Hydrogen from Biomass
Catalytic Reforming of Pyrolysis Vapors
R. Evans, L. Boyd, C. Elam, S. Czernik,
R. French, C. Feik, S. Phillips, E. Chornet
National Bioenergy Center in
Collaboration with the Clark Atlanta University Team
U.S. DOE Hydrogen and Fuel Cells Merit Review Meeting
Berkeley, CA May 19-23, 2003
Project Goals

- Demonstrate the production of hydrogen from biomass by pyrolysis –steam reforming for $2.90/kg by 2010

- Barriers:
 - Vapor Conditioning
 - Catalyst Development and Regeneration
 - Reactor Configuration
 - Heat Integration
 - Deployment: H2 + Co-products

- **Milestone:** Verify advanced catalysts and reactor configuration for fluid bed reforming of biomass pyrolysis liquid at pilot scale (500 kg H2/day) with catalyst attrition rates < 0.01%/day. 4Q, 2009
Biomass Feedstocks

$$6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \overset{\text{sunlight}}{\rightarrow} \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2$$

Potential: 15% of the world’s energy by 2050.

Crop residues
Forest residues
Energy crops
Animal waste
Municipal waste

Issues: Biomass Availability and Costs

[Graph showing Georgia Biomass Feedstock Supply]

- ~150 PJ of H2 energy
- 5% of GA energy use

Million Dry tons

2000 2010 2020 2030 2040 2050
Pyrolysis Process Concept

Biomass \rightarrow PYROLYSIS \rightarrow Carbon Residue

\downarrow

Bio-oil \rightarrow Co-products

\downarrow

SEPARATION \rightarrow Phenolic Intermediates

\downarrow

H$_2$O \rightarrow CATALYTIC STEAM REFORMING

\downarrow

H$_2$ (and CO$_2$)

e.g., Resins
Octane additives
Fine Chemicals
Biocarbon-Based Fertilizers

Biomass \rightarrow Char \rightarrow N_2 \rightarrow CO_2 \rightarrow H_2 \rightarrow Catalysis \rightarrow NH_3 \rightarrow NH_4HCO_3 or $(NH_2)_2CO$

Courtesy D. Day, Eprida/Scientific Carbons Inc.

Formation of Ammonium Bicarbonate Inside the 15min Char Interior
Phase 2 System

Biomass [100]

Pyrolysis

bio-oil [30]
H₂O [30]
Gas [5]

Eductor

Filter

Preheater

Char [35]
Steam [15]

Super Heater

Flue Gas

Phase 3 Design Challenges
- Reformer Preheater
- Heat Recovery and Integration
- Compression
- Conditioning
- Coproduct Optimization
- Pyrolyzer Heat Optimization

Reformer

H₂ [7]
+ CO₂ [60]
+ CO [11]
+ CH₄ [2]

Filter

Catalyst Fines
Pyrolysis Unit Performance

- O2 Sensor after Char bed
- O2 Sensor before Char bed
- Char Bed Temp
- Exit Gas Temp

Temperature (°C)

Time, hrs

Present <-> O2 --> Absent
Reformer Performance

- Reformer Bed Temp
- Orifice Plate Temp
- Reformer DP
- Orifice Plate DP

Graph shows temperature and differential pressure over time, with axes labeled:
- Y-axis: Differential Pressure (in H2O)
- X-axis: Time, hrs
- Temperature, C
<table>
<thead>
<tr>
<th>R&D</th>
<th>Demonstration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I: Initial</td>
</tr>
<tr>
<td>Process Understanding</td>
<td>Debugging</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Component Technologies</td>
<td>Systems integration</td>
</tr>
<tr>
<td>Scoping economics</td>
<td>Mass Balance</td>
</tr>
<tr>
<td>ES&H</td>
<td>ES&H</td>
</tr>
</tbody>
</table>
Circulating Fluid Bed

- Smaller Catalyst Particles \(\rightarrow \) Harder
- Fluid Dynamics \(\rightarrow \) Higher Gas Flows
- Direct Heating \(\rightarrow \) Partial Oxidation
- Optimized Catalytic Coke Gasification

Reforming: \(C_xH_yO_z + H_2O \rightarrow H_2 + CO_x \)

Water gas shift: \(CO + H_2O \rightarrow CO_2 + H_2 \)

Coke Gasification: \(C + H_2O \rightarrow CO + H_2 \)
Project Time Line

Best option (BB vs CFB) - Scale up at 3X

Bubbling Bed @ 10X

Circulating Bed

Go/No Go: CFB@ 10X

Milestone

Year

2003 2004 2005 2006 2007 2008 2009
What are the Advantages of Pyrolysis/CSR vs Gasification/WGS?
- Distributed Resource \rightarrow Centralized Reforming
- Coproduct \rightarrow Better Economics
- Smaller Scale \rightarrow Lower Capital + Feedstock Cost

Maintain a Communication Plan
- RACI Analysis for Phase III

“Watch out for Safety”
- Feature Safety in Phase 3
- Change Site to University of Georgia Biomass Research Facility to promote safety development and education and tech transfer to biomass industry
Safety Approach

U of GA Facility:
- Train the Trainers
- Process control for safety AND efficiency (lower cost)

Must Develop:
- A Facility to study system safety boundaries
- A Statistical Basis for Safety Confidence