**ENERGY** Energy Efficiency & Renewable Energy

# Pathways to **Commercial Success:**

Technologies and Products Supported by the Fuel Cell Technologies Office

September 2013

Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Fuel Cell Technologies Office

#### Notice

This report is being disseminated by the Department of Energy. As such, this document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001(Public Law 106-554) and information quality guidelines issued by the Department of Energy.

Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.

# **Table of Contents**

| <u>Summary</u>                                                                        | V   |
|---------------------------------------------------------------------------------------|-----|
| 1.0 Introduction<br>1.1 Organization of the FCTO                                      | 1-1 |
|                                                                                       |     |
| <u>1.2 Contents of this Report</u>                                                    |     |
| 2.0 Approach                                                                          |     |
| 2.0 Approach<br>2.1 Patent Search and Analysis                                        |     |
| 2.2 Technology Tracking to Identify and Describe Commercial and Emerging Technologies |     |
| 3.0 Results                                                                           | 3-1 |
| 3.0 Results<br>3.1 Patent Search and Analysis                                         | 3-1 |
| 3.2 Commercial and Emerging Technology Identification and Tracking Results            |     |
| 3.3 Jobs Created or Retained as a Result of Commercially Available Technologies       |     |
| Appendix A:                                                                           |     |
| Technology Tracking List                                                              | A-1 |
| Appendix B:                                                                           |     |
| Patent Status List                                                                    | B-1 |
| Appendix C:                                                                           |     |
| Commercially Available Technology Descriptions                                        | C-1 |
| Appendix D:                                                                           |     |
| Emerging Technology Descriptions                                                      | D-1 |
| Appendix E:                                                                           |     |
| Directory of Technology Developers                                                    | E-1 |
|                                                                                       |     |

# Summary

The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies Office (FCTO) in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCTO-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents' current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCTO personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

The patent analysis identified 455 patents associated with research supported by FCTO dating back to 1977. The 455 FCTO patents include: 230 fuel cell patents, 167 hydrogen production/delivery patents, and 58 hydrogen storage patents. Three types of organizations received the patents: national laboratories (179 patents), private companies (223 patents), and universities (53 patents). Private companies received the greatest number of patent awards in the fuel cell and production/delivery areas, accounting for 56% of the fuel cell patents and 50% of the production/delivery patents. The national laboratories had 60% of the awards in the storage area.

The patent award status by use indicated that 20 patents are currently used in commercial products and 63 are part of research now taking place on emerging technologies. In addition, 245 awarded patents are still being utilized via continuing research and/or active attempts to license the patent. Of all the patents reviewed, 72% are still actively being pursued through use in continuing research, emerging technologies, or commercially available products.

In addition, PNNL identified 41 commercial technologies that have entered the market, of which 39 are still commercially available. From 2000 – 2006, one to three commercial technologies entered the market per year. For 2007 through 2012, an average of five technologies per year entered into the market. In 2013, one technology has entered the market to date. Commercial technologies also supported the creation/retention of 447 direct jobs in FY 2013. This effort also identified 66 emerging technologies that are anticipated to be commercially available in 3 to 5 years. Of the 66 emerging technologies, 48% are in the fuel cell area, 38% are in the production/delivery area, and 14% are in the storage area.

This report documents the methodology and results of this study, including the specific patents as well as commercial and emerging technologies that resulted from FCTO funding.

# **1.0 Introduction**

This report documents the methodology and results of an effort to identify and characterize commercial and emerging<sup>1</sup> technologies and products that resulted from the support of the Fuel Cell Technologies Office<sup>2</sup> (FCTO) within the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE). Commercialization of technologies that are cultivated in a government research and development (R&D) program is viewed as one measure of success. PNNL has been conducting similar technology tracking activities for other EERE offices for over two decades.

The results presented in this report represent the findings from the PNNL effort. The information presented on commercial and emerging technologies fulfills the primary objective – to assess the commercialization status of EERE-developed hydrogen and fuel cell technologies. The effort is expected to continue, with an updated report produced annually.

This chapter presents a brief overview of the FCTO's research that is leading to commercial technologies and products. The chapter concludes with a summary of the contents of this report.

### 1.1 Organization of the FCTO

The FCTO is focused on key technical challenges associated with fuel cells and hydrogen production, delivery, and storage, as well as institutional barriers, such as hydrogen safety, codes and standards, technology validation, market transformation, and public awareness. The FCTO is currently conducting applied research, technology development, and learning demonstrations, as well as safety research, systems analysis, and public outreach and education activities. Because the research involved in solving critical technological barriers is often high risk, and can benefit from leveraging resources and skills, the FCTO encourages public-private partnerships, which include the supply chain industry, automotive and power equipment manufacturers, energy and chemical companies, electric and natural gas utilities, building designers, standards development organizations, other federal agencies, state government agencies, universities, national laboratories, and other national and international stakeholder organizations.

The FCTO is currently conducting R&D, demonstration, analysis, and other efforts to support development of hydrogen and fuel cell technologies for stationary power (including back-up emergency power and residential electric power generation), transportation (including materials handling equipment, fuel cell vehicles and hydrogen refueling infrastructure), and portable power applications (including consumer electronics such as cellular phones, hand-held computers, radios, and laptop computers). The FCTO subprograms that are relevant to technology development represented in this report include the following:

- Hydrogen Production
- Hydrogen Delivery
- Hydrogen Storage
- Fuel Cells
- Manufacturing R&D.

The first four subprograms are the primary focus of this report because they are focused on technology R&D that would result in patents and other intellectual property that could be incorporated into commercial technologies and products. Manufacturing R&D is a relatively new subprogram that is likely to lead to commercial technologies in the future.

<sup>&</sup>lt;sup>1</sup> "Commercial" technologies, as defined in this report, are those available for purchase and that have been sold to at least one party. "Emerging" technologies, as defined in this report, are technologies that are projected to be commercialized within the next 3 to 5 years, based on the opinion of the technology developer.

<sup>&</sup>lt;sup>2</sup> Formerly the Hydrogen, Fuel Cells & Infrastructure Technologies Program, 2002-2009, and the Fuel Cell Technologies Program, 2009-2012.

The current goals of these four subprograms are briefly summarized below.

**Hydrogen Production.** The goal of the Hydrogen Production subprogram is to develop low-cost, highly efficient hydrogen production technologies from diverse domestic sources, including natural gas and renewable sources. The subprogram objectives include lowering the cost of distributed production (at the pump) of hydrogen from natural gas, biomass, and electrolysis; developing high-temperature thermo-chemical cycles driven by concentrated solar energy; and developing advanced renewable photo-electrochemical and biological hydrogen generation technologies. Hydrogen separation is a key technology that cross-cuts hydrogen production options, and various separation membranes are being developed as part of distributed and central hydrogen production systems. In addition, work in the subprogram includes developing better catalysts needed in production systems and coordinating with the Office of Science on basic research, such as hydrogen production from algae and other biological systems. The subprogram also coordinates with the Office of Fossil Energy (FE) on coal gasification (with sequestration) and separation processes, and with the Office of Nuclear Energy (NE) on hydrogen production from thermochemical processes.

**Hydrogen Delivery.** The goal of the Hydrogen Delivery subprogram is to develop hydrogen delivery technologies that enable the introduction and long-term viability of hydrogen as an energy carrier for transportation and stationary power. Some of the current objectives include reducing the cost of compression, storage, and dispensing at refueling stations and stationary power facilities; reducing the cost of hydrogen transport from central and semi-central production facilities to the gate of refueling stations and other end users; and reducing the cost of hydrogen delivery from the point of production to the point of use in vehicles or stationary power units. Some of the technical challenges that must be addressed include resolving hydrogen embrittlement concerns and developing new and improved materials for pipeline delivery of hydrogen, developing novel liquid and solid carrier technologies, improving compression and bulk storage technologies, and improving hydrogen liquefaction approaches.

**Hydrogen Storage.** The goal of the Hydrogen Storage subprogram is to develop and demonstrate viable hydrogen storage technologies for transportation and stationary applications, as well as early market applications, with the primary objectives focused on developing and verifying on-board hydrogen storage systems for transportation applications. Various research activities are being pursued, such as those related to lightweight composite tanks with high-pressure ratings and conformability and high-capacity metal hydrides, including boron-based materials, adsorbent-based and nanostructured materials, chemical carriers, and other promising materials with potential for hydrogen storage. Coordination with the Office of Science is also noteworthy, particularly in developing a fundamental understanding of hydrogen-material interactions.

**Fuel Cells.** The goal of the Fuel Cells subprogram is to develop and demonstrate fuel cell power system technologies for transportation, stationary, and portable power applications. The subprogram emphasizes polymer electrolyte membrane (PEM) fuel cells as replacements for internal combustion engines in light-duty vehicles as well as fuel cells for stationary power, portable power, and auxiliary power applications. Research focus areas include work on membranes, electrocatalysts and electrode design, membrane electrode assemblies, gas diffusion layers, bipolar plates, seals, and other aspects of fuel cell design including water management and balance-of-plant components. Over the last several years, the subprogram has included small-scale solid oxide fuel cell (SOFC) R&D to complement the Department Office of Fossil Energy's Solid State Energy Conversion Alliance (SECA) Program<sup>3</sup> on megawatt-scale SOFC power systems. The portfolio has been broadened to include other work as well, such as alkaline fuel cells. Work on fundamental catalysis is coordinated with the Office of Science. More recently, coordination with the Advanced Research Projects Agency - Energy (ARPA-E) has been initiated, particularly in innovative areas such as alkaline exchange membranes.

More information on program goals, objectives, research thrusts, and activities can be found in the <u>FCT Multi-Year</u> <u>Program Plan (http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/)</u>.

<sup>&</sup>lt;sup>3</sup> FE's SECA Program is supporting the development of large-scale SOFCs that can be mass produced in modular form at \$400/kW. The objective of the SECA Program is to put reliable fuel cells into a more modular and affordable design to allow wide-spread penetration into stationary and utility-scale markets.

The objectives of, and R&D activities funded by, the FCTO and its predecessor programs have changed over the years as the Office has become more focused on the goals described above and as advancements have been made in R&D. Because this report looks retrospectively at commercial successes over the history of hydrogen and fuel cell research within EERE, the patents and commercial/emerging technologies and products described in the remainder of this report may be broader than one would expect from examining the current FCTO efforts.

### **1.2 Contents of this Report**

The remaining chapters explain in more detail the methodology used and provide the results of the effort in tables and charts. The appendices provide detail related to the data-gathering techniques and descriptions of each of the commercial and emerging technologies and products that were identified in the study, as well as the list of patents resulting from the R&D efforts undertaken by the FCTO and its predecessors. Note that in this report, the delivery technologies have been grouped with production technologies because of the overlap between the two categories. A new area tracked since FY 2011 is an estimate for the number of jobs directly related to FCTO funding. These estimates are based on recipient interviews and may be refined as more information and validation becomes available.

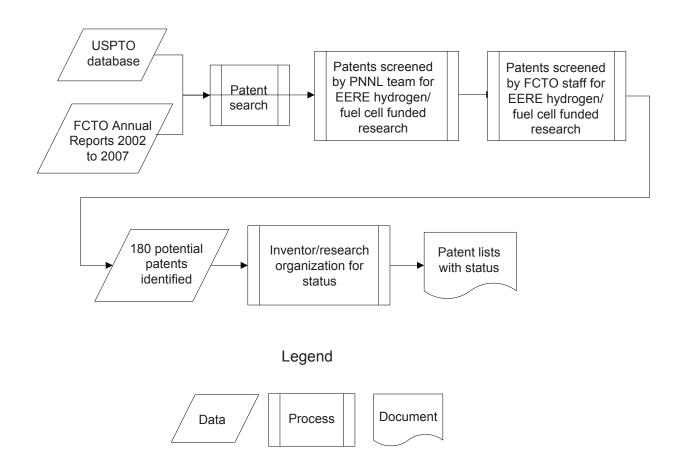
# 2.0 Approach

Two efforts were undertaken simultaneously by PNNL in August 2007 under FCTO's System Analysis Subprogram, to start the FCTO technology tracking project. The first effort was a patent search and analysis to identify hydrogenand fuel-cell-related patents that are associated with FCTO-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents' current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews and document reviews to identify and characterize commercial and emerging technologies that have benefited in a direct way as a result of direct funding from the FCTO (or funding from EERE predecessor programs) or from grants under programs such as the Small Business Innovation Research and Small Business Technology Transfer. These initial efforts resulted in the August 2009 EERE report entitled: *Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells & Infrastructure Technologies Program*. PNNL subsequently updated this report in FY 2010, FY 2011, FY 2012 and FY 2013. The approach taken for these efforts is summarized in Sections 2.1 and 2.2 below.

### 2.1 Patent Search and Analysis

PNNL conducted several patent searches using the United States Patent Office (USPTO) database. The searches included key words related to the hydrogen program<sup>1</sup> and focused exclusively on patents for which DOE had a "Government Interest."<sup>2</sup> The resulting list contained 118 fuel cell patents (mostly related to PEMs) and 239 hydrogen production, storage and delivery patents dating back to 1977. The PNNL team then conducted an initial screening analysis to winnow the patent list to those likely to be associated with EERE research. (Other parts of DOE, including FE, NE, and Office of Science, also conduct research on hydrogen and fuel cells, but those patents were not included in this study.)

In addition, PNNL obtained the list of patents that were cited in the Hydrogen and Fuel Cells Program's Annual Progress Reports for  $2002 - 2007^3$  and included them in the patent list. The list was sent to FCT staff to review, and some patents were removed or recategorized (e.g., from fuel cells to production). The resulting list contained patents for 77 fuel-cell-related and 103 hydrogen-related technologies or inventions (180 total).


The next step was to obtain more information about the government's role in developing the patent and to determine the current status. The PNNL team contacted patent holders by phone or email. For large organizations (e.g., national laboratories, universities, and multinational corporations), PNNL team members were often referred to a central office within the organization, such as a technology transfer, commercialization, or legal affairs office.

The PNNL team members asked the patent holders or central offices whether the FCTO or EERE (or its predecessors) funded the research resulting in the patent. Patents not related to the FCTO or EERE funding were removed from the list. If a patent had received such funding, the PNNL team attempted to ascertain the current status of the patent and placed it in one of the following categories: no longer being pursued for commercialization nor used in research, still being used in research, used in a commercial product, or licensed to another company. If the patent is still being used in research, PNNL asked if it was part of an emerging technology for which PNNL was gathering data. If the technology was licensed to another company, PNNL asked for the name of the company and tried to ascertain whether a commercial product had resulted from the patent. As PNNL gathered technology data, other patents associated with FCTO/EERE funding were sometimes identified and added to the list. Figure 2.1 depicts the initial patent analysis process for the hydrogen and fuel cell technologies.

<sup>&</sup>lt;sup>1</sup> One search used the following search terms: "hydrogen" AND "storage" OR "transport" OR "delivery" OR "dispensing" AND "government/energy." The other search used the following search terms: "fuel cell" AND "pem" OR "membrane" AND "government/energy."

<sup>&</sup>lt;sup>2</sup> Note that the patent database has a separate field that designates whether there is a "Government Interest" in the patent. If DOE has an interest, that field says, for example, "The United States Government has rights in this invention pursuant to Contract No. [...] between the United States Department of Energy and [....a national laboratory or other party]." It is possible that not all of the parties with EERE-related patents correctly indicated that their patents had a "Government Interest."

<sup>&</sup>lt;sup>3</sup> These reports can be found at <u>http://www.hydrogen.energy.gov/annual\_progress.html</u>.



