New Electrocatalysts For Fuel Cells

Principal Investigator: Philip N. Ross, Jr.
Staff Scientist: Nenad M. Markovic
Post Doctoral Fellow: Thomas J. Schmidt
Vojislav Stamenkovic
Visiting Scientist: Ursula Paulus
Matthias Arenz
Berislav Blizanac

A research program conducted at the Lawrence Berkeley National Laboratory for the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Advanced Transportation Technologies of the U.S. Department of Energy under contract No. DE-AC03-76SF00098
Materials-by-Design Approach

Taylor made surfaces

synthesis of nanoparticles

Fuel cell catalyst

Characterization techniques

LEIS, XPS, AES, LEED

HRTEM, XRD

Kinetics

HOR, ORR, CO Tolerance

HOR, ORR, CO Tolerance
Collaborations

Industry

- GM, Rochester, NY, USA
- Honda, Japan
- E-Tek, New Jersey, NJ, USA
- 3M, Minneapolis, MN, USA

Universities and Institutes

- Max-Planck-Institut fuer Kohlenforschung, Muelheim/Ruhr, Germany
- University of Ulm, Germany
- Paul-Scherrer-Insitut, Villigen, Switzerland
- Universidad d’Alicante, Spain
- Texas Tech University, Lubbock, TX, USA
- University of Eindhoven, Holland
- University of Wales, UK
- University of Bonn, Germany
- University of Liverpool, UK
Future Research 2000

Anode Side

- Optimization of PdAu catalysts
 - Stoichiometry and particle size
- Electrocatalysis on Pd thin metal films
 - Electronic effects
 - Select the most promising substrate for the Pd thin film electrode concept
- Simulation of ‘Air-bleed’
 - on FC catalysts under FC conditions

Cathode Side

- Optimization of PtNi and PtCo catalysts
 - Stoichiometry
 - Minimization of Pt amount
 - Pt-skin effects (electronic modification of Pt)
 - Anion effects
- New class of ORR catalysts
Publications (Since 10/2000)

Refereed Journals and Refereed Conference Proceedings:

Future Directions

- Unified concept for both anode and cathode catalysts utilizing PGM-based bimetallic nanoparticles with “grape” structure (PGM skin with base metal core) stability of high surface area Pt-bimetallic catalysts
 - Choice of skin and core metals different for anode and cathode

- New synthetic chemistry for nanoparticles with “grape” structure

- Investigation of Re as metal core in PGM “grape” structured nanoparticles
 - Pt and Pd monolayers on Re(0001) model system
 - Re colloidal chemistry

- Optimization of AuPd anode catalyst for HT membranes

- Computational screening of non-PGM catalyst concepts using newly developed (under BES funding) *ab initio* theory of the ORR
Segregation on Pt₃Ni and Pt₃Co alloys surfaces

Pt$_3$Co: AES, LEIS

Platinum ‘Skin’ on the surface

AES:
- Co depleted on the annealed surfaces
- Pt enrichment?

LEIS:
- Complete Pt enrichment on the annealed surface
- Bulk composition achieved during in situ sputtering
Kinetic Enhancement by Skin Effect

- The most active surface at 60°C: Pt₃Co skin

Factor: Pt₃Co (s) > Pt₃Co (b) > Pt₃Ni (b) > Pt > Pt₃Ni (s)

4.2 2.8 1.9 1 0.15

Skin structure is either more or less active than sputtered structure

Electronic effects
Characterization of Pt/Vulcan Catalyst

- **Transmission electron microscopy**

- **The particle size effects:**
 Correlation between the ORR on Pt(hkl) and exposed facets on Pt/C catalysts at fuel cells relevant conditions

- **Mainly cubo-octahedral particles**
 with (111) and (100) facets

- **d~3.5 nm**

- **Frequency [%]**

- **Particle Size [nm]**

- **Low magnification**

- **High magnification**
Particle size effect

- Catalysts: 10, 20, 30, 40% Pt/C
- d = 3.1 ± 1 nm, 3.3 ± 0.7 nm, 3.8 ± 1.7 nm, 4.7 ± 2.7 nm

SA increases with SAD(111)

SA increases with SAD(100, e+c)
Characterization of PtCo/Ni Vulcan Catalysts

H\text{upd} coverage decreases with increase of Ni or Co wt%.

(a) Graph showing the current density (I) as a function of potential (E) for different catalysts: Pt/Vulcan, PtNi/Vulcan, Pt$_3$Ni/Vulcan.

(b) TEM image of PtCo/Ni Vulcan catalysts with a cubo-octahedral shape.

(c) Histogram showing the particle size distribution with a peak at 4.4 ± 1.6 nm.

(d) HRTEM image showing the cubo-octahedral shape with (111) and (100) facets.

HR Transmission electron microscopy

Complete alloying
Some Pt-M alloys have better performance than Pt

- Pt-Co has the highest activity

Benefits:
- Higher activity (!?)
- Substitution of Pt

![Graph showing ORR kinetics on Pt-bimetallic surfaces](image-url)
Pd thin metal films on Pt(111)

a) E/V [RHE]

- n < 1
- n = 1
- n ~ 2
- n > 2

- 0.25 mA/cm²
- 0.15 mA/cm²

Pt(111) - nML Pd

- E/V [RHE]
- E₁/E₀

- Intensity / a.u.

- n < 1
- n = 1
- n ~ 2
- n > 1

b) 0.05M H₂SO₄ 293K

- Pt(111) - nML Pd

c) Pt(111) - nML Pd

d) Pt(111) - nML Pd

e) Pt(111) - nML Pd
HER/HOR on Pt(111)-Pd in H_2SO_4/KOH

- Maximum catalytic activity for 1 ML of Pd film
 - Adsorption vs Absorption of H
- Activation energy:
 - Reduced by 50% on 1ML Pd
ORR on Pt(111)-x Pd in KOH

0.1 M KOH
50 mV/s, 1600 rpm, 293 K

I [%A]

0 20 40

E [V/RHE]

0.1 M KOH
50 mV/s, 1600 rpm, 293 K

I [mA/cm²]

0 20 40

amount Pd / ML

0 0.5 1.0 1.5 2.0

@ 0.9V

“I /mA/cm²

0 1 2 3 4

Electronic Effect

“Vulcano Plot”
ORR on UHV Prepared Au(hkl)-Pd Alloy Surfaces

- **Vapor deposition of Pd**
 - 30% Pd
 - 50% Pd
 - 75% Pd

LEIS He⁺

- Au(hkl)-Pd

- **Structural Effect**
- **Electronic Effect**

0.1M KOH @ 0.85V 333K

- **ORR**
 - i[k] [mA/cm²]
 - Pd coverage [%]

- **Electronic Effect**
 - Au(111) + Pd
 - Au(100) + Pd

- **Structural Effect**
 - Au(111) + Pd

- **Vapor deposition of Pd**
 - 30% Pd
 - 50% Pd
 - 75% Pd