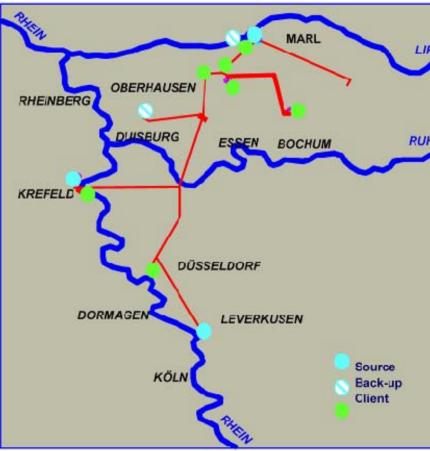

Questions and Issues on Hydrogen Pipelines

Pipeline Transmission of Hydrogen

Doe Hydrogen Pipeline Working Group Meeting ■ August 31, 2005

Air Liquide Pipeline Inventory

Breakdown by gases



Pipping of GH2 Pipeline

Background

- FG 64 built in 50ies
- KP added in 70ies
- active mining area over total length
- Iength approx. 25 km
- incl. 150 expansion joints (EJ) and 40 foundations
- all damaged caused by mining influence payed 55% by mining company
- EJ in end position considered as damage

3. Special structures

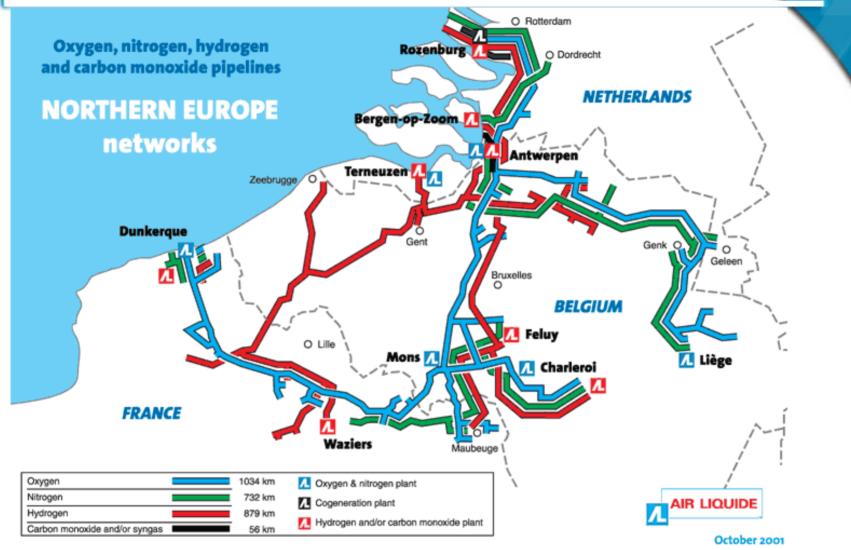
River Crossings (culvert):

- River crossing (on bridge): 1
- **Motorway Crossings:**
- **Overground Pipelines:** approx 21 km

- (Rhein, Ruhr, Rhein-Herne-Kanal)
- (Rhein-Herne-Kanal)

6

26



5. Mining areas

France & Netherlands

Air Liquide Oxygen, Nitrogen, Hydrogen Pipelines

Air Liquide Hydrogen Pipelines

	Germany	France,	USA
		Belgium	
Years H2 operation	<49	<22	<17
miles	150	646	245
		1 100	700 m e : e
Operating pressure	250 psig	1400 psig	700 psig
Steel grade	<x42< td=""><td><x52< td=""><td><x60< td=""></x60<></td></x52<></td></x42<>	<x52< td=""><td><x60< td=""></x60<></td></x52<>	<x60< td=""></x60<>
Steel glade	< <u>\</u>	32</td <td><!--00</td--></td>	00</td
Pipe manufacture	ERW	ERW	ERW
Welding	SMAW	SMAW	SMAW
5			
Valve type	ball	ball	ball
Valve make	Audco	Argus	Cameron

Air Liquide Oxygen, Nitrogen, Hydrogen Pipelines

Corpus Christi 8" H2 Pipeline (1998)

