Development of a Toroidal Intersecting Vane Machine Air Management System for Automotive Fuel Cell Systems

Sterling Bailey Ph.D., P.E.
Mechanology, LLC
sterling@mechanology.com

The focus of this program is to develop the innovative TIVM concept into working compressor/expander/motor hardware that satisfies the FreedomCAR Guidelines – and is easily adaptable to individual car system requirements – and to measure the TIVM air management system performance.
Relevance and Objective of The TIVM Compressor/Expander/Motor Development Project

The Objective of Mechanology’s TIVM CEM Development and Demonstration project is to overcome the following Transportation Systems Technical Barrier identified in the Draft Fuel Cell R&D Plan:

“Compressors/Expanders. Automotive-type compressors/expanders that minimize parasitic power consumption and meet packaging and cost requirements are not available. To validate functionality in laboratory testing, current systems often use off-the-shelf compressors that are not specifically designed for fuel cell applications resulting in systems that are heavy, costly, and inefficient. Automotive-type compressors/expanders that meet the FreedomCAR program technical guidelines need to be engineered and integrated with the fuel cell and fuel processor so that the overall system meets packaging, cost, and performance requirements. “
The Toroidal Intersecting Vane Machine Concept
Toroidal Intersecting Vane Machine Characteristics

Positive Displacement
- Compressor/Expander
- Compressor/Compressor
- Blower

High Flow

High or Low Pressure

Small Volume

Low Production Cost

Many Spin-off Products

TIVM Attributes Provide Efficient Operation as an Integral Compressor/Expander for Automotive Fuel Cell Applications With Very Good Performance at High Turndown Ratios
TIVM Development Timeline

- TIVM Concept Invented at Stanford
- Mathematics Developed
- US and Foreign Patents Granted
- Software Developed
- Generic Prototype Built
- DOE Contract Award
- TIVM CEM Prototype Due
- DOE Contract Start
- Single Vane Test Rig Operational
- Pressure and Flow Demonstrated
- Friction, Sealing, and Porting Tech Solution
- Fabricate TIVM CEM Prototype, Measure Performance, Deliver

Calendar Year

- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
The Basic Viability of the TIVM Has Been Proven Through Hardware and Tests
Requirements Compliance Matrix for TIVM Compressor/Expander

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
<th>Comment</th>
<th>TIVM Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>76 g/s (135 cfm) For 50 kWe</td>
<td>Flow consistent with design flow demonstrated with temporary seals - as expected for positive displacement device</td>
<td>Capability Demonstrated</td>
</tr>
<tr>
<td>Pressure</td>
<td>3.2 atm</td>
<td>3.5 atm pressure demonstrated with temporary seals - as expected for positive displacement device</td>
<td>Capability Demonstrated</td>
</tr>
<tr>
<td>Power</td>
<td>5.0 kW</td>
<td>Key remaining performance issue – requires low friction effective seals</td>
<td>6 kW - Remains to be Demonstrated</td>
</tr>
<tr>
<td>Size</td>
<td>8-11 liters</td>
<td>Acceptable to car makers and OEMs (Compressor, expander, and motor)</td>
<td>8 L – Acceptable (2005)</td>
</tr>
<tr>
<td>Weight</td>
<td>8-11 kg</td>
<td>Acceptable to car makers and OEMs</td>
<td>16 kg – Acceptable (2005)</td>
</tr>
<tr>
<td>Noise</td>
<td><70 db</td>
<td>Use of polymer parts and compliant seals will mitigate</td>
<td>To Be Demonstrated</td>
</tr>
<tr>
<td>Cost</td>
<td>$400</td>
<td>Cost estimates based on vendor quotes Give several $100’s in high volume</td>
<td>Expected to be acceptable</td>
</tr>
</tbody>
</table>
Three Key Performance Issues Needed to Satisfy the Power Requirement

- Seals to limit air leakage without adding excessive friction
- Confirmation of coefficient of friction for meshing vane interface – including high humidity environment
- Porting to assure low pressure drop, and power loss, across the compressor and expander inlet and discharge paths

These are not unusual engineering tasks that require inventions or new materials. Solid, disciplined engineering development will provide the required solutions
Requirements for Vane Seals
(For 6 kW Shaft Power at 100% Power and Flow)

Limit air leakage from compressor and expander to < 5%
- leakage rate < 0.38 g/s for full power and flow
- leakage rate < 0.076 g/s for 20% power and flow

Friction < 1.5 lb drag per rotor

Accommodate dimensional changes from wear, thermal expansion, fabrication tolerances, tolerance stack up. Requires compliance of ~15 x 10^-3 inches

Manufacturable in large volume

Cost effective
Single Vane Test Machine Features

• Designed for Development of Vane Seals
• Preserves Dimensional Scale of 50 kW TIVM / CE
• Leverages Existing Test Stand Hardware and Instrumentation
• Fast Turn Around Time for Test Specimens
• Static Sealing
• Dynamic Sealing (to 15 m/s vane velocity)
• Gas Pressure and Temperature (4 kHz)
• Seal Friction via Load Cell
• Linear Servo Motor

 Position feedback (5 micron)
 Velocity control (0 to 15 m/s)
Leakage Rate vs Compliance For Several Seal Options
Screening Test Summary Results

TARGET FOR 5% Leakage AT FULL POWER

SEVERAL CONCEPTS ELIMINATED

TARGET FOR 5% Leakage AT 20% POWER

Two Seal Concepts Meet Full Power Requirements
Friction vs Compliance for Candidate Seals

TARGET VALUE

Two Seal Design Concepts Meet Friction Requirement
Leakage vs Friction Tradeoff for 6 kW Shaft Power

Two Seal Concepts Meet Leakage and Friction Requirements for 6 kW – Further Optimization Possible
Friction Coefficient vs Speed, Most Recent ANL Data

TARGET VALUE

Vane to vane coefficient of friction of <0.15 is achievable
Shaft Power vs % Power and Flow, DOE Guidelines, Seal "B" Characteristics and 3.2 atm Pressure

Parasitic power load of <6 kW appears to be achievable
Future Plans

Complete seal measurements for combined leakage and friction – confirm satisfactory performance of at least one design – August 2003

Perform porting feature measurements to confirm satisfactory performance – August 2003

Complete investigation of additional innovation with potential to reduce shaft power by > 1kW.

Build fully operational prototype with selected seals and ports – measure integral performance

With accelerated funding, August 2004
At planned funding rate, September 2005

Integrate high efficiency motor – measure performance, deliver to Argonne National Laboratory for testing

With accelerated funding, September 2004
At planned funding rate, September 2005