#### Figure 2.1. Initial Patent Analysis Process for Hydrogen and Fuel Cell Technologies

In FY 2010, PNNL began updating the August 2009 *Pathways to Commercial Success* report. As part of the updating process, the PNNL team conducted a search through FY 2008 and 2009 Hydrogen and Fuel Cells Program Annual Progress Reports to identify any new patents issued during those years. In addition, principal investigators for FCTO-funded emerging technologies and commercial products were asked if they had been awarded any new patents as a result of their research and development work. In June 2010, EERE launched a Technology Commercialization Portal on their website (http://techportal.eere.energy.gov/), which features a portfolio of EERE-funded technologies available for licensing, including patents. Using the EERE Portal, the PNNL team conducted a search for patents which employed similar screening strategies to those used in the original USPTO database searches. The PNNL team contacted patent holders via phone and e-mail to determine whether or not the underlying research associated with a patent was FCTO-funded. If a patent had received such funding, its current status was obtained. In subsequent years, PNNL conducted patent searches using the same methodology as in FY 2010.

The combined results of all the patent searches are discussed in Chapter 3. Some of the intellectual property in the patents on the list was used in technologies or products that were commercialized or that are soon to be commercialized. The section below describes the effort, conducted in parallel with the patent analysis, to identify and describe commercialized and emerging technologies. Chapter 3 provides information on these technologies and the patents related to them.

#### 2.2 Technology Tracking to Identify and Describe Commercial and Emerging Technologies

In 2007, the PNNL team identified FCTO-funded projects that may have led to commercial or emerging technologies. To accomplish this, a series of one-on-one meetings was held with FCTO personnel and former FCTO personnel in which the lists of all FCTO-funded projects, obtained from the Hydrogen and Fuel Cells Program Annual Progress Reports for 2002 – 2007, were reviewed. Also, PNNL reviewed earlier annual reports from FCTO predecessor programs. From these meetings, the PNNL team obtained a preliminary list of projects that the FCTO personnel indicated may have led to commercial or emerging technologies. The government personnel also provided information about points of contact (POCs) or principal investigators (PIs) at each relevant research organization and, where available, hard copies of reports or presentations pertinent to the technologies. The resulting list of projects from these meetings was separated into three categories according to the following research areas: fuel cells, hydrogen production/delivery, and hydrogen storage.

The PNNL team contacted the POCs or PIs for the technologies to determine whether they were commercially available, emerging, still in the research stage but more than 3 to 5 years from commercialization, or no longer being pursued. For technologies identified as commercial or emerging, the POCs/PIs for each technology were contacted to gather data on the technology.

The Hydrogen and Fuel Cells Program Annual Progress Report also includes descriptions of hydrogen and fuel cell projects from the annually funded Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) grants. The SBIR grants are funded in two phases: Phase 1 grants focus on the feasibility of an idea and are funded at a low level (typically up to \$100K), and Phase 2 grants focus on principal R&D and are funded at a higher level (typically up to \$500K). To receive a SBIR Phase 2 grant, a small business would have to have successfully completed a Phase 1 grant and have been selected to continue their research. The STTR grants are similar to SBIR grants as far as having small business participation, but a nonprofit research institution, such as a university or national laboratory, must also be involved. The PNNL team focused on the SBIR Phase 2 and STTR grant projects and contacted the PIs for all of these grants to determine the status of the technologies being developed. Any identified as commercial or emerging were added to the technology tracking list.

Data gathered about the technologies were then entered into a FCTO Technology Tracking Database, a Lotus Notes database. The database is divided into commercial and emerging technology sections and into three types of research within each section: fuel cells, production/delivery, and storage. In addition, hard copy files are kept that include the template (database) information and other supporting data such as annual progress reports, presentations, and information from the organization's website. The database was created and populated by PNNL and is stored at PNNL, and FCTO personnel have access to it. Periodically, PNNL transmits an updated version of the database to DOE to replace the older version on the DOE system.

For each of the commercial and emerging hydrogen technologies in the database, the PNNL team prepared and edited a summary description and sent it to the industry/research organization POC for review and subsequent approval before sending it to FCTO personnel to review. Figure 2.2 depicts the initial technology tracking process. In subsequent years, the PNNL team employed a similar technology tracking process to identify new emerging and commercially available technologies and ascertain the current status of technologies identified in previous years. Beginning in FY 2011, the PNNL team also asked commercial technology POCs to estimate the number of jobs created or retained by the sales of their technologies. The current listing of commercially available and emerging technologies is shown in Appendix A. The results of the technology tracking effort are discussed in Chapter 3.

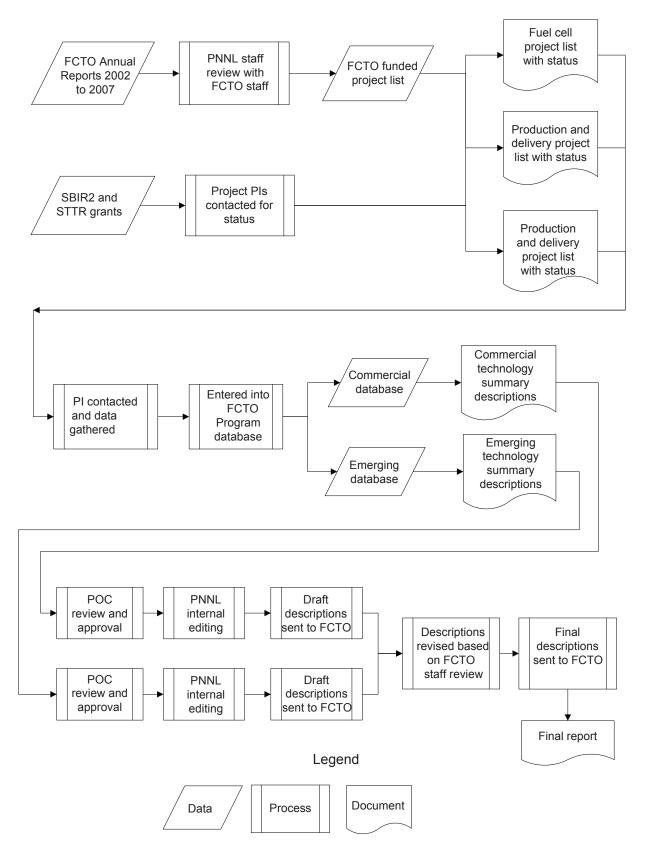



Figure 2.2. Initial Technology Tracking Process for Hydrogen and Fuel

# **3.0 Results**

The results of the efforts undertaken in the FCTO technology tracking project are summarized in this chapter. Section 3.1 describes the patent search and analysis and Section 3.2 describes the results of the commercial and emerging technology identification and tracking effort.

### **3.1 Patent Search and Analysis**

The results of the patent search are shown in tables in Appendix B: the 230 fuel cell patents are listed in Appendix B-1, the 167 hydrogen production/delivery patents are listed in Appendix B-2, and the 58 hydrogen storage patents are listed in Appendix B-3. The patents are listed in chronological order from the most recent to the oldest patent for each group. The tables list the patent number, award date, organization receiving the patent, patent title, patent description, and patent status.

Figure 3.1 shows the cumulative number of patents awarded over time, starting with 2007 patent awards through 2013. (At the time of this report, data for 2013 are only partially available.) From 2007 through 2012, an average of 43 patents per year were awarded. During the same time frame, fuel cell, production/delivery, and storage patents were awarded at an average rate of 21, 16, and 6 patents per year, respectively. As the figure shows, the number of patents awarded per year increased significantly in 2009 and 2010. To date, 2010 had the largest number of patents awarded in an individual year, with 34 fuel cell patents, 20 production/delivery patents, and 11 storage patents.

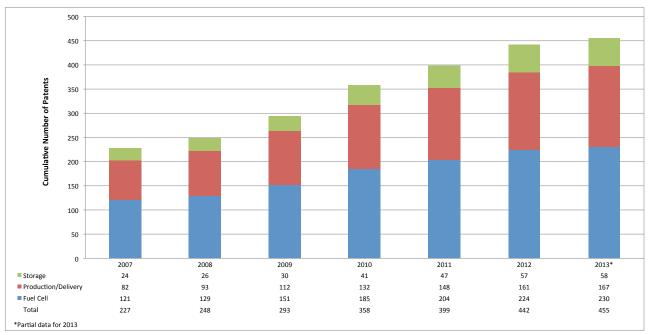



Figure 3.1. Cumulative Number of Patents Awarded Over Time

Another way to view the patent awards, shown in Figure 3.2, is by the type of organization that received the patent or the inventor's employer. Three types of organizations were identified: national laboratories (179 patents), private companies (223 patents), and universities (53 patents). National laboratories and private companies account for 93% of all patents awarded for fuel cell technologies, with private companies receiving 56% of the awards. Private companies had more patent awards in the production/delivery area (50%) than national laboratories (34%), while universities had 16% of the production/delivery patents. National laboratories account for 60% of the storage patents, followed by private companies with 21% and universities with 19%.

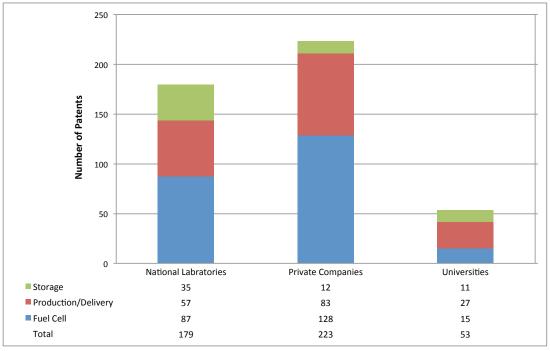



Figure 3.2. Types of Organization Receiving Patent Awards

Figure 3.3 shows the patent award status by use. As the figure shows, 20 patents are used in commercially available products, including:

- Bipolar plate/diffuser for a proton exchange membrane fuel cell (Patent number 6,171,720, Oak Ridge National Laboratory, 2001)
- Composite bipolar plate for electrochemical cells (Patent number 6,248,467, Los Alamos National Laboratory, 2001)
- Corrosion test cell for bipolar plates (Patent number 6,454,922, Los Alamos National Laboratory, 2002)
- Chemical microreactor and method thereof (Patent number 6,960,235 LLNL, 2005)
- Control method for high-pressure hydrogen vehicle fueling station dispensers (Patent number 7,059,364, Gas Technology Institute, 2006)
- Fuel cell and fuel cell coolant compositions (Patent number 7,138,199, Dynalene, Inc., 2006)
- Gas diffusion electrodes, membrane-electrode assemblies and method for the production thereof (Patent numbers 7,419,546 (2008), 7,601,216 (2009), and 7,785,454 (2010), BASF Corporation)
- Fuel cell electrolyte membrane with acidic polymer (Patent number 7,517,604, 3M Company, 2009)
- Fuel cell membrane electrode assembly (Patent number 7,572,534, 3M Company, 2009)
- System and method for detecting gas (Patent number 7,678,251, Proton Energy Systems, Inc., 2010)
- Gas venting system (Patent number 7,744,733, Proton Energy Systems, Inc., 2010)
- Fuel cell electrolyte membrane with basic polymer (Patent numbers 7,838,138 (2010), and 8,323,809 (2012), 3M Company)
- Cold weather hydrogen generation system and method of operation (Patent number 7,850,838, Proton Energy Systems, Inc., 2010).
- Hybrid adsorptive membrane reactor (Patent number 7,897,122 Media and Process Technology, 2011)
- Proton conducting materials (Patent numbers 8,481,227 (2013), and 8,227,140 (2012), 3M Company)
- Electroplating cell with hydrodynamics facilitating more uniform deposition across a workpiece during plating (Patent number 8,329,006, Faraday Technology, Inc., 2012)

Sixty-three patents are part of research now taking place on emerging technologies identified on the technology tracking list in Appendix A. In addition, 245 awarded patents are still being utilized via continuing research and/or active attempts to license the patent. Of all the patents reviewed, 72% are still actively being pursued through use in continuing research, emerging technologies, or commercially available products.

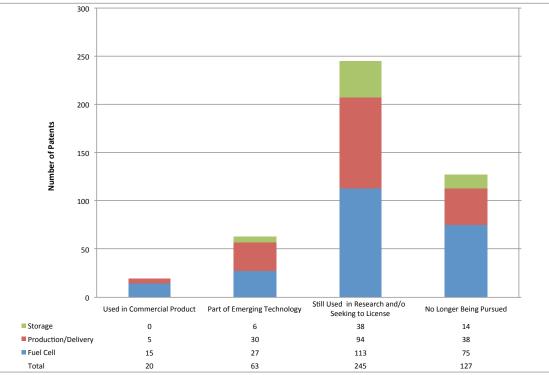



Figure 3.3. Status of Awarded Patents

### 3.2 Commercial and Emerging Technology Identification and Tracking Results

The FCTO Technology Tracking Database contains 38 commercially available technologies, all of which are described in Appendix C. These descriptions were reviewed and approved by the industry POC for each technology. Figure 3.4 shows the cumulative number of commercial technologies entering the market. Of the 41 technologies that have entered the market two of them are no longer commercially available and one company decided not to continue to participate in the technology tracking effort. From 2000 through 2012, approximately three technologies per year entered the market. The years 2000 through 2006 showed a steady addition of technologies entering the market of one to three per year. For 2007 through 2012, an average of five technologies per year entered the market. In 2013, one technology has entered the market to date.

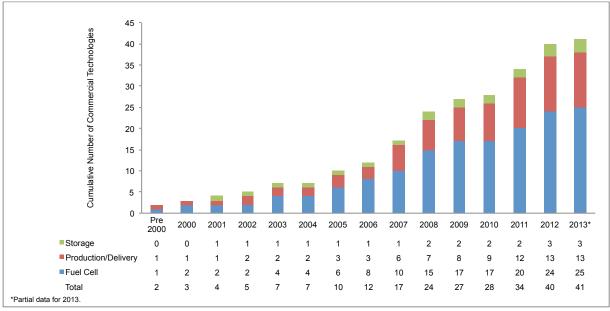



Figure 3.4. Cumulative Number of Commercial Technologies Entering the Market

Table 3.1 briefly describes each of the 24 commercially available fuel cell technologies and their benefits. The full descriptions of these technologies are provided in Appendix C-1. These technologies range from an analysis tool to manufacturing processes for fuel cells and their components, to entire fuel cell systems that can be used in vehicles or stationary applications.

Table 3.2 briefly describes each of the 12 commercially available production/delivery technologies and their benefits. The full descriptions of these technologies are provided in Appendix C-2. These technologies include improved catalysts, hydrogen generation systems for fueling vehicles, and technologies for providing high purity hydrogen.

Table 3.3 briefly describes the 2 commercially available storage technologies and their benefits. The full descriptions of these technologies are provided in Appendix C-3. One of the technologies is a composite tank, and the other is a method to store hydrogen in powder form.

FCTO's Multi-Year Research, Development and Demonstration Plan, which was last updated in October 2007 (and is currently in the process of being revised), was examined to see how the commercially available technologies align with FCTO's objectives and goals. The plan lists challenges and approaches for the research areas funded by the FCTO. The fuel cell area listed 19 challenges. The 24 commercially available technologies in Table 3.1 are aligned with 13 of these challenges, as shown in Table 3.4. Similarly, the 12 commercially available production/delivery technologies in Table 3.2 were found to align with 4 of the 13 challenges in that area, as shown in Table 3.5. The 2 commercially available storage technologies in Table 3.3 were found to align with 2 of the 7 storage approaches, as shown in Table 3.6.

The technology tracking database currently contains 66 emerging technologies for which descriptions are provided in Appendix D. These were reviewed and approved by the industry POC for each technology. Figure 3.5 shows the number of emerging technologies in each FCTO research area over the past five years of the technology tracking effort. Since 2009, the number of fuel cell emerging technologies has been about half of the total, with emerging storage technologies making up a very small percentage. Figure 3.6 shows the FY 2013 distribution of the emerging technologies in the three FCTO research areas.

