NOVEL WATER GAS SHIFT CATALYSTS

L. Thompson

University of Michigan
Department of Chemical Engineering

Commercial Water Gas Shift (WGS)

\[
\text{CO} + \text{H}_2\text{O} \leftrightarrow \text{CO}_2 + \text{H}_2 \quad \Delta H = -9.7 \text{ kcal/mol}
\]

HTS Catalysts:
Fe-Cr$_2$O$_3$

LTS Catalysts:
Cu-ZnO-Al$_2$O$_3$

Graph showing the reaction temperature and exit CO content.
Candidate Catalysts

<table>
<thead>
<tr>
<th>Material</th>
<th>Price* ($ per lb.)</th>
<th>Relative Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru</td>
<td>1,116</td>
<td>159</td>
</tr>
<tr>
<td>Rh</td>
<td>14,050</td>
<td>2,007</td>
</tr>
<tr>
<td>Pd</td>
<td>5,515</td>
<td>788</td>
</tr>
<tr>
<td>Ag</td>
<td>66</td>
<td>9.4</td>
</tr>
<tr>
<td>Ir</td>
<td>5,468</td>
<td>781</td>
</tr>
<tr>
<td>Pt</td>
<td>6,827</td>
<td>975</td>
</tr>
<tr>
<td>Au</td>
<td>4,350</td>
<td>621</td>
</tr>
<tr>
<td>MoO₃</td>
<td>3.86</td>
<td>0.6</td>
</tr>
<tr>
<td>Cu/Zn/Al Catalyst</td>
<td>7.00</td>
<td>1.0</td>
</tr>
</tbody>
</table>

* Prices in February, 2002.

WGS Micro-Reactor

38%
17%
9%
6%

30%
Effect of Pretreatment

CO Consumption Rate (µmol/g•s) vs. Reduction Temperature (°C)

- **340 °C**
- **H₂ Reduction**
- **CH₄/H₂ Reduction**
- **In-situ**

Correlations?

<table>
<thead>
<tr>
<th>Pretreatment</th>
<th>Rate (µmol/gr/s)</th>
<th>Rate/Peak Area (1/s)</th>
<th>CO Uptake (ml/gr)</th>
<th>TOF (1/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passivated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂/Ar-500 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₄/H₂/Ar-500 °C</td>
<td>34</td>
<td>2.2</td>
<td>6.0</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Michigan Engineering
Mo$_2$C Catalysts

\[\frac{H_2}{CO} = 3.33 \]

Dry gas = 12% CO in H$_2$

GHSV $\approx 300,000$ hr$^{-1}$

240 °C

CO Consumption Rate (µmol/g•sec)

\[
\begin{align*}
1000/T (K^{-1}) & \\
11 \text{ kcal/mol} \quad & \\
10 \text{ kcal/mol} \quad & \\
240 ^\circ C \quad & \\
17 \text{ kcal/mol} \quad & \\
21 \text{ kcal/mol} \quad & \\
22 \text{ kcal/mol} \quad & \\
\end{align*}
\]

H$_2$O:CO = 3.33

H$_2$ gas = 12% CO in H$_2$

GHSV = 300,000 hr$^{-1}$

Catalyst Options

- Multimetallic Carbide
- Carbide Supported Catalyst
η-Carbides

Mo-M η-Carbides

Intensity (Arbitrary Units)

CO Consumption Rate (nmol/m²•sec)
Mo₂C-Supported Catalysts

Carbide Supported Catalyst

Oxycarbide or Oxide Supported Catalyst

Mo₂C-Supported Catalysts: Modified Method

H₂O:CO=3.33
Dry gas=12% CO in H₂
GHSV=300,000 hr⁻¹
Ultra-Low Temperature Shift

H₂O:CO=3.33

Dry gas=12% CO in H₂

GHSV ≈ 300,000 hr⁻¹

Conclusions/Challenges

• Bulk carbides are highly active for WGS
• Reaction of CO and oxygen or hydroxyl appears to be RDS
• Carbide-supported catalysts hold promise for use in LTS and perhaps ULTS
• Reducible oxide supported Au catalysts can be highly active for WGS but they deactivate
• Introduction of textural promoters can help reduce deactivation
Acknowledgements

Research Group
 Novel Fuel Processing Catalysts
 Jeremy Patt, Chang Kim, Easwar Ranganathan
 and Dr. Shyamal Bej
 Early Transition Metal Nitrides and Carbides
 Randy McGee, Kamilah Turner and Yoshinori Kato and Dr. Chris Bennett
 Micro-Reactors and Micro-Fuel Cells
 William Johnson, Tafaya Ransom, André Taylor,
 Dr. Hanwei Lei and Dr. Wen-Sheng Dong

Department of Energy and Honda Americas
Süd Chemie, Unicore, Catalyte