FutureGen

Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production

> Office of Fossil Energy U. S. Department of Energy Washington, DC June 2, 2003

Lowell Miller, Director, Office of Coal & Power Systems

Presentation Agenda

- FE Hydrogen Program
- FutureGen

24-Jun-03

• Carbon Sequestration Leadership Forum (CSLF)

Key Drivers

- Decreasing domestic supply will lead to increased imports from less stable regions
- Conventional petroleum is finite; production will peak and irreversibly decline due to continually increasing demand
- Improving environmental quality
 - Meeting air emission regulations
 - Greenhouse gas emissions

Source: <u>Transportation Energy Data Book: Edition 21</u>, DOE/ORNL-6966, September 2001, and <u>EIA Annual Energy Outlook 2002</u>, DOE/EIA-0383(2002), December 2001

Tomorrow's Hydrogen

Why is Hydrogen from Coal Important?

- 95% of U.S. hydrogen comes from natural gas;
- Future "Hydrogen Economy" must have more diversified sources;
- Over longer term, hydrogen will likely come from renewables, nuclear power, fusion, etc.

But coal can also be a major feedstock:

- Most abundant U.S. fossil fuel (250-yr supply)
- Can be environmentally clean source of hydrogen
- Coal-to-hydrogen costs must be lowered and affordable methods developed to sequester the "left behind" carbon

Tomorrow's Energy Plant

Converting Coal into Gas is Key

- 99%+ of Clear Skies pollutants (sulfur/nitrogen/mercury) can be cleaned from gasified coal;
- Hydrogen is a primary product;
- Carbon gases are in concentrated form for easier capture and sequestration.

► Hydrogen + Carbon Gases (CO₂, CO)

No coal-to-gas plant in the world today is configured to optimize hydrogen production or carbon capture

The prototype plant would be the world's 1st

Key Goals of the Office of Fossil Energy Hydrogen Program

2012

2013 Modules to reduce the cost of hydrogen and synthesis gas production from natural gas by 25% will be available

2014

Zero emission plant that co-produces hydrogen and electric power, with sequestration, to reduce the cost of hydrogen from coal by 25% will be demonstrated

2015

The goals of the FE Hydrogen Program will drive the budget needs for the program.

Vision for Energy Plants of the Future

- Remove environmental concerns associated with the use of fossil fuels for production of electricity, transportation fuels and chemicals through technology
- Characteristics of future energy plants
 - "Near-zero" emissions (coal as clean as gas)
 - CO₂ sequestration ready
 - Flexible (feed stocks, <u>co-products</u>, siting)
 - Highly energy efficient
 - Affordable (competitive with other energy options)
 - Industrial Ecology (waste into by-products)
 - Reduced water requirements
 - Timely deployment of new technology
 - Sustainable

Confluence of Presidential Initiatives

What is FutureGen?

• The world's first plant [prototype] to:

- Capture and permanently sequester carbon dioxide
- Emit virtually no air pollutants [zero emissions]
- Pioneer advanced processes to produce hydrogen from coal

• FutureGen announced on 27 February 2003

- President Bush
- Energy Secretary Abraham

http://fossil.energy.gov/techline/tl_cslf_print.html http://fossil.energy.gov/techline/tl_futuregen1_print.html http://fossil.energy.gov/events/speeches/03_sec_futuregen_022703.shtml

Goals of the Project

- Design, construct and operate a prototype plant that produces electricity and hydrogen with nearzero emissions
- Sequester at least 90% of the CO₂ emissions
- Prove the effectiveness, safety and permanence of CO₂ sequestration
- Establish technology standards and protocols for CO₂ measuring, monitoring and verification
- Validate the engineering, economic and environmental viability of advanced coal-based, near-zero emission technologies for commercial readiness in 2015

Features of the Project

- Coal-fueled gasification process that produces electricity and hydrogen–275 MW_e [net equivalent output]
- Commercial scale of 1 million tons per year of CO₂ captured and sequestered
- Total project cost estimated at \$1 billion
- Cost-shared by U. S. Department of Energy [maximum 80%] and industry [minimum 20%]
- Open to international participation through the Carbon Sequestration Leadership Forum

Project Concept

FutureGen Systems

FutureGen Process Project Definition 1. Domestic [U.S.]