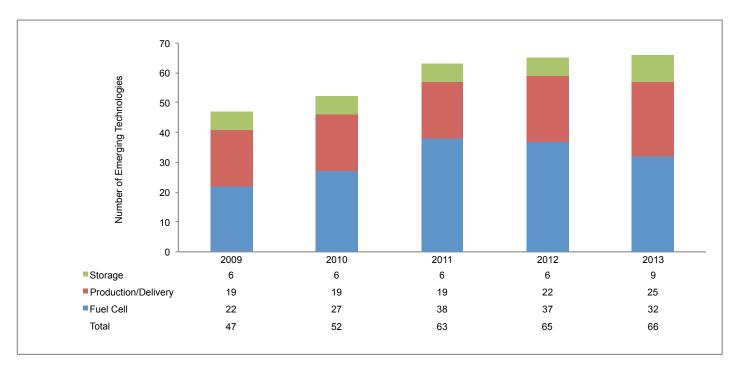



Figure 3.5. Number of Emerging FCTO Technologies

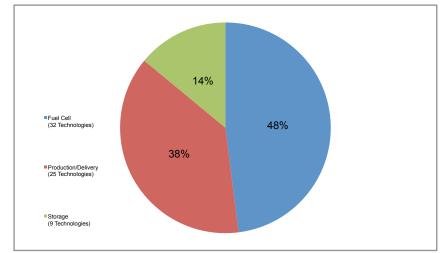



Figure 3.6. Distribution of Emerging FCTO Technologies in FY 2013

Table 3.7 briefly describes each of the 32 emerging fuel cell technologies and their benefits. The full descriptions of these technologies are provided in Appendix D-1. These technologies are quite diverse and include improved fuel cell components, such as membranes, plates, assemblies, cathodes and sensors, as well as entire systems for various uses.

Table 3.8 briefly describes each of the 25 emerging production/delivery technologies and their benefits. The full descriptions of these technologies are provided in Appendix D-2. These technologies include improved membranes, reformers, and compressors, as well as novel methods and fuels to produce hydrogen.

Table 3.9 briefly describes each of the 9 emerging storage technologies and their benefits. The full descriptions of these technologies are provided in Appendix D-3. These technologies include improved tanks or cylinders, as well as new approaches for storing hydrogen.

The 32 emerging fuel cell technologies in Table 3.7 are aligned with 11 of the 19 fuel cell challenges in the FCTO Program Plan, as Table 3.10 shows. Also, 3 challenges in the manufacturing research area of the plan for PEM fuel cells are aligned with 4 emerging fuel cell technologies. Similarly, the 25 emerging production/delivery technologies in Table 3.8 are aligned with 9 of the 13 production and delivery challenges in the plan, as shown in Table 3.11. The 9 emerging storage technologies in Table 3.9 are aligned with 4 of the 7 approaches in the storage area, as shown in Table 3.12.

An alphabetized directory of the organizations that developed the commercial and emerging technologies described in Appendices C and D is provided in Appendix E.

## **3.3 Jobs Created or Retained as a Result of Commercially Available Technologies**

Beginning in FY 2011, the PNNL team asked commercial technology POCs to estimate the number of jobs created or retained by the sales of their technologies. Figure 3.7 shows the number of jobs created or retained in FY 2011, FY 2012 and FY 2013 based on the responses from the POCs.<sup>1</sup> These numbers do not include estimates for indirect jobs. For example, the associated supply chain jobs (e.g., balance-of-plant components, stack materials, etc.) for a fuel cell system are excluded. Figure 3.8 shows the FY 2013 distribution of jobs created or retained in the three FCTO research areas.

<sup>&</sup>lt;sup>1</sup> Some POCs declined to provide an estimate of the number of jobs created/retained due to business confidentiality.

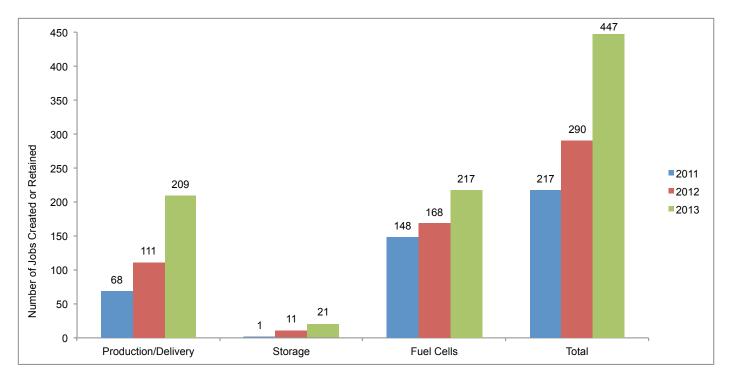



Figure 3.7. Jobs Created or Retained as a Direct Result of Commercially Available Technologies

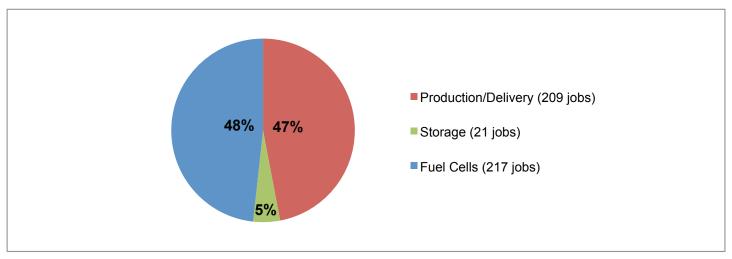



Figure 3.8. Distribution of Jobs Created or Retained in FY 2013

| Technology                                                                                    | Organization                    | Description                                                                                                                                                                                                                                                                                                                               | Benefits                                                                                                                                                                                                                                                                                                       | Commercial Status                                                                                 |
|-----------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| A Silicon-Based<br>Solid Oxide Fuel<br>Cell for Portable<br>Consumer<br>Electronics           | Lilliputian Systems,<br>Inc.    | A miniature SOFC for the<br>consumer portable power market is<br>fabricated on a silicon chip and is<br>fueled by butane from an on-board<br>cartridge. The device delivers 2.5<br>watts of power with a run time of<br>more than 30 hours per cartridge<br>and plugs into various portable<br>electronics via a USB cable<br>connection. | The technology can be used as<br>an alternative to conventional<br>wall outlet and battery-based<br>devices for charging portable<br>consumer electronics. It<br>provides convenient, on-the-go<br>power and has been approved<br>by the Federal Aviation<br>Administration for passenger<br>use on airplanes. | Commercially available in 2013 through Brookstone.                                                |
| Bio-Fuled Solid<br>Oxide Fuel Cells<br>(SBIR Project)                                         | TDA Research, Inc.              | A novel catalyst and high-capacity<br>sorbent were developed that allows<br>biogas to be used in SOFCs.                                                                                                                                                                                                                                   | This new technology allows<br>SOFCs to operate on biogas as<br>an alternative to natural gas.                                                                                                                                                                                                                  | Commercialized in 2011.                                                                           |
| Cathode<br>Catalysts and<br>Supports for<br>PEM Fuel Cells                                    | 3M Company                      | The advanced MEA uses a carbon-free nanostructured thin-<br>film catalyst and an ion exchange membrane to achieve longer lifetimes using fewer precious metals.                                                                                                                                                                           | The technology reduces costs<br>because of lower precious<br>metal loading and<br>manufacturing costs, improved<br>durability, and smaller fuel cell<br>size. It can operate at higher<br>temperatures and lower<br>humidity.                                                                                  | Commercialized in 2007<br>and selling to select fuel<br>cell developers.                          |
| Compact, Multi-<br>Fuel Solid Oxide<br>Fuel Cell (SOFC)<br>System                             | Technology<br>Management, Inc.  | The 1-kW modular, multi-fuel<br>SOFC system is designed to<br>produce electricity and heat for<br>multiple mobile and on-site<br>stationary applications.                                                                                                                                                                                 | The SOFC system is inherently<br>flexible and sulfur tolerant and<br>can operate on multiple<br>renewable and conventional<br>fuels, including biodiesel,<br>vegetable oils, ethanol, diesel,<br>kerosene, natural gas, and<br>propane.                                                                        | Commercialized in 2012<br>with demonstration units<br>provided to several<br>potential customers. |
| Complex Coolant<br>for Polymer<br>Electrolyte<br>Membrane<br>(PEM) Fuel Cells                 | Dynalene, Inc.                  | The advanced, complex coolant<br>fluid consists of a base mixture and<br>additives of non-ionic corrosion<br>inhibitors and ion-suppressing<br>nanoparticles, which maintain low<br>electrical conductivity.                                                                                                                              | The technology eliminates de-<br>ionizing filters, thereby reducing<br>the overall cost and<br>maintenance of the fuel cell<br>while increasing the amount of<br>time the cell can run<br>continuously.                                                                                                        | Commercialized in 2009<br>with approximately 950<br>gallons of coolant sold.                      |
| <u>Conductive</u><br><u>Compound for</u><br><u>Molding Fuel Cell</u><br><u>Bipolar Plates</u> | Bulk Molding<br>Compounds, Inc. | The compound is a graphitized<br>thermoset vinyl-ester, which is<br>molded and used in producing<br>bipolar plate (BPP) assemblies.<br>(This technology was based on a<br>technology licensed from Los<br>Alamos National Laboratory.)                                                                                                    | The compound allows thinner<br>and less-expensive BPP<br>assemblies to be produced;<br>eliminates the need for<br>expensive corrosion-resistant<br>coatings; provides greater part<br>flatness, creep resistance, and<br>dimensional stability; and<br>facilitates large-volume<br>commercial production.      | Commercialized in 2000.                                                                           |
| Corrosion Test<br>Cell for PEM<br>Bipolar Plate<br>Materials                                  | Fuel Cell<br>Technologies, Inc. | To screen materials that could be<br>used in producing corrosion-<br>resistant bipolar plates (BPPs), the<br>test cell simulates, as closely as<br>possible, the conditions at the<br>anode and cathode of a PEM fuel<br>cell. (This technology was based<br>on a technology licensed from Los<br>Alamos National Laboratory.)            | The test cell reduces the costs<br>of traditional fuel cell corrosion<br>tests, shortens the fuel cell<br>development time, and allows<br>for an intermediate level of BPP<br>material screening between<br>potentiostatic measurements<br>and long-term fuel cell tests.                                      | Commercialized in 2008,<br>with two units sold.                                                   |

#### Table 3.1. Commercial Products Summary - Fuel Cells

#### Table 3.1. Commercial Products Summary – Fuel Cells (Cont'd)

| Technology                                                                                                                  | Organization                   | Description                                                                                                                                                                                                                                                                                                        | Benefits                                                                                                                                                                                                                                                                                                                                                       | Commercial Status                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Cost-Effective.</u><br><u>High-Efficiency.</u><br><u>Advanced</u><br><u>Reforming</u><br><u>Module</u><br><u>(CHARM)</u> | Nuvera Fuel Cells,<br>Inc.     | The steam reforming module for<br>producing hydrogen is designed to<br>be cyclable (daily start/stop for 5<br>years) and runs at low pressure.                                                                                                                                                                     | The system produces a low-<br>cost supply of hydrogen<br>(compared with bottles) and can<br>minimize thermal cycling<br>induced stress and exposure,<br>thus increasing the lifetime of<br>the module.                                                                                                                                                         | Commercialized in 2009<br>and being used to supply<br>hydrogen for material-<br>handling equipment.                                                                                                   |
| FARADAYIC<br>ElectroEtching of<br>Stainless Steel<br>Bipolar Plates<br>(SBIR Project)                                       | Faraday<br>Technology, Inc.    | The new manufacturing process,<br>FARADAYIC ElectroEtching, is<br>based on electrochemical through-<br>mask etching and is producing<br>stainless steel bipolar plates with<br>advanced flow channel designs<br>that cannot be manufactured cost-<br>effectively using more conventional<br>machining techniques.  | The new manufacturing<br>process reduces the overall<br>manufacturing cost of bipolar<br>plates through use of a high-<br>volume batch process with low<br>capital equipment and tooling<br>costs.                                                                                                                                                             | Commercialized in 2012<br>and a patent awarded in<br>December 2012.                                                                                                                                   |
| <u>GCtool: Fuel Cell</u><br><u>Systems</u><br><u>Analysis</u><br><u>Software Model</u>                                      | Argonne National<br>Laboratory | The GCtool allows designers to<br>model, analyze, and manipulate<br>different configurations of fuel cell<br>propulsion systems without<br>building a functional prototype in<br>order to address issues such as<br>thermal and water management,<br>design-point and part-load<br>operations, and fuel economies. | The model saves users time<br>and money while exploring<br>various fuel cell system<br>configurations. It provides<br>developers with a library of<br>models for subcomponents and<br>allows them to incorporate their<br>own models.                                                                                                                          | Sold 67 licenses since<br>1999.                                                                                                                                                                       |
| GenDrive™ Fuel<br>Cell Power<br>System<br>(ARRA Project)                                                                    | Plug Power Inc.                | A fuel-cell-based power source for<br>electric forklift fleets that increases<br>fleet productivity and improves<br>forklift performance compared with<br>conventional lead-acid batteries.                                                                                                                        | The system can be refueled<br>with hydrogen in less than 3<br>minutes (compared with 10<br>minutes or more for a battery<br>change), allowing operators to<br>spend more time moving<br>product out on the floor.<br>Constant voltage is provided<br>throughout the entire shift,<br>eliminating the performance<br>degradation experienced with<br>batteries. | More than 2,500 units are currently in use.                                                                                                                                                           |
| High Speed, Low<br>Cost Fabrication<br>of Gas Diffusion<br>Electrodes for<br>Membrane<br>Electrode<br>Assemblies            | BASF Fuel Cell,<br>Inc.        | A new fabrication process for gas<br>diffusion electrodes for MEAs<br>allows the use of innovative<br>catalyst electrodes and<br>membranes.                                                                                                                                                                        | The new process is higher<br>speed and lower cost and the<br>new components result in<br>increased durability and<br>superior performance.                                                                                                                                                                                                                     | Commercialized in 2012.                                                                                                                                                                               |
| Improved<br>Catalyst Coated<br>Membrane<br>(CCM)<br>Manufacturing                                                           | IRD Fuel Cells LLC             | The spray deposition technology<br>uses special electrocatalyst inks<br>and a simple manufacturing<br>process that allows for high-<br>volume production with a lower<br>platinum content compared with<br>other techniques.                                                                                       | The system reduces<br>manufacturing and raw material<br>costs. It can be used with<br>existing spray deposition<br>systems and allows quick<br>changeover to different<br>materials.                                                                                                                                                                           | Manufacturing line for<br>improved MEAs sold to<br>IRD Fuel Cells, LLC in<br>2009, and the associated<br>electrocatalyst inks and<br>catalyst powders were<br>made commercially<br>available in 2008. |

