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" Effect of Constraints on Water Uptake

" Modeling and Role of Temperature

" Validation: Experimental Data

O Neutron Imaging (in-situ and ex-situ)
O Mechanical Testing
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Motivation and Objective
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= Electrochemical and mechanical = Water uptake of Compressed Membrane

loads co-exist. = Modeling and Experimental Validation

= Does compression alter the = Fundamentals of sorption of constrained membranes

Transport properties? ® |nterested in pressure higher than assembly pressure
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= Swelling Pressure in lonomer Membranes

BERKELEY LAB

Non-affine Deformation
Dry Membrane Hydrated Membrane

®  Fujimara et al, (1982)
o Gierke etal. (1981]
Dreyfus et al. (1990)
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Bridging Macro-scale (L) to micro-scale (b) Swelling Pressure:
L = Sample length M=p —E x b-a

b= Domain spacing (e.g. Bragg distance) ST pdy gy

Kusoglu et al., Polymer, 50 (2009)
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Equilibrium Swelling
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" Multi-Scale Model:
O For PFSA Membranes
O Morphology dependent

Chemical Potentials

Flory-Huggins Theory
O Bridges macroscopic and

microscopic swelling behavior

O Compression is introduced:

® Pressure deforms the polymer
backbone, and therefore limits
sorption in hydrophilic domains

Mechanical Model

Polymer Matrix N Compression
Deformation Effect

0 Extension of previous work

References:
1. A.Z.Weber andJ. Newman, AIChE Journal, 50,
3215 (2004).
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" Good agreement between data and model

O Model: Hydrophilic domains are cylindrical at higher humidities
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i Model Predictions for Sorption Isotherms

Experimental Data
Zawodzinski et al. 1993
Morris and Sun 1993

Choi et al. 2005

Jalani et al. 2005

B Takata et al. 2007

Models

O Springer et al. 1991

O Weber and Newman 2004
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Origins of Constraints in Fuel Cells

" Constraints due to Hydration loads

" Displacement-based constraints

Dry — Unconstrained

Dry — Constrained Wet - Constrained
Membrane

" Compression due to Mechanical Loads

®  Force-based constraints

RCR 2

P, f
Dry — Unconstrained Wet — Unconstrained Wet — Compressed
Membrane
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" Constraints due to Hydration loads

" Displacement-based constraints

Dry — Unconstrained
Membrane

Dry — Constrained Wet - Constrained

" Compression due to Mechanical Loads

®  Force-based constraints
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Origins of Constraints in Fuel Cells

Role of Temperature

Pressure : swelling induced

High Temperature

Membrane relaxes

?
Deforms less
[ ]

Creates less pressure

Pressure : externally applied

High Temperature

Membrane relaxes

Easier to Deform ]

Creates more deformation
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Role of Temperature on Water Uptake
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Constrained Membrane Compressed Membrane

High Temperature High Temperature

Membrane relaxes
. Pe
Swelling Pressure drops

Sorption of (In-Plane) Constrained PFSA Membrane Compression of a Saturated Membrane
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e : Validation
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" Experimental Data on Water uptake of Compressed

Membrane
1. Membrane in fuel cell Neutron Imaging LANL/NIST
2. Membrane (ex-situ) Mechanical Testing GM
3. Membrane (ex-situ) Neutron Imaging LBL/MNRC

m Lawrence Berkeley National Lab, Environmental Energy Technologies Division
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In-situ Water uptake of Membrane

Ref: Spernjak et al. Measurement of Water Content in Polymer Electrolyte Membranes using High Resolution Neutron Imaging

Normalized water content
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Sorption Isotherms at 80°C
0 Restricted Membrane : 1 MPa

O Compressed Membrane : 3 MPa
® Data from Neutron Imaging (LANL)

Sorption Isotherms for Compressed Membrane at 80 °C
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Membrane in Fuel Cell: Compression in this range does not impact uptake

unless under liquid equilibration
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" GM'’s experimental setup

O Measures the internal pressure

® Budinski and Cook
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O Good agreement between

measured data and model
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Neutron Imaging of Compressed Membrane

" Neutron Imaging = Edge-on images
o MNRC at UC Davis
0 Resolution: 0.1 mm

Compressed

® Gravimetric Measurements
T T

= Samples: 30 mil thick membrane

0 Custom-made by lon Power
o 1100 and 1000 EW

" Procedure
1100 1000
0 Dryand Wet membranes W EW HL «} I
0 Wet- Compressed (6-10 MPa)
" Between aluminum plates g
o Wet - Pre-constrained 2
" Membrane is constrained between %
polycarbonate plates and then =
equilibrated in water for 1 day
I’,}‘ A Dry Wet Wet Wet
EE McCLELLAN NUCLEAR RESEARCH CENTER Compressed Constrained

SEM Lawrence Berkeley National Lab, Environmental Energy Technologies Division




Water Content of Compressed Membrane
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Wet - Compressed : 20! Applied Pressure Pre-Constrained |
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What happens to Transport Properties?

"  Compression is effective at high
humidities, especially in water

O Theory and Validations

®  Current and Future Work Conductivity of a Compressed Membrane at T=25°C (100% RH)
0.15 T . w . \ |
Non-—Affine deformation of domains

- Sorptlon’ CondUCtIVIty and — — — Non-Affine deformation — Molar volume reduces
mOI'phOlOgy -------- Affine deformation of domains

® Fundamentals of material behavior — § 01k
membrane level 7
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cell performance

Compression =

" Fuel cell model with compression
effect — cell level
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