

Sensors for Safety & Performance

Vehicles

Stationary Systems

Neil Rossmeissl

Targets and Status

Sensors for Automotive Fuel Cell Systems

Sensor	Op. Temp.	Response Time	Accuracy
CO:			
1-100 ppm reformate pre-stack sensor	<150 °C	0.1-1 sec	1-10% full scale (fs)
100-1000 ppm CO	250 °C	0.1-1 sec	1-10% fs
0.1-2% CO sensor	250-800 °C	0.1-1 sec	1-10% fs
H2 in fuel processor output	70-150 °C	0.1-1 sec for 90% response to step change	1-10% fs
H2 in ambient air	-30-80 °C	Under 1 sec	5%
Sulfur compounds	Up to 400 °C	<1 min @ 0.05 ppm	N/A

Targets and Status

Sensors for Hydrogen and Fuel Cell Systems

Sensor	Op. Temp.	Response Time	Accuracy
CO:			
1-100 ppm reformate	<150 °C	0.1-1 sec	1-10% full
100-1000 ppm CO	250 °C	0.1-2 sec	scale (fs)
0.1-2% CO sensor	250-800 °C	0.1-3 sec	1-10% fs
			1-10% fs
H2 in processor output	70-250 °C	0.1-3 sec for 95% response to step change	1-10% fs
H2 in ambient air	-30-80 °C	Under 1 sec	5%

Sensor Types

- CO
- H₂ in Fuel Processor
 Output
- H₂ in Ambient Air
- Sulfur Compounds (H₂S, SO₂, organic sulfur)

- Flow Rate of Fuel Processor Output
- Ammonia
- Temperature
- Relative Humidity for Cathode and Anode Gas Streams
- O₂ in Fuel Processor and at Cathode Exit
- Differential Pressure in Fuel Cell Stack

Sensor Requirements

- Must perform within required ambient and process conditions
- Fast response time
- Acceptable accuracy
- Must conform to size, weight, and cost constraints of automotive applications
- Acceptable lifetime (durability)
- Must measure properties within the required range

Sensor Projects

 Carbon Monoxide Sensors for Reformate-Powered Fuel Cells LANL

 Electrochemical Sensors for PEM Fuel Cell Vehicles LLNL

 Interfacial Stability of Thin Film H2 Sensors **NREL**

 Sensors for Automotive Fuel Cell Systems **UTC Fuel Cell**

 Micro-Machined Thin Film H2 Gas Sensors Advanced Technology Materials, Inc.

 Sensor Development for PEM Fuel Cell Systems Honeywell Sensing and Controls

Sensor Posters

 Gallium Nitride Integrated Gas/ Temperature Sensors for Fuel Cell Systems Monitoring for Hydrogen & Carbon Monoxide Peterson Ridge LLC

 Robust Fiber-Optic Temperature Sensor for Fuel Cell Monitoring ORNL

Discussion Points

Barriers

- •Cost
- Application
- •Lifetime
- Flexibility
- Public Perception