Carbon Composite Bipolar Plate for PEM Fuel Cells

Metals and Ceramics Division
Oak Ridge National Laboratory

T. L. Starr
Chemical Engineering Dept.
University of Louisville

Hydrogen and Fuel Cells Merit Review Meeting
Berkeley, California May 19-22, 2003
Objective

To develop a slurry-molded, carbon fiber material with a carbon chemical vapor infiltrated (CVI) sealed surface as a bipolar plate that would meet cost and property goals.

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Conductivity</td>
<td>> 100 S/cm</td>
</tr>
<tr>
<td>H₂ permeability</td>
<td><2 x 10⁻⁶ cm³/cm²-sec</td>
</tr>
<tr>
<td>Corrosion rate</td>
<td><16 µA/cm²</td>
</tr>
<tr>
<td>Cost</td>
<td><$10/kW</td>
</tr>
</tbody>
</table>
Approach

• Bipolar plate utilize carbon/carbon concept
• Preform is slurry-molded carbon fibers
 – similar to paper or felt production
 – fibers ~100 μm plus filler particles
 – features stamped/embossed into preform
• CVI with carbon
 – seals and makes hermetic high-density surfaces
 – provides continuous, high-conductivity material
Advantages of Approach

• Preforms prepared from slurry-molded carbon fibers
 – net shape process/press-in features
 – process can be continuous (i.e., papermaking)
 – low-cost materials
• Appropriate surfaces sealed via deposition of carbon
 – high-conductivity (graphitic) carbon coating all surfaces
 – infiltration makes component fully integral
 – potential for continuous or semi-batch processing
• Negligible impurities/poisons with minimal corrosion
• Strength and toughness of carbon/carbon
• Very light weight (about half that of other approaches)
• Potential for integral diffuser/catalyst support, therefore, lower ohmic losses
Timeline of Project Accomplishments

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 1998</td>
<td>Project Initiated</td>
</tr>
<tr>
<td>July 1998</td>
<td>3-cm disks with machined flowfield</td>
</tr>
<tr>
<td>March 1998</td>
<td>High conductivity meas.</td>
</tr>
<tr>
<td>June 1999</td>
<td>100-cm² plates with machined flowfield</td>
</tr>
<tr>
<td>June 1999</td>
<td>Good cell performance</td>
</tr>
<tr>
<td>June 2000</td>
<td>Light weight demonstrated</td>
</tr>
<tr>
<td>June 2000</td>
<td>High strength/toughness</td>
</tr>
<tr>
<td>June 2000</td>
<td>Initial samples to industry</td>
</tr>
<tr>
<td>June 2000</td>
<td>Pressed preforms</td>
</tr>
<tr>
<td>June 2000</td>
<td>Freeze/thaw testing</td>
</tr>
<tr>
<td>June 2000</td>
<td>Low corrosion meas.</td>
</tr>
<tr>
<td>June 2000</td>
<td>Multiple samples to industry</td>
</tr>
<tr>
<td>April 2001</td>
<td>License signed with Povair Fuel Cell Technologies</td>
</tr>
<tr>
<td>June 2001</td>
<td>Two-sided 100-cm² plates with pressed flowfield evaluated</td>
</tr>
<tr>
<td>June 2001</td>
<td>Thermal conductivity meas.</td>
</tr>
<tr>
<td>June 2001</td>
<td>Resistivity/polarization meas.</td>
</tr>
<tr>
<td>June 2001</td>
<td>Measured mechanical properties of plate material</td>
</tr>
<tr>
<td>June 2001</td>
<td>Significantly improved wetting of bipolar plate surface</td>
</tr>
<tr>
<td>June 2001</td>
<td>Determined surface roughness of finished plate</td>
</tr>
<tr>
<td>June 2002</td>
<td>Developed a series of bipolar plate materials/specimens that meet specific fuel cell manufacturer's design needs</td>
</tr>
<tr>
<td>June 2002</td>
<td>With licensee, developed manufacturing capability for specific bipolar plate designs through sample preparation, process modeling, and consultation</td>
</tr>
<tr>
<td>Sept. 2002</td>
<td>Developed carbon composite with graphite particulate filler</td>
</tr>
<tr>
<td>Sept. 2003</td>
<td>UT-BATTENELLE</td>
</tr>
</tbody>
</table>
Current Accomplishments

• With licensee, have reduced thickness of plates from 2.5 mm to 1.5 mm
• Determined influence of CVI temperature on depth of infiltration
• Further characterized and measured mechanical properties of carbon composite plate material
• Determined electronic properties, including effect of surface roughness on resistance
• Developed initial model of chemical vapor infiltration process that is scalable to production – model demonstrated value through guidance on flow control improving uniformity
Carbon Composite Plate Fabrication

Slurry Molding of Preforms

- 100 µm Milled Fiber
- Phenolic Durez® Resin
- 400 mesh Sieve Screen

Vacuum Molding Station

- Molded Preform

Press or Stamp Features

CVI Carbon

- EXHAUST GASES TO VACUUM SYSTEM
- COMPONENTS BEING INFILTRATED
- REACTANT GASES IN

Oak Ridge National Laboratory
U.S. Department of Energy
Porvair Preform Material Used in Study of Infiltration Depth as a Function of Reactor Conditions and Position

CVI Conditions:

Temperature
High Rate - 1500°C
Low Rate - 1350°C

Flow
1 sccm methane
2.5 sccm argon

Pressure
4 kPa

CVI Reactor Chamber Showing Position of Samples
Effect of CVI Conditions/Material on Density Profile

Image analysis reveals density gradients through plate thickness more pronounced for:
- ORNL material, which has no filler particles and thus higher green state porosity
- More rapid infiltration (higher infiltration temperature) in ORNL material

Mosaic of Optical Images of Plate Cross-Section (Porvair Material)

Through Thickness Density

Reactor Position/Conditions
- Upstream-Left, 4 hours at 1500°C
- Downstream-Right, 4 hours at 1500°C
- Upstream-Left, 24 hours at 1350°C
- Downstream-Right, 24 hours at 1350°C
- Uninfiltrated
- ORNL material

SEM Image of a Fracture Surface of an Infiltrated Bipolar Plate Produced From Porvair Preform Material Indicating That Carbon Deposition Is Limited Largely to the Exposed Surfaces
2-D Computer Model for CVI Reactor

- Commercial fluid dynamics code (CFD-ACE from CFD Research, Huntsville, AL) Cross-section reactor/preform geometry
- Kinetics and transport parameters from literature and from experiments at ORNL
- Finite-volume method with 136,000 element structured grid
- Boundary conditions match experiment
- Steady-state solution for gas flow

Gas Channels
- 3.0 mm above preform
- 3.5 mm below preform

Inlet
- 1500 sccm CH$_4$
- 2500 sccm Ar

Preform
- 2.0 mm thick
- 140 mm with flow
- 121 mm cross flow

Outlet
- 8000 Pa

1753 K
1773 K
Original Inlet Design Yielded Non-Uniform Flow

- Single recirculation cell near inlet
- Parabolic, laminar flow above/below preform
- Higher velocity above preform
Installation of a Nozzle Yielded Uniform Flow

- Nozzle turns and centers inlet flow
- Top/bottom recirculation cells
- Uniform velocity above/below preform
Electronic Properties Are Weakly Related to Surface Roughness

- 2-probe measurements are sums of all contact resistances
- Surface roughness does not correlate closely with contact resistance
- Sample no. 4 was not infiltrated and thus has fewer “interfaces” to offer resistance
- Sample no. 6 was polished and indicates a significantly lower contact resistance than that of unpolished samples (all others)
- Bulk conductivity as measured by a 4-probe technique varies little with sample preparation

<table>
<thead>
<tr>
<th>Porvair Material</th>
<th>Infiltration Treatment</th>
<th>Surface Roughness Rz µm</th>
<th>Resistance 2 Probe DC Ω</th>
<th>Conductivity 4 Probe V/I S/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1 - V162C-L2 A</td>
<td>4 hours at 1500°C</td>
<td>8.83</td>
<td>1.86</td>
<td>365</td>
</tr>
<tr>
<td>No. 2 - V1631-R1-C</td>
<td>24 hours at 1350°C</td>
<td>12.9</td>
<td>1.37</td>
<td>417</td>
</tr>
<tr>
<td>No. 3 - V1631-R1-P</td>
<td>Uninfiltrated</td>
<td>13.5</td>
<td>0.86</td>
<td>369</td>
</tr>
<tr>
<td>No. 4 - V162C-L2 D-1</td>
<td>4 hours at 1500°C</td>
<td>10.2</td>
<td>2.16</td>
<td>386</td>
</tr>
<tr>
<td>No. 5 - V163AR1A-1</td>
<td>24 hours at 1350°C</td>
<td>14.3</td>
<td>1.57</td>
<td>383</td>
</tr>
<tr>
<td>No. 6 - V163AR1-B</td>
<td>24 hours at 1350°C</td>
<td>2.9</td>
<td>0.84</td>
<td>408</td>
</tr>
</tbody>
</table>
Porvair Material Has Reasonable Strength and Apparent Notch Insensitivity

- The resistance of materials to crack propagation can be evaluated by the notch sensitivity test
- Test specimens with holes of various sizes are subjected to monotonic tensile loading
- Ultimate strength (un-notched) is at a minimum the zero intercept of the strength vs. 2a/w

![Image]

Loading rate: 5 \(\mu \)m/s

Uninfiltrated Material
Industrial Interactions

- Supporting licensee Porvair Fuel Cell Technology in scaling up technology
- Porvair has been awarded a $6.1 M DOE program for scaling and applying the carbon composite bipolar plate technology
- Other companies evaluating plates, with some under development
Continuing Development and Technology Transfer of Carbon Composite Bipolar Plates

- Milestone FY 03 - Develop a carbon composite bipolar plate component with reduced thickness and optimized mechanical properties. (Sept. 2003)
- Develop CVI process model that is scalable to pilot and production facilities
- Determine electronic properties as a function of surface roughness
- Milestone FY 04 - Support continued scale-up of the licensee’s operation through modeling of fabrication processes. (Sept. 2004)
Some Advisory Panel Comments From Last Year and Responses

• “Demonstrate durability of materials manufactured by industrial partner in larger hardware”
 – Mechanical property measurements were made to better characterize the material which showed notch insensitivity (good toughness)
 – Partner has produced significant numbers of plates that have performed in customer hardware

• “Providing different hydrophobicity could be interesting area to explore”
 – Licensee does not give this a high priority

• “Test method extensively”
 – Developing mechanical and electrical property test results