2.

FUTUREN GEN

Integration FutureGen

- First-of-kind integrated project
- Verify large-scale operation

International

- Highlight best technology options
- Verify performance and permanence
- Develop cost and performance data
- International showcase

U.S. Carbon Sequestration Program

Infrastructure

Regional Partnerships

- Engage regional, state, local government entities
- Determine benefits of sequestration to region
- Baseline region for sources and
- Establish monitoring and verification protocols
- Address regulatory. environmental, outreach issues
- Test sequestration technology at small scale

Office of Fossil Energy

Why Capture CO₂ and Store It?

- Has the potential to remove enough carbon to stabilize CO₂ concentrations in the atmosphere
- Maintains the role of domestic fossil fuel resources in the Nation's energy future for transportation and power generation
- Has the potential to be the lowest cost carbon management option

World CO₂ Emissions

(Million Metric Tones Carbon Equivalent)

United States Rest of World Total World

Source: *International Energy Outlook 2002*, Energy Information Administration, Table A-10, p. 189

CO₂ Capture and Storage

24-Jun-03

Carbon Sequestration Leadership Forum— More Than FutureGen

- Weyburn CO₂ Enhanced Oil Recovery Project
 - Validate the capacity, movement and fate of CO₂ used in enhanced oil recovery in Saskatchewan, Canada

• Sleipner North Sea Project

- Norwegian project to strip CO₂ from natural gas extracted from a production well and re-inject the CO₂ into the Utrisa formation –a saline aquifer 1,000 meters underneath the sea bed
- CO₂ Capture Project
 - The CO₂ Capture Project is an international effort funded by nine of the world's leading energy companies. This project intends to address the issue of reducing emissions in a manner that will contribute to an environmentally acceptable and competitively priced continuous energy supply for the world

Example: Weyburn CO₂ EOR Project

- Approximately 650 production and water injection wells on a 70-square mile oil field operated by EnCana Resources.
- A 20-year enhanced oil recovery (EOR) project begun in 2000 using CO₂ from a 200-mile CO₂ pipeline from Dakota Gasification Plant—\$20.5 million cooperative agreement with Canadian Federal and Saskatchewan Provincial Governments. Provides for 130 million barrels of oil and storage of about 20 million metric tons of CO₂ over 20-year lifetime.
- US (DOE), EU, Japan, Alberta Government, private companies (e.g., BP, Chevron-Texaco, etc.) have joined, providing another \$20 million. IEA CO₂ Monitoring and Storage Project coordinated by 20 research organizations in the US, UK, Canada, France, and Italy.

Example: Sleipner North Sea Project

- CO₂ stripped from natural gas produced at Statoil's Sleipner gas field in the North Sea and injected into a sand layer called the Utrisa formation, some 1,000 meters under the sea bed.
- Project, begun in 1996, is the first commercial application of CO₂ storage on deep saline aquifers in the world. At today's production rate, about 1 million metric tons of CO₂ is extracted annually.
- The Saline Aquifer CO₂ Storage (SACS) Project to monitor the injected CO₂ established in 1998, and includes participation from Norway, U.S, EU, The Netherlands, Denmark, UK, Australia, Canada, Japan, and industrial partners.

Example: CO₂ Capture Project

- Is a joint project comprising nine (PanCanada) of the world's leading energy companies.
- Aims to reduce the cost of CO_2 capture from combustion sources.
- Is developing methods for safely storing CO₂ underground.
- Is working together with governments, NGO's, and other stakeholders to deliver technology that is cost-effective and meets the needs of society.
- CO₂ capture and geologic storage are bridging technologies that will help move society towards cleaner fuels in the future.
- Technologies developed by this project will be used in many different industries and applications around the world.

http://www.co2captureproject.org/overview/overview.htm

Web Sites For Additional Information

GENERAL www.fe.doe.gov www.netl.doe.gov www.eia.doe.gov www.epa.gov www.epa.gov www.climatescience.gov

SPECIFIC

http://fossil.energy.gov/techline/tl_cslf_print.ntml http://fossil.energy.gov/techline/tl_futuregen1_print.html http://fossil.energy.gov/events/speeches/03_sec_futuregen_022703.shtml

http://www.netl.doe.gov/coalpower/sequestration/index.html

