Development of a Natural Gas-to-Hydrogen Fueling System

DOE Hydrogen & Fuel Cell Merit Review

William E. Liss
Gas Technology Institute

May 2003

Cooperative Agreement DE-FC04-02AL67607
Hydrogen Fueling Systems
Problem Statement & Challenges

> Problem Statement
 – Making hydrogen competitive with gasoline on a $/vehicle mile basis

> Challenges
 – Flexible fuel reformers & systems
 – Fuel purity
 – Long-life compressors
 – Accurate dispensing
 – Capital outlay & return on investment
Goals and Objectives

> Goals:
 – Distributed high-pressure hydrogen delivered at $2.50/kg or less to vehicle users
 – Avoid high costs for over-the-road hydrogen delivery
 > Leverage existing energy infrastructure
 – Leverage CNG technologies, products, and experience to extent practical

> Technical Characteristics:
 – 40-60 kg daily
 – 5000 psig fast fill system
Program Participants

> Participants and Roles
 – Gas Technology Institute
 > Program manager, system integrator, fuel processing subsystem
 – FuelMaker Corporation
 > Maker of high-quality high-pressure compressors and fuel purification systems
 > Commercialization pathway
 – ANGI International
 > In-kind support on hydrogen dispensing
 > Commercialization pathway
> Cofunding from Canadian government
Project Plan and Approach

<table>
<thead>
<tr>
<th>Program Duration</th>
<th>Phase I Design</th>
<th>Phase II Development/Lab Test</th>
<th>Phase III Field Test/Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/02 – 02/05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2/02-9/02</td>
<td>9/02–2/04</td>
<td>3/04–2/05</td>
</tr>
</tbody>
</table>

- Phase I completed and report submitted
- Fast-Fill characterization completed and reported
- Phase II development in process

Program on schedule
Plan & Approach at a Glance

> Task 1: Fuel Reforming
 – Efficiency & turndown
 – Compressor/purifier interface
> Task 2: Fast-Fill Testing
 – Build SOA Test Facility
 – Refine CHARGE thermodynamic model
 – Conduct testing
> Task 3: H2 Dispenser
 – Component availability & cost
 – Metering and fill accuracy
 – Code & safety issues
> Task 4: H2 Compressor
 – Analytical design
 – Tribology & materials
 – Empirical testing
 – Reformer/purifier interface
> Task 5: H2 Purification
 – Adsorbent, membrane strategies
 – Reformer/compressor interface
> Task 6: Design & Economics
 – System design, model, and safety
 – System controls
 – Economic model
System Inputs & Outputs

Natural Gas
Water
Electricity

H2 Fuel Station
Reformers
Purifiers
Compressors
Storage
Dispensers

Hydrogen
Output: 40 - 60 kg/day
(12 - 18 scfm)
5000 - 7000 psig

Steam Methane Reformer/Fuel Processor
\[\text{CH}_4 + 2 \text{H}_2\text{O} \leftrightarrow 4\text{H}_2 + \text{CO}_2 \]
Some Keys to Success

Advanced oil-free high-pressure compressors

Compact fuel processing using efficient steam methane reforming process

Fuel cleanup systems that are cost effective, efficient, and meet fuel purity requirements

Reliable & cost effective hydrogen fueling system
Accomplishments

> Comprehensive subsystem and system design report completed
> Lab prototype fuel processor designed and tested (alpha)
> Full-scale high-pressure hydrogen test facility constructed
> Hydrogen cylinder filling model developed (CHARGEH2)
> Comprehensive set of hydrogen fast-fill tests completed
 – Paper presented at National Hydrogen Assoc. meeting
> H2 dispenser algorithm developed (in test for validation)
> Primary hydrogen compressor designed and built (operate under 100 psig)
> Secondary compressors undergoing materials evaluation and long-term life testing (operate up to 7,000 psig)
 – Critical path item
 – Evaluating advanced metals, ceramics, and coatings
> System economic model developed
 – Paper presented at World Hydrogen Energy Conference
Accomplishments (cont.)

