallic materials based on multi-component alloy systems; loosely packed with porous defects 
(interstitial holes for H2 storage) in super cooled liquid phase. 

• Ti-Al-Fe based - light weight/low cost; can meet 6% target if H/M=3. 
• Thermal treatment may be used to control size and distribution of porous defects. 
• Lack of systematic study. 
• Theoretically, stability will increase with addition of hydrogen. 
• Various materials/alloys; zirconium base. 

 
The advantages of bulk amorphous materials include: fast adsorption/desorption kinetics; resistance to embrittlement and 
disintegration; multiple types of interstitial sites for hydrogen absorption and/or chemisorption; and low cost/volume production.  Five 
R&D needs were identified: 
 

• Verify weight percent for Ti-Al-Fe material 
• Low density / low cost materials 
• Demonstrate H2 release 
• Calculate / optimize environment and bonding strengths 
• Detailed experimental information on bond lengths and ordering 

Hydrogenated Amorphous Carbon 
George Fenske of ANL took the lead on presenting Hydrogenated Amorphous Carbon for hydrogen storage.  He described them and 
their current status as: 
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• Carbon skeleton made up in part of stressed graphitic “cages” (nanotube sponge)  
• Plasma-assisted chemical deposition process 
• Tests indicate rapid H2 release between 200-300ºC  

 
The advantages of this approach are:  6-7 wt% hydrogen; stable up to 300ºC; and potential for high hydrogen content.  Four R&D 
needs were identified: 
 

• Reversibility 
• Kinetics – uptake/release rates 
• Structure / Modeling - to determine whether paths are stable, diffuse back and forth, interconnected. 
• Fabrication of powders 
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Appendix A. Hydrogen Storage Materials Workshop -- AGENDA 
 

DAY ONE – August 14, 2002 

8:30 am Overview of the Workshop 
� Argonne Welcome, Don Joyce, Deputy to the Director, Argonne National Laboratory 
� Meeting Arrangements/Logistics, Walt Podolski, Argonne National Laboratory 

9:00 am Plenary Presentations:  DOE Hydrogen Program and the Status of Hydrogen Storage Systems 
� DOE Storage Program & Targets/Workshop Expectations, JoAnn Milliken, DOE 
� An Auto Company’s Perspective, Brian Wicke, General Motors  
� Analysis of Hydrogen Storage Materials and Systems, P. Teagan and M. Rona, TIAX LLC 

10:40 am Hydrogen Storage Material Technology Status Reports 
� Advanced Hydrides, George Thomas, Sandia National Laboratory 
� Carbon Materials, Jack Fischer, University of Pennsylvania 
� Chemical Storage, Ali T-Raissi, Florida Solar Energy Center 
� Advanced Concepts, John Petrovic, Los Alamos National Laboratory 

12:30 pm LUNCH 
1:30 pm Four Facilitated Breakout Sessions – organized by technical topic areas:   

� Advanced/Complex Hydrides (Facilitator: G. Sandrock, Scribe: C. Elam) 
� Carbon Materials (Facilitator: J. Ohi, Scribe: Cathy Grégoire Padró) 
� Chemical Storage (Facilitator: K. Stroh, Scribe: M. Rowles) 
� Advanced Concepts (Facilitator: J. Petrovic, Scribe: S. Marin) 

4:30 pm Breakout Group Initial Reports  
5:30 pm ADJOURN 

DAY 2 – August 15, 2002 

8:30 am Breakout groups meet 

10:30 am Breakout groups report results to the group 
12:00 pm  ADJOURN 
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