REFORMER MODEL DEVELOPMENT FOR HYDROGEN PRODUCTION

J. Bellan, N. Okong’o, K. Harstad, P. Le Clercq * and A. Leboissetier
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109

May 19-22, 2003
Hydrogen and Fuel Cell Merit Review Meeting
Berkeley, CA

*Supported by a grant to J. Bellan from the Petroleum Research Fund and by
A contract to J. Bellan from the Office National d’Etudes et de Rechereches
Aerospatiales
• Technical task: “Advanced Fuel Reforming: Investigate other reformer improvements, including heat integration and reactor configuration”

• Relevance: address the goal “Research and develop low cost, highly efficient hydrogen production from…renewable sources

• Objectives: “Reduce the cost of distributed production of hydrogen from… liquid fuels”

• Technical barriers
 • A: “Reformer efficiencies are limited by side reactions”
 • A: “Improve performance”
 • H: “Hydrogen produced from biomass is not currently cost-competitive with gasoline due to … capital costs”
 • H: “Areas for reforming technology improvements include … reactor configuration for improved yield”
METHOD OF APPROACH

• Develop models free of empiricism, as much as possible use fundamental principles

• Sequence of the approach

 • Resolve all scales of the flow in a small domain to understand the physics (Direct Numerical Simulations (DNS)) of the drop/flow interaction, etc.

 • develop small-scale models (SGS) based on the understanding of that interaction

 • develop a model (Large Eddy Simulation (LES)) and code where we resolve only the large scales and model the small scales according to SGS

 • validate the model with experimental data

• Exercise these models to derive information directly applicable to the situation to be studied.
PROJECT TIMELINE

1. Models of small-scale drop/turb-flow interactions for SC*-drops; FY02
 ↓
 Evaluate small-to-large scale interact. models for SC*-drops; FY03

2. Test MC*-drop model robustness for drop/turb-flow interactions; FY02 (Post Doc; PRF spons. to Bellan)
 ↓
 Develop and evaluate robust single MC*-drop model; FY03 (PRF and ONERA co-spons.)

3. New paradigm for drop injection to improve mixing; FY02 (grad. student with Egyptian fellowship)

*SC ≡ single-component

*MC ≡ multi-component mixture
SUCCESS CRITERIA AND EXPECTED COMPLETION

• Success criteria
 • validate models with experiments
 • predict the importance of various parameters
 • optimize reforming for a laboratory scale reactor
 • predict scaling up of the reactor

• Expected completion date depends on the yearly allocated funds for the project
ACCOMPLISHMENTS SINCE THE LAST REVIEW

• Analyzed the database created for temporal mixing layers laden with single-component drops and derived small-scale models of drops/flow interaction (“Consistent Large Eddy Simulation of a temporal mixing layer laden with evaporating drop. Part 1: Direct Numerical Simulation, formulation and a priori modeling”, (N. Okong’o and J. Bellan), submitted to the J. Fluid Mech., 2002)

• Analyzed the database created for temporal mixing layers laden with multi-component drops (“Direct numerical simulation of a transitional temporal mixing layer laden with multicomponent-fuel evaporating drops using continuous thermodynamics”, (P. C. Le Clercq and J. Bellan), submitted to the J. Fluid Mech., 2002); found that the multi-component drop model is not robust at all far field conditions

• Completing the modeling of the coupling between small-scale models and computed large-scales for single-component evaporating drops (in preparation: “Consistent Large Eddy Simulation of a temporal mixing layer laden with evaporating drops. Part II: \textit{a posteriori} modeling”, (A. Leboissetier, N. Okong’o and J. Bellan); to be submitted to the \textit{J. Fluid Mech.}, 2003)

• Initiated the creation of a database for studying the interaction of multi-component drops with turbulent flow in a mixing layer, using the robust multi-component drop model
SIGNIFICANT INTERACTION AND COLLABORATION WITH COLLEAGUES

• Three additional papers submitted for journal publication; each to be published in the NASA Tech Briefs

• Presentations (all to be published in the NASA Tech Briefs):
 • 2 papers presented at ILASS 2002, May 2002
 • 1 paper presented at the 41st Aerospace Sciences Meeting, January 2003
 • 2 papers presented at the 3rd Joint US Sections Combustion Institute Meeting, March 2003
SIGNIFICANT INTERACTION AND COLLABORATION WITH COLLEAGUES cont’d

• Proposals written with colleagues to develop additional experimental databases for model validation

 • collaboration with University of Southern California professor to develop experimental database for single-component drop sprays; submitted to NASA Microgravity Fluids, December 2002

 • collaboration with University of California Davis professor to develop experimental database for multi-component drop sprays; submitted to NASA Microgravity Combustion, March 2003

• Requests for re-prints (e.g. Prof. J. Corella from Spain, Prof. M. Papalexandris from Belgium who will visit at JPL 7/08/03)
FUTURE MILESTONES: SPRAY WITH SINGLE-COMPONENT DROPS