#### Table 3.1. Commercial Products Summary – Fuel Cells (Cont'd)

| Technology                                                                                      | Organization                              | Description                                                                                                                                                                                                                                                      | Benefits                                                                                                                                                                                                                                                                                                                   | Commercial Status                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Improved Fuel<br>Cell Cathode<br>Catalysts Using<br>Combinatorial<br>Methods<br>(SBIR Project)  | NuVant Systems<br>Inc.                    | The MEA testing equipment is<br>composed of two devices, an array<br>potentiostat (Arraystat <sup>™</sup> ) and a<br>parallel array flow-field fuel cell,<br>which allow rapid, accurate testing<br>under realistic operating<br>conditions.                     | The equipment allows for the<br>preparation and testing of<br>various MEAs in a single test<br>stand with high throughput<br>under realistic catalyst loadings<br>and reactant flow rates. This<br>eliminates random error<br>introduced by multiple test<br>stands and reduces the costs<br>associated with testing MEAs. | The Arraystat was<br>commercialized in 2006<br>and the parallel array fuel<br>cell in 2007. To date<br>seven Arraystats and<br>seven parallel array fuel<br>cell test units have been<br>sold. |
| Integrated<br>Manufacturing<br>for Advanced<br>Membrane<br>Electrode<br>Assemblies              | BASF Fuel Cell,<br>Inc.                   | The advanced MEA fabrication<br>process uses a new gas diffusion<br>electrode to develop assemblies<br>that run longer with stable<br>voltages.                                                                                                                  | The process decreases the<br>amount of precious metal used<br>and reduces fabrication costs.<br>The resulting assemblies exhibit<br>improved stability and allow<br>operation at extreme<br>temperatures.                                                                                                                  | Currently marketing the<br>Celtec <sup>®</sup> -P MEA for high<br>temperature PEM fuel<br>cells.                                                                                               |
| Lifetime_<br>Improvements for<br>PEM Fuel Cells                                                 | DuPont Fuel Cells                         | The Nafion <sup>®</sup> polymer technology,<br>which can be used for both PEM<br>fuel cells and water electrolyzers,<br>reduces the reactive centers within<br>the polymer to combat chemical<br>degradation, leading to increased<br>stability and longer life. | The technology reduces costs because of greater membrane durability and lifetime.                                                                                                                                                                                                                                          | Commercialized in 2005.                                                                                                                                                                        |
| Low-Cost PEM<br>Fuel Cell Metal<br>Bipolar Plates                                               | TreadStone<br>Technologies, Inc.          | A low-cost fabrication process<br>produces durable, low-contact<br>resistance metallic bipolar plates<br>for use in PEM fuel cells for<br>automotive, stationary and<br>portable power applications.                                                             | The new process reduces costs<br>by using commercially<br>available, stainless steel, low-<br>cost carbon steel or aluminum<br>as substrate materials and by<br>reducing or eliminating the use<br>of more expensive electrically<br>conductive materials.                                                                 | Commercialized in 2011<br>with small volumes sold<br>to date.                                                                                                                                  |
| Manufacture of<br>Durable Seals for<br>PEM Fuel Cells                                           | Freudenberg-NOK<br>General<br>Partnership | The seals, used in fuel cell<br>assemblies, use a custom<br>elastomer and carrier material that<br>provide an advanced interfacial<br>design that exhibits superior<br>chemical and mechanical<br>properties compared with<br>conventional silicons.             | The seals increase durability,<br>which reduces fuel cell<br>operation and maintenance<br>costs, and eliminates catalyst<br>poisoning concerns in the fuel<br>cell. The system can be mass-<br>produced and leads to shorter<br>fuel cell assembly time.                                                                   | Commercialized in 2009<br>with more then 30,000<br>seals sold to date.                                                                                                                         |
| Membranes and<br>Membrane<br>Electrode<br>Assemblies for<br>Dry, Hot<br>Operating<br>Conditions | 3M Company                                | The advanced MEAs use a low<br>equivlent weight, perfluorinated<br>sulfonic acid-based membrane<br>with improved chemical and<br>mechanical stability, and proton<br>conductivity.                                                                               | The new MEA has improved<br>durability and performance with<br>increased lifetimes while<br>operating under hot (up to<br>120°C), dry conditions.                                                                                                                                                                          | Commercialized in 2006<br>with sales to a wide<br>variety of fuel cell<br>customers for stationary<br>and automotive<br>applications.                                                          |
| Novel<br>Manufacturing<br>Process for PEM<br>Fuel Cell Stacks                                   | Protonex<br>Technology<br>Corporation     | The one-step molding process<br>creates the structure necessary to<br>seal the stack and five layer MEAs.<br>Two portable power system<br>product lines for military customers<br>are now using it.                                                              | The process lowers costs<br>because fewer components<br>with lower tolerances are used.<br>It reduces part count and<br>manufacturing time and<br>improves stack fabrication<br>reliability.                                                                                                                               | Delivered over 30 M250-<br>CX and M300-CX<br>systems through 2011.                                                                                                                             |

| Technology                                                      | Organization                        | Description                                                                                                                                                                                                                                                                                                                                                                                    | Benefits                                                                                                                                                                                                                      | Commercial Status                                                                                                                 |
|-----------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Portable<br>Reformed<br>Methanol Fuel<br>Cells                  | UltraCell<br>Corporation            | The XX25 fuel cell, using methanol<br>as a fuel source, is a self-<br>contained, 25-watt output power<br>system that can be used by<br>individual soldiers for portable<br>power. Fuel cartridges can be hot<br>swapped for continuous operation,<br>and the fuel cell can be hybridized<br>with external batteries for high<br>power peaks or with a 5-gallon fuel<br>tank for long run time. | The fuel cell features a rugged,<br>lightweight (1.24 kg), reliable<br>power system that uses a<br>contained fuel with no toxic<br>byproducts during use. It<br>contains no moving parts that<br>can fail.                    | Commercialized in 2007,<br>with more than 400 units<br>sold.                                                                      |
| PureMotion <sup>®</sup><br>Model 120 Fuel<br>Cell Power Plant   | UTC Power                           | The powerplant can be used as a<br>power source for hydrogen-<br>powered vehicles or as a<br>stationery, 120-kW power source.                                                                                                                                                                                                                                                                  | The power system reduces<br>costs through mass<br>manufacturing, produces only<br>water as a byproduct, and uses<br>hydrogen produced from<br>various sources, including<br>renewables.                                       | First unit deployed in<br>2005 with one older unit<br>still in use on a bus and<br>16 next generation buses<br>delivered in 2010. |
| Reduction in<br>Fabrication<br>Costs of Gas<br>Diffusion Layers | Ballard Material<br>Products, Inc.  | The new gas diffusion layer (GDL)<br>manufacturing process produces<br>continuous rolls of GDL material<br>and reduces GDL fabrication costs<br>by 60%. Cost-saving measures<br>used in the process include<br>replacing batch processes with<br>continuous ones, implementing on-<br>line control systems, and reducing<br>the number of process steps.                                       | The new process reduces GDL<br>costs through high-volume<br>manufacturing and improves<br>GDL quality and uniformity by<br>using real-time process<br>monitoring.                                                             | New process now being<br>used to manufacture<br>GDLs at Ballard.                                                                  |
| Scale-Up of<br>Carbon-Carbon<br>Composite<br>Bipolar Plates     | Porvair Advanced<br>Materials, Inc. | A carbon-carbon composite bipolar<br>plate (BPP) formation technology<br>was licensed and transferred from<br>laboratory to full-scale production<br>to produce low-cost BPPs using<br>high-volume manufacturing with no<br>machining. (This technology was<br>based on a technology licensed<br>from Oak Ridge National<br>Laboratory.)                                                       | The resulting BPPs minimize<br>contact resistance between<br>cells, resist corrosion, are<br>lightweight (1.2 grams per cc),<br>and cost <\$4 per kW. The<br>process allows for molding a<br>wide variety of product designs. | Manufactured more than 52,000 BPPs since 2003.                                                                                    |

#### Table 3.1. Commercial Products Summary – Fuel Cells (Cont'd)

| Table 3.2. Commercial Products Summary – Production/Delivery |  |
|--------------------------------------------------------------|--|
|--------------------------------------------------------------|--|

| Technology                                                                                              | Organization                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                          | Benefits                                                                                                                                                                                                                                                                                                                       | <b>Commercial Status</b>                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>FuelGen®</u><br><u>Hydrogen</u><br><u>Fueling Systems</u>                                            | Proton Energy<br>Systems, Inc.                      | The fueling station uses<br>electrolysis to produce 99.999%<br>pure hydrogen from water using<br>electricity, which can come from<br>wind or solar energy. The system<br>can generate over 13 kg per day<br>at pressures up to 400 psi.                                                                                                                                                                              | The system produces high purity<br>hydrogen without requiring<br>additional cleanup, can be installed<br>and operating within a day, requires<br>only four hours of maintenance per<br>year, and can use renewable energy<br>sources.                                                                                          | Commercialized in 2007,<br>with six units sold and<br>five currently operating.                                                                                                                                                                                                                                                                                     |
| <u>H2 ProGen: A</u><br><u>Total Supply</u><br><u>Solution for</u><br><u>Hydrogen</u><br><u>Vehicles</u> | GreenField<br>Compression                           | The integrated, on-site hydrogen<br>generation, purification,<br>compression, storage, and<br>dispensing system deploys quickly<br>and produces 20 to 200 kg of<br>hydrogen per day by reforming<br>natural gas, propane, E-85,<br>biodiesel, or other liquids.<br>Alternatively, it can use<br>electrolysis for hydrogen<br>production. The dispenser can be<br>purchased individually or as part<br>of the system. | The system can produce hydrogen<br>from various sources, achieves full-<br>cycle energy savings compared with<br>trucked-in hydrogen, and is<br>delivered as a pre-assembled<br>system, thereby minimizing costs<br>and setup time.                                                                                            | Commercialized in 2007,<br>with one fuel station in<br>use at the University of<br>Texas in Austin.                                                                                                                                                                                                                                                                 |
| High<br>Performance<br>Palladium-<br>Based<br>Membrane                                                  | Pall Corporation                                    | The palladium-based membrane<br>works as a selective barrier to let<br>only $H_2$ pass through by using<br>sophisticated high-temperature<br>analysis and inorganic membrane<br>development/manufacturing<br>techniques.                                                                                                                                                                                             | The membrane can be<br>economically integrated into the<br>overall $H_2$ production process and is<br>easily scalable to industrial<br>applications.                                                                                                                                                                           | Commercialized the<br>AccuSep <sup>®</sup> Pd membrane<br>module in 2011 with 24<br>integrated devices sold.                                                                                                                                                                                                                                                        |
| <u>Hydrogen</u><br><u>Distributed</u><br><u>Production</u><br><u>System</u>                             | Air Liquide<br>Process and<br>Construction,<br>Inc. | The HGM-2000 uses a built-in<br>pressure swing adsorption system<br>that produces 565 kg of hydrogen<br>per day at 200 to 300 psig at a<br>fuel efficiency of up to 78% (based<br>on the higher heating value).                                                                                                                                                                                                      | The system cuts high-purity<br>hydrogen costs by up to 50%<br>compared with trucked-in hydrogen,<br>is highly efficient, and uses a<br>modular design that eliminates the<br>need for large-scale hydrogen<br>infrastructure. It allows remote<br>monitoring without the need for<br>staffing.                                 | Became commercially<br>available in 2008.                                                                                                                                                                                                                                                                                                                           |
| Hydrogen<br>Generation from<br>Electrolysis                                                             | Proton Energy<br>Systems, Inc.                      | The HOGEN® electrolysis-based<br>hydrogen generator incorporates<br>a PEM and produces 99.999%<br>pure hydrogen at 90 to 275 grams<br>per hour at pressures up to 400<br>psi without requiring additional<br>compression.                                                                                                                                                                                            | The system is very compact, can be<br>installed in less than a day, is very<br>reliable, and produces high-purity<br>hydrogen.                                                                                                                                                                                                 | Commercialized the<br>HOGEN S series in 1999,<br>selling 187 units in the<br>U.S. and 228<br>internationally through<br>2011. Commercialized<br>the HOGEN H series in<br>2004, selling 88 units in<br>the U.S. and 90<br>internationally through<br>2011. Commercialized<br>the HOFEN C series in<br>2011, selling 2 units in<br>the U.S. and 3<br>internationally. |
| <u>Hydrogen Safety</u><br><u>Sensor for</u><br><u>Advanced</u><br><u>Energy</u><br><u>Applications</u>  | NexTech<br>Materials, Ltd.                          | A chemi-resistive three-phase<br>ceramic sensor exhibits a highly<br>sensitive (500 ppm to 1%),<br>selective (no interference from<br>CO, CH <sub>4</sub> , or VOC), and rapid<br>response to the presence of<br>hydrogen in ambient air, even with<br>varying humidities and<br>background combustible gases.                                                                                                       | Because of its low materials and<br>fabrication cost, minimal power<br>consumption, and wide detection<br>range, the sensor lends itself to<br>wide-scale implementation in any<br>application requiring the safe use or<br>handling of hydrogen gas. It is<br>durable and reliable, with fast<br>response and recovery times. | Commercialized in 2010<br>and sold 100 to 200 units<br>to date.                                                                                                                                                                                                                                                                                                     |

#### Table 3.2. Commercial Products Summary - Production/Delivery (Cont'd)

| Technology                                                                                                                       | Organization                             | Description                                                                                                                                                                                                                                                                                                                                                                     | Benefits                                                                                                                                                                                                                                                                                                                        | Commercial Status                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| ME100 Methanol<br>Reforming<br>Hydrogen<br>Generator<br>(SBIR Project)                                                           | REB Research &<br>Consulting             | The generator is constructed with<br>palladium-coated membranes<br>within the reactor zone and can<br>produce 99.99995% pure<br>hydrogen independent of back-<br>pressure changes or variable<br>loads at a variable rate of up to 10<br>kg per day at pressures up to 40<br>psig.                                                                                              | The generator produces very high<br>purity independent of back pressure<br>changes caused by varying fuel cell<br>demand. It produces hydrogen at<br>costs far lower than bottled gas<br>from a readily available feedstock<br>(methanol). The system is compact,<br>reliable, and ideal for remote and<br>mobile applications. | More than 27 ME100<br>hydrogen generator<br>systems sold since 2002.                               |
| <u>Membrane</u><br><u>Structures for</u><br><u>Hydrogen</u><br><u>Separation</u><br>(SBIR Project)                               | Genesis<br>Fueltech, Inc.                | The low-cost membrane to<br>separate hydrogen from other<br>gases in the reforming process is<br>used in a purifier module that can<br>be scaled to larger sizes to<br>increase capacity.                                                                                                                                                                                       | The low-cost purifier has improved<br>mechanical support and sealing, as<br>well as improved alloys for higher<br>hydrogen flux.                                                                                                                                                                                                | Commercialized in 2009.                                                                            |
| <u>Nanoscale</u><br><u>Water Gas Shift</u><br><u>Catalysts</u>                                                                   | NexTech<br>Materials, Ltd.               | The water gas shift catalysts are<br>based on ceria-supported<br>precious metals that can be<br>tailored to specific reactions/<br>conditions (i.e., steam reforming<br>and/or the partial oxidation of<br>various hydrocarbons) and can be<br>used for small reactors and/or<br>reactors with multiple startup-<br>shutdown cycles.                                            | The catalysts are available in<br>multiple forms and allow<br>applications to perform efficiently<br>over a wide range of temperatures.                                                                                                                                                                                         | Commercialized in 2005<br>with >\$300,000 in sales<br>to date.                                     |
| PEM<br>Electrolyzer<br>Incorporating<br>Low-Cost<br>Membrane                                                                     | Giner<br>Electrochemical<br>Systems, LLC | An electrolysis system that<br>produces 0.5 kg- $H_2$ /hr at 350 psig<br>and uses an advanced<br>dimensionally stable membrane<br>with improved durability under<br>high-pressure conditions.                                                                                                                                                                                   | The electrolyzer stack capital cost<br>has been reduced to <\$500/kW by<br>using low-cost materials, lower<br>catalyst loading, and a reduced part<br>count per cell. The system can<br>make use of renewable electricity<br>sources such as wind and solar.                                                                    | Commercialized in 2011.<br>GES has delivered 6<br>stacks and has taken<br>orders for several more. |
| Stackable<br>Structural<br>Reactor (SSR®)<br>for Low-Cost<br>Hydrogen<br>Production                                              | Catacel Corp.                            | During hydrogen production via<br>steam reforming, a drop-in<br>replacement for the loose ceramic<br>media eliminates the periodic<br>replacement required in<br>conventional ceramic packed<br>beds.                                                                                                                                                                           | The drop-in replacements lower costs, increase performance, and minimize maintenance costs and inconveniences.                                                                                                                                                                                                                  | Commercialized in 2012<br>with one international<br>sale and one domestic<br>unit being installed  |
| <u>TITAN™: High-</u><br><u>Pressure</u><br><u>Hydrogen</u><br><u>Storage Tank for</u><br><u>Gaseous Truck</u><br><u>Delivery</u> | Lincoln<br>Composites, Inc.              | The large composite tank for<br>storing and transporting<br>compressed hydrogen gas over<br>road, rail, or water has an internal<br>volume of 8,500 liters and<br>contains 150 kg of hydrogen at<br>3,600 psi. Four of these tanks are<br>mounted in a frame for transport<br>and a system for loading,<br>unloading, and pressure relief has<br>been designed and implemented. | The tank and frame system reduces<br>costs by improving volumetric<br>hydrogen storage capacity<br>compared with conventional tube<br>trailers while meeting strength,<br>environmental, and durability<br>targets.                                                                                                             | Commercialized in 2011<br>with \$3.5 million in U.S.<br>sales.                                     |