- Originally built as crude oil gathering pipelines (1940-1950) – 140 miles of 8 inch pipe
- Purchased by AL in 1998
- Intelligent pig inspection, cleaned, hydrotest
- Used in H2 service at 700 psig for 6 months
- Rupture because of corrosion 1998
- Derated to 350 psig, 65 miles still in service

Freeport to Texas City 14" Pipeline

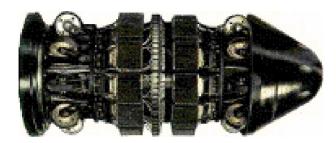
- Originally built as crude oil pipeline in 1979
- 34 miles, various grades and wall thickness
- Intelligent pig inspection, cleaned, hydrotest
- Original pipeline ball valves still in use for H2.
- Has been in service at 740 psig since 1996
- Successful repeat hydrotest in 2004
- No problems in service

Steel Properties of Converted Pipelines

	New pipe Spec.	Freeport- Texas City	Corpus Pipelines
Hardness	<250 HB	225	178
Carbon Equivalent	<0.43	0.63	0.325
Grade	<x52< td=""><td>X60</td><td>Gr.B</td></x52<>	X60	Gr.B
Sulfur	<0.015%	0.015	0.036
Phosphorus	<0.015%	0.017	0.011
Charpy Impact	>35J	>27J	6J
Heat treatment	Normalized	NA	NA

Build VS. Buy

FOR


- Cost new transmission line averages \$694,000 per km.
- Easements major issue in industrial/urban areas
- Schedule months vs. years

AGAINST

Material – will not match "ideal" H2 compatibility

Corrosion – old pipelines, several fluids, Corrosion?

Pipeline Inspection Tools

Smart Pigs can be introduced into operating pipelines and propelled by the gases or liquids being delivered. Smart Pigs for pipelines from 10" and larger have been developed.

Different technologies are used to locate defects in the pipeline wall.

Magnetic Flux Leakage (MFL) measurements can detect corrosion on thinning walls.

Ultrasonic sensors can detect external coating disbondment, cracks, dents and gouges.

The pigs contain data acquisition and storage devices. After the pig is recovered from the pipeline, the data can be downloaded. Analysis of the data reveals exact location of defects detected.

Pipping of GH2 Pipeline

Express Analysis of scan data

 6 sections identified to be replaced immediately (pinholes)

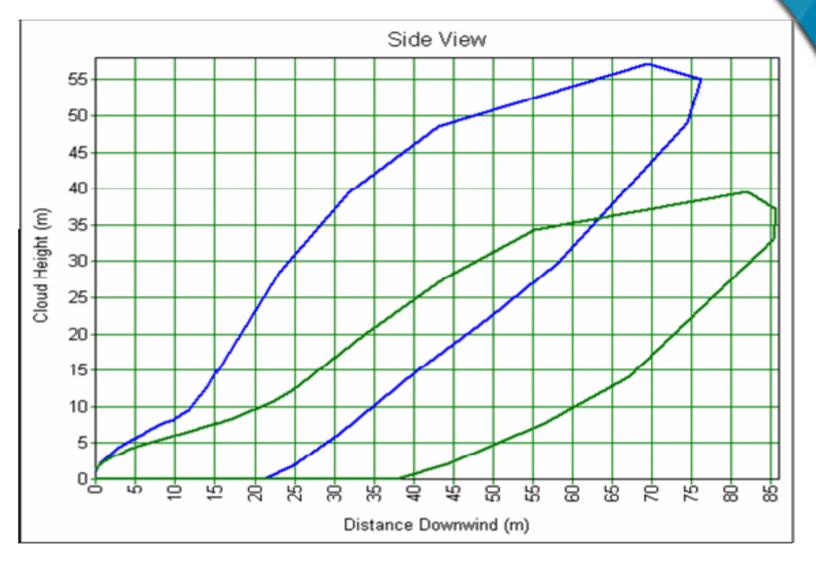
section 4, 4380 m	
Wall thickness	0,5 mm
length	20 mm
width	10 mm
leak relevant	

section 4, 4415 m	
Wall thickness	0,7 mm
length	8 mm
width	8 mm
leak relevant)	