Spatial spray in FY04 (instead of temporal mixing layer in FY02 and FY03)

↓

1. Laminar, evaporating spray DNS runs; FY04

↓

2. Laminar, evaporating spray LES runs; FY04

↓

3. Turbulent, evaporating spray LES and experimental validation; FY04

Data of McDonell and Samuelsen, *Atomization and Sprays*, 3, 321-364, 1993; others
FUTURE MILESTONES: TEMPORAL MIXING LAYER WITH MULTI-COMPONENT DROPS

Temporal mixing layer with robust multi-component-drop model; FY04
↓
1. Creation of the DNS database; FY04
↓
2. Initiation of the database analysis to model the drop/small-scale interaction; FY04
ISSUE 1 FROM 2002 REVIEWERS: MODEL USEFULNESS

- Assist in resolving important challenges in reforming:
 - reduction of coke formation: the current emphasis on \uparrow steam/carbon ratio is a global strategy whereas coke is formed locally
 - temperature optimization: $\uparrow T$ leads to more conversion, but it also leads to $\uparrow CO/CO_2$ ratio due to the reverse water-gas shift reaction
 - single-chemical-species diesel-surrogates or pyrolysis-oil surrogates behave differently than diesel or pyrolysis oil \Rightarrow ensure that experiments are performed with diesel or pyrolysis oil instead of surrogates
 - investigate the optimal T range resulting from diesel-fuel or pyrolysis-oil composition variation
 - predict the chemical species distribution \Rightarrow location of the catalyst
 - predict how reformers will scale up from the micro-reactors used in laboratories
LES is an engineering approach supported by scientific (i.e. DNS) results: The analysis of the DNS database to

- extract models for the interaction between evaporating drops and turbulent flow
- reduce the tracked number of drops while maintaining accuracy

make the problem computationally tractable and thus accessible to the broader community. JPL obtained a reduction by a factor of 10^2 in computational time while retaining good accuracy.

- Idea of the DNS/SGS/LES is to compute only the larger scales, and model the small scales => computational efficiency

- NASA Tech Briefs (all papers under the H2 Program sponsorship) make the work available to the broader community
MIXING LAYER CONFIGURATION
For single-component drops the mean molar weigh is uniform in the field. This shows the importance of doing experiments and performing simulations with the real fuel rather than a single-chemical-species surrogate.
BETWEEN-THE-BRAID PLANE CONTOURS OF THE VAPOR MASS FRACTION AND DROP NUMBER DENSITY

DNS WITH ALL DROPS; 2252 CPU HOURS

Simulation for $ML_0 = 0.2$.

vapor mass fraction

drop number density (m^{-3})
BETWEEN-THE-BRAID PLANE CONTOURS OF THE VAPOR MASS FRACTION AND DROP NUMBER DENSITY

FILTERED AND COARSENEO DNS AND OLY 1 OUT OF 8 DROPS PORTRAYED

Simulation for $ML_0 = 0.2$.
BETWEEN-THE-BRAID PLANE CONTOURS OF THE VAPOR MASS FRACTION AND DROP NUMBER DENSITY, cont’d

TYPICAL SMALL-SCALE (i.e., MIXING LENGTH) MODEL USED IN ENGINEERING CALCULATIONS AND ONLY 1 OUT OF 8 DROPS CONSIDERED IN THE SIMULATION; 20.1 CPU HOURS

Simulation for $ML_0 = 0.2$.
BETWEEN-THE-BRAID PLANE CONTOURS OF THE VAPOR MASS FRACTION AND DROP NUMBER DENSITY, cont’d

JPL-DEVELOPED MODEL AND ONLY 1 OUT OF 8 DROPS CONSIDERED IN THE SIMULATION; 19.8 CPU HOURS

Simulation for $ML_0 = 0.2$.
EFFECT OF THE NUMBER OF DROPS

JPL-DEVELOPED MODEL WITH ALL DROPS; 113 CPU HOURS

Simulation for $ML_0 = 0.2$.

vapor mass fraction

drop number density (m^{-3})
EFFECT OF THE NUMBER OF DROPS, cont’d

JPL DEVELOPED MODEL WITH ONLY 1 OUT OF 16 DROPS

12.2 CPU HOURS

Simulation for $ML_0 = 0.2$.

![Simulation plot](image)
EFFECT OF THE NUMBER OF DROPS, cont’d

JPL DEVELOPED MODEL WITH ONLY 1 OUT OF 32 DROPS

9.4 CPU HOURS

Simulation for $ML_0 = 0.2$.
EFFECT OF THE NUMBER OF DROPS, cont’d

JPL DEVELOPED MODEL WITH ONLY 1 OUT OF 64 DROPS

8.1 CPU HOURS

Simulation for $ML_0 = 0.2$.