| Technology                                                 | Organization                  | Description                                                                                                                                                                                                                                                                                                    | Benefits                                                                                                                                                                                                                                                                                                     | Commercial Status                                                                                                              |
|------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| <u>Hydrogen</u><br><u>Composite</u><br><u>Tanks</u>        | Quantum<br>Technologies, Inc. | For storage applications at 5,000<br>and 10,000 psig, the hydrogen<br>tank uses a seamless, one-<br>piece, ultra-high-molecular-<br>weight polymer liner wrapped in<br>layers of a carbon fiber/epoxy<br>laminate and a proprietary<br>external protective layer for<br>impact resistance.                     | The 10,000-psig tank offers a<br>high-capacity, lightweight, safe<br>hydrogen storage system that<br>exceeds regulatory safety<br>requirements and may increase a<br>hydrogen-powered vehicle's<br>driving range by >55% compared<br>with equivalent-sized 5,000-psig<br>tanks.                              | Since 2001, sold more<br>than 2,000 storage tank<br>systems, primarily to<br>major automobile<br>manufacturers.                |
| Sodium Silicide<br>(NaSi) Hydrogen<br>Generation<br>System | SiGNa Chemistry,<br>Inc.      | The portable power system uses<br>a stable, room-temperature<br>reaction between sodium silicide<br>and water to generate hydrogen<br>at pressures from 2 to 30 psi.<br>When coupled to a fuel cell<br>generator the system provides<br>300 watts of continuous power<br>and up to 500 watts of peak<br>power. | The system uses two cartridges<br>filled with NaSi powder and an<br>integrated water reservoir that are<br>hot-swappable, enabling extended<br>runtimes without an interruption of<br>power. Power output is consistent<br>over the entire runtime, without the<br>degradation associated with<br>batteries. | Commercialized in the<br>U.S. in 2012 with sales to<br>a producer of a portable<br>fuel-cell-based charger<br>for electronics. |

#### Table 3.3. Commercial Products Summary - Storage

| Challenges*                                                                                                                         | Technology Title                                                                                     | Organization                           |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------|
| Develop membranes that meet all targets                                                                                             | Improved Catalyst Coated Membrane<br>(CCM) Manufacturing                                             | IRD Fuel Cells LLC                     |
|                                                                                                                                     | Lifetime Improvements for PEM Fuel<br>Cells                                                          | DuPont Fuel Cells                      |
| Develop electrodes that meet all targets                                                                                            | High Speed, Low Cost Fabrication of<br>Gas Diffusion Electrodes for Membrane<br>Electrode Assemblies | BASF Fuel Cell, Inc.                   |
| Develop MEAs that meet all targets                                                                                                  | Cathode Catalysts and Supports for<br>PEM Fuel Cells                                                 | 3M Company                             |
|                                                                                                                                     | Improved Fuel Cell Cathode Catalysts<br>Using Combinatorial Methods                                  | NuVant Systems Inc.                    |
|                                                                                                                                     | Integrated Manufacturing for Advanced<br>Membrane Electrode Assemblies                               | BASF Fuel Cell, Inc.                   |
|                                                                                                                                     | Membranes and Membrane Electrode<br>Assemblies for Dry, Hot Operating<br>Conditions                  | 3M Company                             |
| Develop low-cost, durable GDLs that improve fuel cell performance                                                                   | Reduction in Fabrication Costs of Gas<br>Diffusion Layers                                            | Ballard Material Products,<br>Inc.     |
| Develop low-cost, durable bipolar plates that meet all targets                                                                      | A Silicon-Based Solid Oxide Fuel Cell<br>for Portable Consumer Electronics                           | Lilliputian Systems, Inc.              |
|                                                                                                                                     | Conductive Compound for Molding Fuel<br>Cell Bipolar Plates                                          | Bulk Molding Compounds,<br>Inc.        |
|                                                                                                                                     | FARADAYIC ElectroEtching of Stainless<br>Steel Bipolar Plates                                        | Faraday Technology, Inc.               |
|                                                                                                                                     | Low-Cost PEM Fuel Cell Metal Bipolar<br>Plates                                                       | TreadStone Technologies,<br>Inc.       |
|                                                                                                                                     | Scale-Up of Carbon-Carbon Composite<br>Bipolar Plates                                                | Porvair Advanced Materials,<br>Inc.    |
| Develop efficient, cost-effective thermal/water management systems                                                                  | Complex Coolant for Polymer<br>Electrolyte Membrane (PEM) Fuel Cells                                 | Dynalene, Inc.                         |
| Develop reliable, durable, low-cost seals                                                                                           | Manufacture of Durable Seals for PEM<br>Fuel Cells                                                   | Freudenberg-NOK General<br>Partnership |
| Develop cost-effective, efficient, reliable and durable fuel cells for                                                              | Bio-Fueled Solid Oxide Fuel Cells                                                                    | TDA Research, Inc.                     |
| stationary applications that meet all targets                                                                                       | Compact, Multi-Fuel Solid Oxide Fuel<br>Cell (SOFC) System                                           | Technology Management,<br>Inc.         |
|                                                                                                                                     | Cost-Effective, High-Efficiency,<br>Advanced Reforming Module (CHARM)                                | Nuvera Fuel Cells, Inc.                |
|                                                                                                                                     | PureMotion <sup>®</sup> Model 120 Fuel Cell Power<br>Plant                                           | UTC Power                              |
| Develop cost-effective, reliable, durable fuel cells for portable power applications (e.g., cell phones, computers, etc.) that meet | A Silicon-Based Solid Oxide Fuel Cell<br>for Portable Consumer Electronics                           | Lilliputian Systems, Inc.              |
| all targets                                                                                                                         | Portable Reformed Methanol Fuel Cells                                                                | UltraCell Corporation                  |
| Conduct system and tradeoff analysis                                                                                                | GCtool: Fuel Cell Systems Analysis<br>Software Model                                                 | Argonne National Laboratory            |
| Develop system to allow PEM fuel cells to operate in off-road applications                                                          | GenDrive <sup>™</sup> Fuel Cell Power System                                                         | Plug Power Inc.                        |
| Test and evaluate fuel cell components and systems                                                                                  | Corrosion Test Cell for PEM Bipolar<br>Plate Materials                                               | Fuel Cell Technologies, Inc.           |
| Develop innovative fuel cell designs that provide improved performance, durability and cost                                         | Novel Manufacturing Process for PEM<br>Fuel Cell Stacks                                              | Protonex Technology<br>Corporation     |

#### Table 3.4. Fuel Cell Challenges and Related Commercial Technologies

\* Note: These challenges are described in the FCT Program Multi-Year Plan at http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel\_cells.pdf.

#### Table 3.5. Production/Delivery Challenges and Related Commercial Technologies

| Challenges*                                                                                | Technology Title                                                                                  | Organization                                  |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Cost reduction of distributed hydrogen production from natural gas and bio-derived liquids | H2 ProGen: A Total Supply Solution for<br>Hydrogen Vehicles                                       | GreenField Compression                        |
|                                                                                            | Hydrogen Distributed Production<br>System                                                         | Air Liquide Process and<br>Construction, Inc. |
|                                                                                            | ME100 Methanol Reforming Hydrogen<br>Generator                                                    | REB Research & Consulting                     |
|                                                                                            | Nanoscale Water Gas Shift Catalysts                                                               | NexTech Materials, Ltd.                       |
|                                                                                            | Stackable Structural Reactor (SSR <sup>®</sup> ) for<br>Low-Cost Hydrogen Production              | Catacel Corp.                                 |
| Hydrogen production from water via electrolysis                                            | FuelGen <sup>®</sup> Hydrogen Fueling Systems                                                     | Proton Energy Systems, Inc.                   |
|                                                                                            | Hydrogen Generation from Electrolysis                                                             | Proton Energy Systems, Inc.                   |
|                                                                                            | PEM Electrolyzer Incorporating Low-<br>Cost Membrane                                              | Giner Electrochemical<br>Systems, LLC         |
| Separation and purification systems                                                        | High Performance Palladium-Based<br>Membrane                                                      | Pall Corporation                              |
|                                                                                            | Hydrogen Safety Sensor for Advanced<br>Energy Applications                                        | NexTech Materials, Ltd.                       |
|                                                                                            | Membrane Structures for Hydrogen<br>Separation                                                    | Genesis Fueltech, Inc.                        |
| Develop carriers that can enable low-cost hydrogen delivery                                | <u>TITAN™: High-Pressure Hydrogen</u><br><u>Storage Tank for Gaseous Truck</u><br><u>Delivery</u> | Lincoln Composites, Inc.                      |

\* Note: These challenges are described in the FCT Program Multi-Year Plan at <a href="http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel\_cells.pdf">http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel\_cells.pdf</a>.

#### Table 3.6. Storage Approaches and Related Commercial Technologies

| Approaches*                                              | Technology Title                                     | Organization                  |
|----------------------------------------------------------|------------------------------------------------------|-------------------------------|
| Compressed, cryo-compressed and conformal hydrogen tanks | Hydrogen Composite Tanks                             | Quantum Technologies,<br>Inc. |
| Chemical hydrogen storage                                | Sodium Silicide (NaSi) Hydrogen<br>Generation System | SiGNa Chemistry, Inc.         |

\* Note: The storage approaches are described in the FCT Program Multi-Year Plan at <u>http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/storage.pdf</u>.

| Technology                                                                                | Organization                             | Description                                                                                                                                                                                                                                                                                                                                               | Benefits                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternative and<br>Durable High-<br>Performance Cathode<br>Supports for PEM Fuel<br>Cells | Pacific Northwest<br>National Laboratory | An advanced support structure for cathodes<br>used in PEM fuel cells. The technology<br>takes advantage of the stable interface<br>between platinum, a conductive metal oxide,<br>and a honeycombed carbon support.                                                                                                                                       | The support structures increase<br>cathode performance and durability,<br>and are synthesized using a method<br>that can be easily scaled up for high-<br>volume manufacturing.                                                                                                                    |
| CIRRUS: Cell Ice<br>Regulation and<br>Removal Upon Start-<br>Up                           | Nuvera Fuel Cells, Inc.                  | The Orion <sup>™</sup> fuel cell exploits higher current<br>density operation to increase the power<br>density of the stack and reduce its thermal<br>mass, enhancing freeze starting ability.                                                                                                                                                            | The new fuel cell has improved<br>performance in sub-freezing<br>conditions including increased fuel<br>cell stack power density, improved<br>water purging prior to cold shutdown,<br>and avoidance of significant<br>degradation of stack materials after<br>200 freeze startup/shutdown cycles. |
| Dimensionally-Stable<br>High-Performance<br>Membrane<br>(SBIR Project)                    | Giner Electrochemical<br>Systems, LLC    | The robust PEM material uses a high-<br>performance plastic support structure, which<br>allows lower-equivalent-weight ionomers to<br>be used without forfeiting mechanical<br>durability.                                                                                                                                                                | Because of its mechanical properties,<br>the new membrane prevents stress-<br>induced failure and improves<br>performance at low humidity and high<br>temperature.                                                                                                                                 |
| Direct Methanol Fuel<br>Cell (DMFC) Anode<br>Catalysts                                    | National Renewable<br>Energy Laboratory  | An improved anode catalyst for direct<br>methanol fuel cells. The catalyst is<br>manufactured using ion implantation and<br>magnetron sputtering of platinum-ruthenium<br>(PtRu) on high-surface-area carbon support<br>materials.                                                                                                                        | The new PtRu catalyst materials have<br>shown up to 30% improvement in<br>methanol oxidation reaction activity<br>and increase the durability of<br>membrane electrode assemblies.                                                                                                                 |
| Direct Methanol Fuel<br>Cell for Handheld<br>Electronics<br>Applications                  | MTI Micro Fuel Cells, Inc.               | The Mobion <sup>®</sup> direct methanol fuel cell<br>(DMFC) uses passive means for water and<br>air management to simplify the conventional<br>DMFC process, resulting in a smaller and<br>simpler fuel cell for handheld applications.<br>Received American Recovery and<br>Reinvestment Act (ARRA) funding to<br>facilitate commercialization.          | The device uses methanol fuel<br>instead of hydrogen, avoiding<br>hydrogen-handling issues. Using<br>micro fuel cells for handheld<br>electronics may extend device<br>operating times between charges and<br>enhance device versatility.                                                          |
| Direct-Write Inkjet<br>Printing for Fabricating<br>Hydrogen Sensors<br>(SBIR Project)     | InnoSense, LLC                           | The hydrogen sensor was developed using<br>high-output, inkjet printing manufacturing<br>techniques and detects hydrogen at<br>concentrations from 1% to 75%.                                                                                                                                                                                             | The high-volume fabrication process<br>produces safe, all-optical sensors and<br>eliminates the individual calibration of<br>sensors by making many identical<br>sensors in one batch.                                                                                                             |
| Durable Catalysts for<br>Fuel Cell Protection<br>During Transient<br>Conditions           | 3M Company                               | The new catalyst materials alleviate the<br>damaging effects of transient conditions<br>(e.g., startup, shutdown, and fuel starvation)<br>on fuel cells. The materials are being<br>developed by modifying the catalyst's<br>behavior so that oxidation of water instead of<br>carbon corrosion is the preferred reaction<br>during transient conditions. | Fuel cell durability is improved by<br>controlling catalyst reaction behavior<br>during transient conditions. Low<br>platinum-group-metal loading reduces<br>material costs.                                                                                                                       |
| Engineered<br>Nanostructured MEA<br>Technology for<br>Low-Temperature Fuel<br>Cells       | Nanosys, Inc.                            | A nanowire-supported platinum cobalt (PtCo) catalyst for PEM fuel cells increases catalyst mass activity relative to commercially available platinum carbon (Pt/C) catalysts while using reduced amount of precious metal catalyst.                                                                                                                       | The new catalyst support structure<br>ensures a high catalyst utilization,<br>enables a higher power density using<br>low catalyst loading, and ensures a<br>superior durability compared with<br>conventional carbon-supported<br>catalysts.                                                      |