> Pressure Swing Adsorption (PSA) test facility constructed

> PSA tests underway to evaluate multi-component removal effectiveness
 – Documenting trade-offs with fuel processor in areas related to CO and methane

> Phase II Prototype - Alpha Integrated System Build
 – Building “front end” of system (“hydrogen generator”)
 > Test “front end” first, then “back end” with fuel purification and high-pressure compression
 – Steel skid procured and prepped
 – 2nd generation fuel processor subsystem procured (beta) and subsystem assembly underway
 – Natural gas & water treatment systems procured and being installed
 – Primary compressors procured and being installed
 – System controls procured
Natural Gas to Hydrogen Fueling System
Preliminary Natural Gas to H2 Fueling Station Design

Further refinements underway to reduce size & cost
Fuel Processor Testing

Substantial testing done on start-up, ramping, shutdown testing of fuel processor to characterize dynamic response
GTI CHARGEH2 Model

> Characterizes dynamic fast-fill process
> Assess cylinders of different size & construction
> Various starting & ending fill conditions
 – Cylinders
 – Ground storage

Model captures dynamic gas filling effects, gas to cylinder heat transfer, and heat transfer from cylinder to ambient
GTI High-Pressure Hydrogen Test Facility

> Full-scale, three bank, high-pressure hydrogen cascade
 - 7,000 psig
 - Expanding to 12,000 psig

> Wide temperature range
 - -50 to 160°F

> Fully instrumented with data acquisition

> Flexibility to run wide range of conditions

High-Pressure Hydrogen Environmental Chamber
Hydrogen Cylinder Filling

> Substantial temperature variation documented

Type 4 cylinder, 105°F, under 4 minutes
Hydrogen Cylinder Filling Test Summary

![Temperature Change (°F) vs. Pressure Change (psi) graph]

- Temperature Change (°F) on the y-axis, ranging from 40 to 160.
- Pressure Change (psi) on the x-axis, ranging from 2000 to 6000.

The graph shows a linear relationship between temperature change and pressure change, with data points scattered across the range.
Communication & Cooperation

Gas Technology Institute
> Founding Member - National Hydrogen Association
> Member - U.S. Fuel Cell Council
> DOE Executive Advisory Council for FreedomCAR
> Secretary - SAE Fuel Cell Standards Committee
 > Specific input to group on vehicle/dispenser interface
> International Code Council Ad Hoc Hydrogen Committee
> International Energy Agency Advanced Motor Fuels Annex
> U.S. TAG to ISO/TC 197 (ISO/CD 15869) and ANSI/NGV2 on hydrogen vehicle cylinder standards
> Technology exchange with several companies/organizations in U.S., Canada, Japan, China, India, and Europe
> **Presented on this work at various meetings:**
 > World Hydrogen Energy Conference (6/02), NHA Annual Meeting (3/03)
 > SAE TOPTEC (4/03), SAE Gov-Ind Conference (5/03), others

FuelMaker Corporation
> NFPA committee on hydrogen fueling system fire safety codes
Next Steps

Alpha Unit Implementation

- Complete build-up and testing of “front end” of alpha system in 2003
 - Fine tune system integration and controls
- Build “back end” of alpha system second half of 2003
- Target tests results from fully integrated alpha system by February 2004
- Identify improvements for Phase III
- Work with potential partners on field testing, commercialization, technology transfer
Conclusions

> Significant thermal effects seen with hydrogen fast filling

> Meaningful variation in gas temperature exist
 – Various factors: cylinder design and materials, time of fill, ambient temperature, cascade pressure and temperature, etc.
 – Data indicate potential for large spatial internal gas temperature variation

> Intelligent pressure-based compensation algorithms are expected to be viable
 – Near 100% fill under most conditions
 – Implementation costs confined to fueling station
 – Compatible with approaches requiring additional vehicular equipment and communication