Weltmarktführer für technische und medizinische Gase

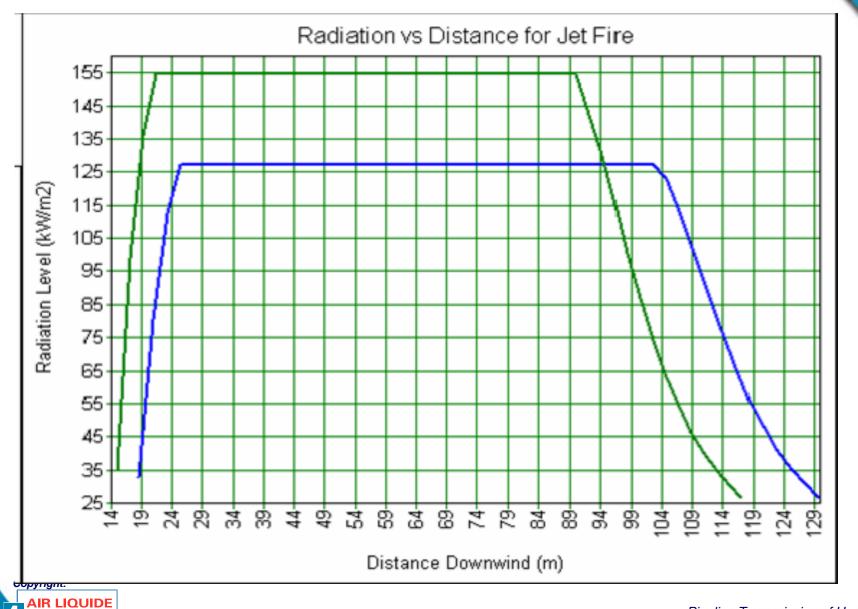
Freeport H2 Supply to GM Fuel Cells

- Purified using pressure swing adsorbers
- Crude H2 purchased from Dow Chemical
- Compressed to 740 psig (lubricated reciprocal)
- Multi-stage vane type filtration for lubeoil removal
- <1 ppm CO, -300F dewpoint</p>
- Fuel cells supplied through 1 inch pipeline



Risk Analysis & Liability Concern

- Risk analysis is required for all H2 pipelines
- Commercial software available (PHAST, Canary)
- Evaluate full bore rupture and 1" puncture
- Assume that nearest valve is closed after 10 mins.
- Examine explosion and jet fire cases
- Quantitative analysis gives fatality risk
- Risk analysis may result in re-route or mitigation



Plume Study

Radiation vs. Distance

Risk Study

Full bore rupture Horizontal 3F			
Effects	Distance m	Area m2	% fatality
Dispersion 1.5m Height 5D	41		
Thermal radiation kW/m2			
13.4	143	10593	1
18.2	137	8416	10
22.8	133	6999	30
26.6	130	6104	50
31	127	5175	70
38.7	124	4200	90
52.5	120	1590	99
Maximum 129	105	1182	

LIKELIHOOD and ACCEPTABLE RISK

Probability of Pipeline failure

Probability of pipeline rupture		
year x km		
Full bore rupture	6.50E-06	
Large leak		
Small leak Out corridor	1.00E-04	
Small leak In corridor	2.00E-05	

Acceptable risk (Netherlands advisory)

Nederland Advisory		
Societal risk		
Nbs of people	Likelihood	
0.1	1.00E-01	
1	1.00E-03	
10	1.00E-05	
100	1.00E-07	

Design & Operation

--- Special Issues for H₂ Service

- H2 pipeline ruptures always catch fire
- Need a flare at pipeline vents & reliefs
- Small leaks hard to detect
- Valves, gaskets, fittings no real problem
- Odorization will be a challenge

- Conventional pipeline materials have been successfully used for H2 up to 1400 psig
- Existing pipelines can be converted to H2 service with some limits on stress and pressure
- Current design of H2 compressors and H2 pipelines can supply fuel cells
- Little experience with urban "distribution" pipelines

Jim Campbell Manager, Pipeline Construction Air Liquide Process & Construction Jim.campbell@airliquide.com