#### Table 3.7. Emerging Products Summary - Fuel Cells

| Table 3.7. Emerging | Products | Summary - | <b>Fuel Cells</b> | (Cont'd) |
|---------------------|----------|-----------|-------------------|----------|
|---------------------|----------|-----------|-------------------|----------|

| Technology                                                                                             | Organization                            | Description                                                                                                                                                                                                                                                                                                                                                                                       | Benefits                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extended, Continuous<br>Pt Nanostructures in<br>Thick, Dispersed<br>Electrodes                         | National Renewable<br>Energy Laboratory | The nanostructured platinum (Pt) catalysts<br>have extended surface areas and show<br>improved specific activity and durability<br>compared with traditional Pt catalysts<br>supported on carbon (Pt/C). The catalysts<br>are synthesized from metal nanowire<br>templates using the spontaneous galvanic<br>displacement process.                                                                | The new catalysts achieve increased<br>performance (specific activity) and<br>durability compared with traditional<br>Pt/C catalysts and reduce material<br>costs by using less Pt.                                                                                                                                            |
| Fuel Cell Membrane<br>Measurement System<br>for Manufacturing<br>(SBIR Project)                        | Scribner Associates, Inc.               | The Rapid Membrane Measurement System<br>uses a proprietary electrode design for<br>robust long-term operation, custom<br>measurement and control hardware and<br>software, and state-of-the-art<br>electrochemical measurement methods.                                                                                                                                                          | The system rapidly (a few minutes per<br>test) and accurately measures the<br>through-thickness ionic resistance of<br>fuel cell membranes under controlled<br>temperatures and humidity and may<br>allow for more consistent results,<br>higher productivity, and lower<br>manufacturing costs because of waste<br>reduction. |
| Fuel-Cell-Based<br>Mobile Lighting                                                                     | Sandia National<br>Laboratories         | The fuel cell mobile lighting system uses a 5-kW, hydrogen-fueled PEM fuel cell stack to power high-efficiency plasma lighting. The system is an energy-efficient, environmentally-friendly alternative to the diesel-fueled generators currently used to power most portable lighting equipment.                                                                                                 | The system produces zero emissions<br>at the point of use, reduces noise<br>compared with diesel generators, and<br>can be used in indoor or outdoor<br>applications. The use of a fuel cell<br>power source and plasma lighting<br>maximizes the unit's overall energy<br>efficiency.                                         |
| <u>GenSys<sup>®</sup> Blue: High-<br/>Temperature CHP Fuel</u><br><u>Cell System</u><br>(ARRA Project) | Plug Power Inc.                         | The GenSys® Blue is a high-temperature<br>PEM fuel cell system that provides up to 5<br>kW of electricity and 28,000 Btu/hr of usable<br>heat for residential and light commercial<br>applications. The system achieves electrical<br>and CHP efficiencies of 30% and 85%,<br>respectively.                                                                                                       | The high-efficiency system reduces residential utility bills and $CO_2$ emissions. The unit can be easily integrated with existing heating systems because it produces waste heat of a sufficient temperature to meet thermal comfort demands.                                                                                 |
| High-Efficiency<br>Polymer Electrolyte<br>Membrane Fuel Cell<br>Combined Heat and<br>Power System      | Intelligent Energy Inc.                 | The CHP system is composed of two main<br>parts: a fuel processor, that uses<br>hydrocarbon feedstock in a steam-methane<br>reforming reaction and water-gas shift<br>reaction to produce hydrogen, and a PEM<br>fuel cell that uses the hydrogen for electricity<br>production. Heat is recovered from the fuel<br>cell and the fuel processor and can be used<br>for a variety of applications. | The system achieves 35% electrical<br>efficiency with greater than 70%<br>combined efficiency possible,<br>depending on the application. The<br>modular and scalable design allows<br>for easy installation and the unit can<br>be configured to provide emergency<br>backup power in the event of a grid<br>failure.          |
| High-Performance.<br>Low-Pt Cathodes<br>Containing New<br>Catalysts and Layer<br>Structure             | Cabot Superior<br>MicroPowders          | Applying an approach to formulate and test<br>low-Pt cathodes has led to six Pt-alloy<br>compositions that demonstrate up to a two-<br>fold improvement in performance compared<br>with pure Pt electrocatalysts.                                                                                                                                                                                 | Reducing Pt in cathodes reduces<br>costs (Pt is very expensive), and in<br>some cases, improves performance<br>and durability. The new formulation<br>and testing approach allow rapid<br>synthesis and testing of<br>electrocatalysts, thus reducing<br>research costs.                                                       |
| High-Temperature<br>Membrane with<br>Humidification-<br>Independent Cluster<br>Structure               | FuelCell Energy, Inc.                   | The composite fuel cell membrane has<br>enhanced ionic conductivity and mechanical<br>properties, allowing the fuel cell to retain<br>water and maintain proton conductivity and<br>mechanical integrity at low humidities and<br>elevated temperatures.                                                                                                                                          | The membrane improves fuel cell<br>durability, reduces system costs, and<br>improves performance over extreme<br>and fluctuating humidity and<br>temperature conditions.                                                                                                                                                       |

#### Table 3.7. Emerging Products Summary - Fuel Cells (Cont'd)

| Technology                                                                                                          | Organization                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                           | Benefits                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low-Cost 3-10 kW<br>Tubular SOFC Power<br>System                                                                    | Acumentrics Corporation           | The system is a natural gas based SOFC<br>which is being developed for use as a micro<br>CHP unit to provide electricity and hot water<br>in residential applications. The system has<br>demonstrated an electrical efficiency of 35%-<br>40% and a CHP energy efficiency of 85%.                                                                                                                                                     | The system handles readily available<br>fuels such as natural gas and<br>propane, without requiring an external<br>reformer to produce hydrogen. On-<br>site simultaneous generation of heat<br>and power will increase efficiency and<br>lower energy costs to consumers.                                                                                       |
| <u>Low-Cost Hydrogen</u><br><u>Sensor for</u><br><u>Transportation Safety</u>                                       | Makel Engineering, Inc.           | The micro electromechanical systems<br>hydrogen sensor system incorporates a<br>highly sensitive Schottky diode made of a<br>palladium alloy on a silicon substrate for<br>measurements in the low concentration<br>range (50 ppm to a few percent). It can<br>provide low-cost hydrogen leak monitoring in<br>fuel cell vehicles, stationary fuel cells, or<br>other areas where hydrogen leaks might<br>occur.                      | The sensor is low-cost and compact,<br>has low power consumption, can be<br>mass-produced, and operates in<br>suboptimal environmental conditions.                                                                                                                                                                                                               |
| Low-Cost<br>Manufacturing of<br>Sheet Molding<br>Compound Bipolar<br>Plates for PEM Fuel<br>Cells<br>(SBIR Project) | Nanotek Instruments, Inc.         | A new system is being developed to produce<br>low-cost/high-performance bipolar plates for<br>fuel cells using sheet molding compound<br>manufacturing techniques. Use of the new<br>roll-to-roll system for producing multiple layer<br>bipolar plates will allow large-scale<br>manufacturing.                                                                                                                                      | The new system optimizes the composition and forming process, improving the performance of the bipolar plates while reducing the manufacturing cost.                                                                                                                                                                                                             |
| Low Platinum Loading<br>Fuel Cell<br>Electrocatalysts                                                               | Brookhaven National<br>Laboratory | The patented anode electrocatalysts have<br>low platinum (Pt) loading that resists CO<br>poisoning.                                                                                                                                                                                                                                                                                                                                   | The electrocatalysts are cost effective<br>to fabricate because of the extensive<br>use of noble metals (rather than Pt)<br>and are more durable, thereby<br>promising an improved fuel cell<br>lifetime.                                                                                                                                                        |
| Manufacturing of Low-<br>Cost. Durable<br>Membrane Electrode<br>Assemblies                                          | W.L. Gore and<br>Associates, Inc. | A high-volume manufacturing process for<br>producing low-cost, durable, high-power-<br>density, three-layer MEAs that require<br>minimal conditioning. The process is<br>scalable to industry MEA volume targets of<br>500,000 systems per year.                                                                                                                                                                                      | MEAs produced using the new<br>manufacturing process have<br>withstood 9,000 hours of durability<br>testing in an 80°C automotive duty<br>cycle, exceeding DOE's 2015 target<br>by 5,000 hours. The MEAs also have<br>improved power density and<br>conditioning times of less than 4<br>hours. The use of high-volume<br>manufacturing reduces fuel cell costs. |
| Materials and Modules<br>for Low-Cost, High-<br>Performance Fuel Cell<br>Humidifiers                                | W.L. Gore and<br>Associates, Inc. | A system that uses the product water from a<br>hydrogen fuel cell's reaction to humidify the<br>incoming reactant gases on the cell's anode<br>and cathode sides. The system contains an<br>inexpensive and durable composite<br>membrane consisting of an ionomer layer<br>sandwiched between micro porous polymer<br>layers. The membrane is capable of high<br>water transport rates and prevents gas<br>crossover from occurring. | The system improves the<br>performance and longevity of fuel cell<br>electrolyte membranes by controlling<br>reactant gas humidity, which is<br>essential for maintaining proper<br>membrane hydration.                                                                                                                                                          |
| <u>Nitrided Metallic</u><br><u>Bipolar Plates for PEM</u><br><u>Fuel Cells</u>                                      | Oak Ridge National<br>Laboratory  | The technique deposits a thin Cr-nitride<br>coating on stainless steel bipolar plates to<br>form an electrically conductive, defect-free,<br>corrosion-resistant surface layer, even on<br>complex surface geometries.                                                                                                                                                                                                                | This technique allows for low-cost,<br>high-volume production techniques<br>that will reduce the net cost of fuel<br>cells and improve their longevity and<br>durability.                                                                                                                                                                                        |

| Technology                                                                         | Organization                      | Description                                                                                                                                                                                                                                                                                                               | Benefits                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Platinum and<br>Fluoropolymer<br>Recovery from PEM<br>Fuel Cells                   | Ion Power, Inc.                   | The process dissolves the used PEMs into a slurry, which is then processed to separate the Pt and Nafion <sup>®</sup> for re-use.                                                                                                                                                                                         | The process eliminates hydrofluoric<br>acid emissions typical of other<br>recycling methods in use today. It<br>reduces PEM fuel cell replacement<br>costs by recovering valuable materials<br>from used cells.                                                                                                                                                                                        |
| Platinum-Group-Metal<br>Recycling Technology                                       | BASF Catalysts LLC                | The technology recovers >98% of the platinum from various MEAs, independent of MEA aging history, membrane construction, or electrocatalyst composition.                                                                                                                                                                  | The technique eliminates the need for<br>hydrofluoric acid remediation, and<br>batching multiple fuel cell types<br>eliminates manual separation labor in<br>the recycling process.                                                                                                                                                                                                                    |
| Platinum Monolayer<br>Electrocatalysts on<br>Stable Low-Cost<br>Supports           | Brookhaven National<br>Laboratory | The high-surface-area electrocatalysts have<br>a platinum (Pt) monolayer that is deposited<br>on top of transition metal nanostructures.<br>These catalysts, which are used in the fuel<br>cell's oxygen reduction reaction, have a<br>much higher activity per mass of Pt than pure<br>Pt nanoparticles.                 | The new catalysts achieve high<br>activity for the oxygen reduction<br>reaction, resist Pt dissolution under<br>cycling conditions, and reduce costs<br>by reducing Pt loading.                                                                                                                                                                                                                        |
| PowerEdge™ Fuel Cell<br>System<br>(ARRA Project)                                   | Nuvera Fuel Cells, Inc.           | A fuel-cell-based power source for electric<br>forklift fleets that increases fleet productivity<br>and improves forklift performance compared<br>with conventional lead-acid batteries.                                                                                                                                  | The system can be refueled with<br>hydrogen in less than 2 minutes<br>(compared with 10 minutes or more<br>for a battery change), allowing<br>operators to spend more time moving<br>product out on the floor. Constant<br>voltage is provided throughout the<br>entire shift, eliminating the<br>performance degradation experienced<br>with batteries.                                               |
| Resin-Impregnated,<br>Expanded-Graphite<br>GRAFCELL <sup>®</sup> Bipolar<br>Plates | GrafTech International<br>Ltd.    | The bipolar plate uses expanded graphite in conjunction with an advanced high-temperature resin system that is designed for high-volume production.                                                                                                                                                                       | The system results in improved gas<br>impermeability, low contact<br>resistance, high thermal/electrical<br>conductivity, and improved<br>mechanical strength. The plates<br>continuously operate at temperatures<br>up to 120°C.                                                                                                                                                                      |
| <u>Sensors for</u><br><u>Automotive Fuel Cell</u><br><u>Systems</u>                | NexTech Materials, Ltd.           | The $H_2S$ sensor operates by a reversible<br>change in resistance caused by adsorption<br>and desorption of $H_2S$ in a film of $H_2S$ -<br>sensitive material. It can detect $H_2S$ from 25<br>ppb to 10 ppm, with response times of less<br>than one minute.                                                           | The sensor will detect $H_2S$ in the hydrogen stream, alerting operators so they can protect the cell stack from damage. This will increase membrane life, allow fuel cells to remain online longer, and extend the life of guard beds used to remove sulfur from hydrocarbon fuels before they are processed into hydrogen.                                                                           |
| Solid Acid Fuel Cell<br>Stack for Auxiliary<br>Power Unit<br>Applications          | SAFCell, Inc.                     | The solid acid fuel cell stack generates<br>electricity using hydrogen from a variety of<br>commercial fuel reformate sources, including<br>diesel fuels commonly used in the trucking<br>industry. The technology offers near silent<br>operation, quick start-up time, and the ability<br>to handle start-stop cycling. | The technology can operate reliably<br>on a variety of gas and liquid fuel<br>reformate and reduces emissions by<br>providing a more fuel-efficient<br>alternative to auxiliary power<br>generated from combustion engines.<br>The stacks can be manufactured by<br>low-cost, high-volume methods<br>because of the solid nature of the<br>electrolyte and the use of metal and<br>polymer components. |

#### Table 3.7. Emerging Products Summary – Fuel Cells (Cont'd)

#### Table 3.7. Emerging Products Summary – Fuel Cells (Cont'd)

| Technology                                                                                 | Organization                        | Description                                                                                                                                                                                                                                                                       | Benefits                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solid Oxide Fuel Cell<br>Auxiliary Power Unit                                              | Delphi Corporation                  | The SOFC power unit will provide up to 3 kW<br>of auxiliary electrical power for a variety of<br>mobile applications operating with a wide<br>range of commercially available fuels such as<br>natural gas, diesel, and propane. Received<br>ARRA funding to test the power unit. | The power unit operates at a higher<br>efficiency than internal combustion<br>engines because of the<br>electrochemical conversion of fuel<br>and reduces the noise and pollutants<br>associated with these engines. |
| Ultra-Low Platinum<br>Alloy Cathode<br>Catalysts for PEM Fuel<br>Cells                     | University of South<br>Carolina     | A new catalyst synthesis process reduces<br>the precious metal content in the cathode of<br>PEM fuel cells while maintaining or<br>exceeding current fuel cell durability and<br>performance specifications.                                                                      | The new catalyst process reduces<br>fuel system costs by reducing<br>precious metal content and is scalable<br>from the laboratory to high-volume<br>production.                                                     |
| Ultrasonics and<br>Advanced Diagnostics<br>for High-Temperature<br>PEM MEA.<br>Manufacture | Rensselaer Polytechnic<br>Institute | To aid in cost-effective, high-volume<br>manufacturing of PEM fuel cell MEAs,<br>advanced diagnostic methods and ultrasonic<br>bonding processes are being developed.                                                                                                             | The new methods and processes will<br>reduce manufacturing costs by<br>reducing cycle time and energy<br>consumption and improving product<br>yield.                                                                 |

#### Table 3.8. Emerging Products Summary - Production/Delivery

| Technology                                                                                                            | Organization                         | Description                                                                                                                                                                                                                                                                                                                                           | Benefits                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Active Magnetic<br>Regenerative Liquefier                                                                             | Emerald Energy NW, LLC               | A new, high-efficiency hydrogen liquefier that<br>uses active magnetic regenerative<br>liquefaction (AMRL) to produce ~25 kg of<br>liquid hydrogen per day with a<br>thermodynamic cycle efficiency (figure of<br>merit) of ~0.5.                                                                                                                     | The technology improves the efficiency and reduces the cost of hydrogen liquefaction.                                                                                                                                                                                         |
| <u>Centrifugal Hydrogen</u><br><u>Pipeline Gas</u><br><u>Compressor</u>                                               | Concepts NREC                        | A centrifugal compressor system for pipeline<br>transport of hydrogen gas achieves higher<br>compression efficiency than conventional<br>reciprocating compression equipment and<br>delivers hydrogen at a rate of 240,000 kg/day<br>at a discharge pressure of 1285 psig.                                                                            | The compressor system can be used<br>to support existing hydrogen pipeline<br>infrastructure in the industrial sector<br>and for future pipeline transport of<br>high-pressure hydrogen gas from<br>production sites to vehicle fueling<br>stations at reduced capital costs. |
| Ceramic Membrane<br>Reactor Systems for<br>Converting Natural<br>Gas to Hydrogen and<br>Synthesis Gas (ITM<br>Syngas) | Air Products and<br>Chemicals, Inc.  | The ion transport membrane (ITM) system<br>uses ceramic membranes to generate<br>syngas and hydrogen in a more compact,<br>lower-cost, and higher-efficiency process<br>than competing technologies. ITM syngas<br>membranes combine air separation and<br>methane partial oxidation into a single unit<br>operation.                                 | The system has very high flux and<br>selectivity that help reduce both<br>capital and operating costs. The ITM<br>syngas process is also readily<br>configured for carbon capture from<br>the high-pressure syngas product.                                                   |
| <u>Composite Pipeline</u><br><u>Technology for</u><br><u>Hydrogen Delivery</u>                                        | Oak Ridge National<br>Laboratory     | Extensive testing of fiber-reinforced polymer<br>pipelines are underway to determine their<br>use for safe delivery of hydrogen over long<br>distances.                                                                                                                                                                                               | Composite pipelines can reduce the cost of installation and increase the corrosion resistance of the pipes                                                                                                                                                                    |
| <u>High-Performance,</u><br><u>Low-Cost Hydrogen</u><br><u>Generation from</u><br><u>Renewable Energy</u>             | Proton Energy Systems,<br>Inc.       | New fuel cell materials, components, and<br>manufacturing methods to reduce the cost<br>and improve electrical efficiency for fuel cells<br>integrated with renewable energy sources.                                                                                                                                                                 | The new system is compatible with<br>high volume manufacturing by<br>consolidating fuel components and<br>simplifying assembly.                                                                                                                                               |
| Highly Efficient Solid-<br>State Electrochemical<br>Hydrogen Compressor                                               | FuelCell Energy, Inc.                | The new compressor is more efficient than<br>existing mechanical compressors, contains<br>no moving parts, and has a modular<br>architecture which allows the capacity to be<br>increased by simply adding more fuel cells.                                                                                                                           | The compressor can produce up to<br>4 lbs of hydrogen per day at pressures<br>up to 12,000 psi at a hydrogen<br>recovery efficiency of 95%.                                                                                                                                   |
| HRS-100™ Hydrogen<br>Recycling System<br>(SBIR Project)                                                               | H2Pump, LLC                          | An electrochemical hydrogen recovery system that separates hydrogen from a mixed gas stream (e.g., furnace exhaust), purifies it, and pumps it back into the feed stream of an industrial process. The system can recycle up to 100 kg-H <sub>2</sub> /day (1,600scfh) and recovers up to 90% of the hydrogen present in the exhaust stream.          | The system reduces hydrogen<br>feedstock costs for industrial<br>processes by recovering previously<br>wasted hydrogen at a lower cost than<br>would be required for a new supply.                                                                                            |
| <u>Hydrogen by Wire —</u><br><u>Home Fueling System</u><br>(SBIR Project)                                             | Proton Energy Systems,<br>Inc.       | A new PEM electrolysis system produces<br>2 Kg/day of hydrogen at 350 bar for refueling<br>hydrogen-powered vehicles or for stationary/<br>portable power devices.                                                                                                                                                                                    | The new on-site system enables<br>widespread adoption of hydrogen-<br>powered transportation without a well-<br>developed hydrogen supply<br>infrastructure.                                                                                                                  |
| <u>Hydrogen Gas</u><br><u>Sensing System</u>                                                                          | Intelligent Optical<br>Systems, Inc. | The quick-response sensor system<br>accurately detects hydrogen leaks in a broad<br>range of operating environments including<br>fuel cell vehicle garages, production facilities,<br>and refueling stations. The sensor detects<br>hydrogen at concentrations from 100 ppm to<br>10% hydrogen-in-air with a response time of<br>less than 5 seconds. | The system operates over a wide<br>range of conditions, including<br>temperatures of 10-55°C and 0-90%<br>relative humidity. The system<br>identifies the points at which hydrogen<br>is leaking thus alerting users before<br>safety is compromised.                         |

#### Table 3.8. Emerging Products Summary – Production/Delivery (Cont'd)

| Technology                                                                                                   | Organization                          | Description                                                                                                                                                                                                                                                                                                                                                         | Benefits                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrogen Production<br>for Refineries<br>(SBIR Project)                                                      | TDA Research, Inc.                    | The hydrogen generation process uses a fluidized bed reactor to produce hydrogen from heavy feedstocks at refineries.                                                                                                                                                                                                                                               | The process saves energy and costs<br>by operating at lower temperatures<br>compared with conventional methods<br>(methane steam reforming or petcoke<br>gasifiers).                                                                                                                     |
| <u>Hydrogen Production</u><br><u>via a Commercially</u><br><u>Ready Inorganic</u><br><u>Membrane Reactor</u> | Media and Process<br>Technology, Inc. | A chemically stable carbon molecular sieve separates hydrogen from caustic streams that contain CO, $CO_2$ , $H_2S$ , and heavy hydrocarbons at stream temperatures above 250°C and pressures up to 1,500 psi.                                                                                                                                                      | The membrane offers a low-cost,<br>mechanically durable option for<br>hydrogen separation under harsh<br>conditions and functions as a<br>membrane reactor for water gas shift<br>reactions.                                                                                             |
| Integrated Ceramic<br>Membrane System for<br>Hydrogen Production                                             | Praxair, Inc.                         | The hydrogen transport membrane features<br>uniform small pores on the surface that<br>enable a thin membrane layer to span the<br>pores while larger pores in the bulk of the<br>substrate provide strength to the membrane<br>and do not restrict hydrogen flow.                                                                                                  | The membranes help increase<br>hydrogen yield, purity, and system<br>energy efficiency and reduce capital<br>costs. They are especially applicable<br>to small, on-site hydrogen generators,<br>such those located at fueling stations.                                                  |
| Integrated Short<br>Contact Time<br>Hydrogen Generator                                                       | GE Global Research<br>Center          | The technology integrates short contact time<br>catalytic partial oxidation, steam reforming,<br>and water gas shift catalysis into a single<br>process (staged catalytic partial oxidation) in<br>a compact reactor that can produce 60 kg of<br>hydrogen per day.                                                                                                 | The technology has relatively low<br>operation temperatures that allow<br>lower-cost stainless steel to be used,<br>is relatively compact, is amenable to<br>mass production, and provides<br>efficiency gains and lower capital<br>costs by staging and integrating three<br>catalysts. |
| Leak Detection and<br>Hydrogen Sensor<br>Development                                                         | Los Alamos National<br>Laboratory     | A robust zirconia-based, electrochemical sensor for vehicular and stationary applications. The low-cost sensor measures hydrogen in air from 0.04-4% with an accuracy of $\pm$ 1%                                                                                                                                                                                   | The safety sensor is low-cost and<br>durable with desirable response time,<br>stability, and resistance to aging and<br>degradation from thermal cycling.                                                                                                                                |
| Low-Cost, Large-<br>Scale PEM Electrolysis<br>for Renewable Energy<br>Storage<br>(SBIR Project)              | Proton Energy Systems,<br>Inc.        | A new electrolysis system using improved<br>catalyst and membrane materials to reduce<br>efficiency losses arising from oxygen<br>evolution over-potential and membrane ionic<br>resistance.                                                                                                                                                                        | The new catalysts and membranes<br>reduce MEA cost by using less<br>expensive materials while improving<br>long-term stability and scale up.                                                                                                                                             |
| Materials Solutions for<br>Hydrogen Delivery in<br>Pipelines                                                 | Secat, Inc.                           | Methods are being developed to identify steel<br>compositions and associated welding filler<br>wires and processes that would enable safe<br>transmission of hydrogen at high pressures<br>(800-3000 psi).                                                                                                                                                          | The methods would reduce pipeline<br>infrastructure costs by identifying<br>suitable existing pipelines thus<br>avoiding replacement costs while<br>ensuring safety.                                                                                                                     |
| Maximizing Light<br>Utilization Efficiency<br>and Hydrogen<br>Production in<br>Microalgal Cultures           | UC Berkeley                           | The technique involves genetically<br>engineering the length of the chlorophyll<br>"antenna" of a strain of algae to prevent over-<br>absorption at the surface, allowing sunlight to<br>penetrate deeper into the culture, thereby<br>decreasing the heat dissipation and<br>increasing the light utilization efficiency of<br>hydrogen production from 3% to 15%. | The technology generates carbon-<br>neutral hydrogen from algae and<br>sunlight without requiring fossil fuels.                                                                                                                                                                          |
| MEMS Hydrogen<br>Sensor for Leak<br>Detection                                                                | Oak Ridge National<br>Laboratory      | Microelectromechanical system (MEMS)<br>hydrogen sensor uses a nanostructured<br>palladium/argon alloy to improve sensitivity<br>and response. The sensor can be used for<br>hazardous condition detection in hydrogen<br>fuel-powered applications.                                                                                                                | The sensor has sufficient response,<br>sensitivity, and accuracy for safety<br>applications at low-cost.                                                                                                                                                                                 |

# Table 3.8. Emerging Products Summary - Production/Delivery (Cont'd)

| Technology                                                                                    | Organization                            | Description                                                                                                                                                                                                                                                                         | Benefits                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Nanotube Array</u><br><u>Photocatalysts</u><br>(SBIR Project)                              | Synkera Technologies,<br>Inc.           | The photoelectrochemical hydrogen<br>production system uses high-density arrays<br>of nanotubes with unique coaxial architecture<br>to enhance light harvesting through a large<br>absorption cross-section and a high surface<br>area to promote catalytic chemistry.              | The photocatalysts increases<br>efficiency through broadband light<br>absorption and a vertically graded<br>bandgap. The system is scalable to<br>large size and high volumes and<br>lowers costs compared with traditional<br>technologies.                             |
| <u>Novel Catalytic Fuel</u><br><u>Reforming</u>                                               | InnovaTek, Inc.                         | The hydrogen generator reforms multiple fuel<br>types (natural gas, gasoline, and diesel) to<br>produce pure hydrogen by integrating<br>microreactor and microchannel heat<br>exchanger technology with advanced sulfur-<br>tolerant catalysts and membranes.                       | The generator system can produce 30<br>to 150 grams of hydrogen per hour<br>that can be used to fuel a 1- to 5-kW<br>polymer electrolyte membrane fuel<br>cell or other auxiliary power unit.                                                                            |
| <u>Oil Free Hydrogen</u><br><u>Compressor</u><br>(SBIR Project)                               | Mohawk Innovative<br>Technology, Inc.   | The oil-free, high-speed centrifugal<br>compressor uses advanced compliant<br>surface foil gas bearings and seals,<br>engineered coatings in conjunction with<br>advanced high-speed drives, and centrifugal<br>compressors.                                                        | The technology reduces capital,<br>maintenance, and operating costs of<br>compressors; improves compressor<br>reliability and efficiency; and<br>eliminates the potential for hydrogen<br>contamination for sensitive hydrogen-<br>consuming devices such as fuel cells. |
| Photoelectrochemical<br>Hydrogen Production                                                   | MVSystems, Inc.                         | Five material classes have been studied, with<br>a focus on understanding and improving<br>photoelectrochemical (PEC) behavior and<br>identifying relevant aspects of structural,<br>optoelectronic, and electrochemical<br>properties of PEC target films.                         | Advanced PEC hydrogen production<br>systems allow pollution-free,<br>sustainable, and renewable hydrogen<br>synthesis.                                                                                                                                                   |
| Renewable<br>Electrolysis Integrated<br>System Development<br>and Testing                     | National Renewable<br>Energy Laboratory | The approach reduces the impact of the<br>inherent variability of renewable energy<br>production by storing excess energy in the<br>form of hydrogen. Varying renewable<br>sources are being matched to the DC<br>requirements of multiple alkaline and PEM<br>electrolyzer stacks. | Coupling hydrogen production to<br>renewable energy production allows<br>for greater renewable energy<br>infrastructure penetration and<br>pollution-free production of energy.                                                                                          |
| <u>Reversible Liquid</u><br><u>Carriers</u>                                                   | Air Products and<br>Chemicals, Inc.     | This technology deploys a fully reversible<br>liquid carrier that can be readily<br>hydrogenated, transported to a distribution<br>center, and then catalytically dehydrogenated<br>to provide hydrogen gas to an end use such<br>as fuel cells.                                    | The technology increases catalyst<br>efficiency and allows<br>thermodynamically favorable liquid<br>carriers to be deployed.                                                                                                                                             |
| Unitized Design for<br>Home Refueling<br>Appliance for<br>Hydrogen Generation<br>to 5.000 psi | Giner, Inc.                             | The technology is a 5,000 psi PEM-based water electrolyzer system that produces hydrogen for residential refueling of hydrogen vehicles.                                                                                                                                            | The refueling system reduces overall cost by eliminating the need for hydrogen storage and compression at the user end site.                                                                                                                                             |

| Technology                                                                                                      | Organization                                           | Description                                                                                                                                                                                                                                                                                                                                               | Benefits                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electrochemical<br>Reversible Formation<br>of Alane                                                             | Savannah River National<br>Laboratory                  | The process uses direct hydrogeneration and<br>electrochemical synthesis to produce alane,<br>a low-cost rechargeable hydrogen storage<br>material for portable or stationary fuel cell<br>applications.                                                                                                                                                  | The process increases alane<br>production by using more efficient,<br>less costly electrochemical reactions<br>and avoids hazardous material<br>handling problems by surface<br>passivation.                           |
| High-Strength, Low-<br>Cost Microballoons for<br>Hydrogen Storage                                               | Powdermet, Inc.                                        | The microballoons are fabricated from light-<br>weight carbon and have high-strength,<br>defect-free coatings capable of a theoretical<br>hydrogen storage capacity of >12 wt%, a<br>burst strength >15,000 psig, and exceptional<br>crush strength. The microballoons act as a<br>scaffold for an impermeable barrier made of<br>high-strength material. | The microballoons produce harmless<br>waste products after hydrogen is<br>released, may prove to be easily<br>transportable, and flow like water to<br>conform to any shape container.                                 |
| Hydrogen Storage in<br>Cryo-Compressed<br>Vessels                                                               | Lawrence Livermore<br>National Laboratory              | The cryo-compressed hydrogen storage tank<br>maintains high energy density without<br>evaporative losses, requires fewer carbon<br>fiber construction materials, and can store<br>either compressed or liquid hydrogen.                                                                                                                                   | The storage tank has a 500-mile<br>range, can be dormant for extended<br>periods without losing fuel from the<br>tank, and has demonstrated an<br>improved thermal endurance<br>compared with low-pressure vessels.    |
| Low-Cost, High-<br>Performance Metal<br>Hydride Hydrogen<br>Storage System for<br>Forklift Applications         | Hawaii Hydrogen<br>Carriers, LLC                       | A metal hydride solid-state-based hydrogen<br>fuel system to power PEM fuel cell forklifts<br>has the advantage of reduced charging/<br>fueling time, consistent power delivery,<br>longer lift span, added ballast, and the ability<br>to be used with renewable energy source.                                                                          | The new system offers safer<br>operation, increased tank storage<br>capacity, lower capital cost, reduced<br>fleet size, and the capability to fill<br>directly from an electrolyzer or other<br>low-pressure source.  |
| Low-Cost. High<br>Strength Commercial<br>Textile Precursor<br>(PAN-MA)                                          | Oak Ridge National<br>Laboratory                       | This lower cost carbon fiber precursor,<br>polyacrylonitrile with methyl acrylate (PAN-<br>MA), will be used to improve the strength-to-<br>weight ratio of carbon fiber composite<br>materials for hydrogen storage tanks.                                                                                                                               | The carbon fiber can be manufactured<br>using existing high textile production<br>processes rather than highly<br>specialized processes and materials<br>thus reducing fiber costs by 25%.                             |
| <u>Manufacturing</u><br><u>Technologies for Low-</u><br><u>Cost Hydrogen</u><br><u>Storage Vessels</u>          | Quantum Fuel System<br>Technologies Worldwide,<br>Inc. | A new process for manufacturing composite<br>pressure vessels used for storing<br>compressed hydrogen. The process<br>combines two techniques for the placement<br>of carbon fibers (filament winding and<br>advanced fiber placement) to reduce the cost<br>and weight of the vessel.                                                                    | The process reduces the weight and<br>cost of composite hydrogen storage<br>vessels without compromising the<br>structural integrity of the vessels.                                                                   |
| Rapid Manufacturing<br>of Vehicle-Scale,<br>Carbon-Composite,<br>High-Pressure<br>Hydrogen Storage<br>Cylinders | Profile Composites Inc.                                | The fabrication technique can create high-<br>pressure storage tanks in less than 20<br>minutes to allow a production rate<br>approaching vehicle production.                                                                                                                                                                                             | The automated system will<br>dramatically reduce production time,<br>lower costs, improve fabrication<br>reliability and volumes, and provide<br>safer failure modes compared with<br>filament winding tanks.          |
| Safe and Effective<br>Storage and<br>Transmission of<br>Hydrogen                                                | Safe Hydrogen, LLC                                     | The chemical hydride technology uses the existing fossil fuel infrastructure to deliver and store a pumpable and nonexplosive magnesium hydride mineral oil slurry as a future hydrogen fuel.                                                                                                                                                             | The slurry delivers hydrogen without<br>requiring significant energy, displays<br>superior storage density compared<br>with cryogenically cooled liquid<br>hydrogen, and can be reused by<br>recycling the byproducts. |
| Ultalightweight High<br>Pressure Hydrogen<br>Fuel Tanks Reinforced<br>with Carbon<br>Nanotubes                  | Applied Nanotech, Inc.                                 | The new tanks are made using carbon<br>nanotubes to improve the mechanical<br>properties of the carbon-fiber-reinforced<br>polymer. The mechanical integrity and<br>performance of the high pressure hydrogen<br>storage tanks are maintained while using<br>less carbon fiber materials.                                                                 | Tank weight is reduced by up to 30% which reduces tank costs and in addition mechanical integrity is maintained.                                                                                                       |

#### Table 3.9. Emerging Products Summary – Storage

| Table 3.10. Fuel Cell Challenges and | <b>Related Emerging Technologies</b> |
|--------------------------------------|--------------------------------------|
|--------------------------------------|--------------------------------------|

| Challenges*                                                                                                                         | Technology Title                                                                     | Organization                             |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------|
| Develop membranes that meet all targets                                                                                             | Dimensionally-Stable High-<br>Performance Membrane                                   | Giner Electrochemical<br>Systems, LLC    |
|                                                                                                                                     | High-Temperature Membrane with<br>Humidification-Independent Cluster<br>Structure    | FuelCell Energy, Inc.                    |
| Develop electrodes that meet all targets                                                                                            | Alternative and Durable High-<br>Performance Cathode Supports for<br>PEM Fuel Cells  | Pacific Northwest National<br>Laboratory |
|                                                                                                                                     | Direct Methanol Fuel Cell (DMFC)<br>Anode Catalysts                                  | National Renewable Energy Laboratory     |
|                                                                                                                                     | Durable Catalysts for Fuel Cell<br>Protection During Transient Conditions            | 3M Company                               |
|                                                                                                                                     | Extended, Continuous Pt<br>Nanostructures in Thick, Dispersed<br>Electrodes          | National Renewable Energy<br>Laboratory  |
|                                                                                                                                     | High-Performance, Low-Pt Cathodes<br>Containing New Catalysts and Layer<br>Structure | Cabot Superior<br>MicroPowders           |
|                                                                                                                                     | Low Platinum Loading Fuel Cell<br>Electrocatalysts                                   | Brookhaven National<br>Laboratory        |
|                                                                                                                                     | Platinum Monolayer Electrocatalysts on<br>Stable Low-Cost Supports                   | Brookhaven National<br>Laboratory        |
|                                                                                                                                     | Ultra-Low Platinum Alloy Cathode<br>Catalysts for PEM Fuel Cells                     | University of South Carolina             |
| Develop MEAs that meet all targets                                                                                                  | Engineered Nanostructured MEA<br>Technology for Low-Temperature Fuel<br>Cells        | Nanosys, Inc.                            |
|                                                                                                                                     | Manufacturing of Low-Cost, Durable<br>Membrane Electrode Assemblies                  | W.L. Gore and Associates, Inc.           |
|                                                                                                                                     | Platinum and Fluoropolymer Recovery<br>from PEM Fuel Cells                           | Ion Power, Inc.                          |
|                                                                                                                                     | Platinum-Group-Metal Recycling<br>Technology                                         | BASF Catalysts LLC                       |
| Develop low-cost, durable bipolar plates that meet all targets                                                                      | Nitrided Metallic Bipolar Plates for PEM<br>Fuel Cells                               | Oak Ridge National<br>Laboratory         |
|                                                                                                                                     | Resin-Impregnated, Expanded-Graphite<br>GRAFCELL <sup>®</sup> Bipolar Plates         | GrafTech International Ltd.              |
| Develop efficient, cost-effective thermal/water management systems                                                                  | CIRRUS: Cell Ice Regulation and<br>Removal Upon Start-up                             | Nuvera Fuel Cells, Inc.                  |
|                                                                                                                                     | Materials and Modules for Low-Cost.<br>High-Performance Fuel Cell Humidifiers        | W.L. Gore and Associates,<br>Inc.        |
| Develop effective, reliable physical and chemical sensors that meet all targets                                                     | Low-Cost Hydrogen Sensor for<br>Transportation Safety                                | Makel Engineering, Inc.                  |
|                                                                                                                                     | Sensors for Automotive Fuel Cell<br>Systems                                          | NexTech Materials, Ltd.                  |
| Develop cost-effective, efficient, reliable and durable fuel cells for stationary applications that meet all targets                | Low-Cost 3-10 kW Tubular SOFC Power<br>System                                        | Acumentrics Corporation                  |
| Develop cost-effective, reliable, durable fuel cells for portable power applications (e.g., cell phones, computers, etc.) that meet | Direct Methanol Fuel Cell for Handheld<br>Electronics Applications                   | MTI Micro Fuel Cells, Inc.               |
| all targets                                                                                                                         | Fuel-Cell-Based Mobile Lighting                                                      | Sandia National<br>Laboratories          |

#### Table 3.10. Fuel Cell Challenges and Related Emerging Technologies (Cont'd)

| Challenges*                                                                                                                                       | Technology Title                                                                            | Organization                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------|
| Develop auxiliary power unit (APU) system for heavy truck applications to reduce idling of the main engine that meet all                          | Solid Acid Fuel Cell Stack for Auxiliary<br>Power Unit Applications                         | SAFCell, Inc.                       |
| targets                                                                                                                                           | Solid Oxide Fuel Cell Auxiliary Power<br>Unit                                               | Delphi Corporation                  |
| Develop system to allow PEM Fuel Cells to operate in off-road applications                                                                        | PowerEdge™ Fuel Cell System                                                                 | Nuvera Fuel Cells, Inc.             |
| Stationary fuel cell demonstrations                                                                                                               | GenSys <sup>®</sup> Blue: High-Temperature CHP<br>Fuel Cell System                          | Plug Power Inc.                     |
|                                                                                                                                                   | High-Efficiency Polymer Electrolyte<br>Membrane Fuel Cell Combined Heat<br>and Power System | Intelligent Energy Inc.             |
| Develop manufacturing processes for high-volume production of<br>high-quality, uniform bipolar plates (Manufacturing PEM Fuel<br>Cells Challenge) | Low-Cost Manufacturing of Sheet<br>Molding Compound Bipolar Plates for<br>PEM Fuel Cells    | Nanotek Instruments, Inc.           |
| Reduce cost of PEM materials through improved manufacturing operations (Manufacturing PEM Fuel Cells Challenge)                                   | Fuel Cell Membrane Measurement<br>System for Manufacturing                                  | Scribner Associates, Inc.           |
|                                                                                                                                                   | Ultrasonics and Advanced Diagnostics<br>for High-Temperature PEM MEA<br>Manufacture         | Rensselaer Polytechnic<br>Institute |
| Develop sensors to monitor performance of fuel cell and fuel cell leakage (Manufacturing PEM Fuel Cells Challenge)                                | Direct-Write Inkjet Printing for<br>Fabricating Hydrogen Sensors                            | InnoSense, LLC                      |

\* Note: The challenges are described in the FCT Program Multi-Year Plan for fuel cells at <a href="http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel\_cells.pdf">http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel\_cells.pdf</a> and manufacturing at <a href="http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/manufacturing.pdf">http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel\_cells.pdf</a> and manufacturing at <a href="http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/manufacturing.pdf">http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel\_cells.pdf</a>

#### Table 3.11. Production and Delivery Challenges and Related Emerging Technologies

| Challenges*                                                                                                  | Technology Title                                                                                   | Organization                            |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------|
| Cost reduction of distributed hydrogen production from natural                                               | Ceramic Membrane Reactor Systems                                                                   | Air Products and Chemicals,             |
| gas and bio-derived liquids                                                                                  | for Converting Natural Gas to Hydrogen<br>and Synthesis Gas (ITM Syngas)                           | Inc.                                    |
|                                                                                                              | High-Performance, Low-Cost Hydrogen<br>Generation from Renewable Energy                            | Proton Energy Systems, Inc.             |
|                                                                                                              | <u>Hydrogen by Wire — Home Fueling</u><br><u>System</u>                                            | Proton Energy Systems, Inc.             |
|                                                                                                              | Hydrogen Production for Refineries                                                                 | TDA Research, Inc.                      |
|                                                                                                              | Integrated Short Contact Time<br>Hydrogen Generator                                                | GE Global Research Center               |
|                                                                                                              | Low-Cost, Large-Scale PEM<br>Electrolysis for Renewable Energy<br>Storage                          | Proton Energy Systems, Inc.             |
|                                                                                                              | Novel Catalytic Fuel Reforming                                                                     | InnovaTek, Inc.                         |
| Hydrogen production from water via electrolysis                                                              | Renewable Electrolysis Integrated<br>System Development and Testing                                | National Renewable Energy<br>Laboratory |
|                                                                                                              | Unitized Design for Home Refueling<br>Appliance for Hydrogen Generation to<br>5.000 psi            | Giner, Inc.                             |
| Photoelectrochemical hydrogen production from water (direct                                                  | Nanotube Array Photocatalysts                                                                      | Synkera Technologies, Inc.              |
| water splitting)                                                                                             | Photoelectrochemical Hydrogen<br>Production                                                        | MVSystems, Inc.                         |
| Biological production of hydrogen                                                                            | Maximizing Light Utilization Efficiency<br>and Hydrogen Production in Microalgal<br>Cultures       | UC Berkeley                             |
| Separation and purification systems                                                                          | HRS-100 <sup>™</sup> Hydrogen Recycling System                                                     | H2Pump, LLC                             |
|                                                                                                              | Hydrogen Gas Sensing System                                                                        | Intelligent Optical Systems,<br>Inc.    |
|                                                                                                              | <u>Hydrogen Production via a</u><br><u>Commercially Ready Inorganic</u><br><u>Membrane Reactor</u> | Media and Process<br>Technology, Inc.   |
|                                                                                                              | Integrated Ceramic Membrane System<br>for Hydrogen Production                                      | Praxair, Inc.                           |
|                                                                                                              | Leak Detection and Hydrogen Sensor<br>Development                                                  | Los Alamos National<br>Laboratory       |
|                                                                                                              | MEMS Hydrogen Sensor for Leak<br>Detection                                                         | Oak Ridge National<br>Laboratory        |
| Reduce capital costs and ensure safety, reliability, and durability of pipelines.                            | Composite Pipeline Technology for<br>Hydrogen Delivery                                             | Oak Ridge National<br>Laboratory        |
|                                                                                                              | Materials Solutions for Hydrogen<br>Delivery in Pipelines                                          | Secat, Inc.                             |
| Develop carriers that can enable low cost hydrogen delivery                                                  | Reversible Liquid Carriers                                                                         | Air Products and Chemicals, Inc.        |
| Increase the reliability, reduce the cost, and improve the energy efficiency of gaseous hydrogen compression | Centrifugal Hydrogen Pipeline Gas<br>Compressor                                                    | Concepts NREC                           |
|                                                                                                              | Highly Efficient Solid-State<br>Electrochemical Hydrogen Compressor                                | FuelCell Energy, Inc.                   |
|                                                                                                              | Oil Free Hydrogen Compressor                                                                       | Mohawk Innovative<br>Technology, Inc.   |
| Reduce the cost and improve the energy efficiency of hydrogen liquefaction                                   | Active Magnetic Regenerative Liquefier                                                             | Emerald Energy NW, LLC                  |
|                                                                                                              |                                                                                                    |                                         |

\* Note: The challenges are described in the FCT Program Multi-Year Plan for production at <u>http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/production.pdf</u> and delivery at <u>http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/delivery.pdf</u>.

| Challenges*                                              | Technology Title                                                                                       | Organization                                           |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Compressed, cryo-compressed and conformal hydrogen tanks | Hydrogen Storage in Cryo-Compressed<br>Vessels                                                         | Lawrence Livermore<br>National Laboratory              |
|                                                          | Low-Cost, High Strength Commercial<br>Textile Precursor (PAN-MA)                                       | Oak Ridge National<br>Laboratory                       |
|                                                          | Manufacturing Technologies for Low-<br>Cost Hydrogen Storage Vessels                                   | Quantum Fuel System<br>Technologies Worldwide,<br>Inc. |
|                                                          | Rapid Manufacturing of Vehicle-Scale,<br>Carbon-Composite, High-Pressure<br>Hydrogen Storage Cylinders | Profile Composites Inc.                                |
|                                                          | Ultalightweight High Pressure Hydrogen<br>Fuel Tanks Reinforced with Carbon<br>Nanotubes               | Applied Nanotech, Inc.                                 |
| Advanced metal hydrides                                  | Electrochemical Reversible Formation<br>of Alane                                                       | Savannah River National<br>Laboratory                  |
|                                                          | Low-Cost, High-Performance Metal<br>Hydride Hydrogen Storage System for<br>Forklift Applications       | Hawaii Hydrogen Carriers,<br>LLC                       |
| Chemical hydrogen storage                                | Safe and Effective Storage and<br>Transmission of Hydrogen                                             | Safe Hydrogen, LLC                                     |
| Additional new materials and concepts                    | High-Strength, Low-Cost Microballoons<br>for Hydrogen Storage                                          | Powdermet, Inc.                                        |

### Table 3.12. Storage Approaches and Related Emerging Technologies

\* Note: The approaches are described in the FCT Program Multi-Year Plan for storage at <u>http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/storage.pdf</u>

# **Appendix A:** Technology Tracking List

# **Fuel Cell Technologies**

| Technology Title                                                                               | Company                             |
|------------------------------------------------------------------------------------------------|-------------------------------------|
| A Silicon-Based Solid Oxide Fuel Cell for Portable Consumer Electronics: nectar™               | Lilliputian Systems, Inc.           |
| Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells                   | PNNL                                |
| Bio-Fueled Solid Oxide Fuel Cells                                                              | TDA Research                        |
| CIRRUS: Cell Ice Regulation and Removal Upon Start-up                                          | Nuvera Fuel Cells, Inc.             |
| Cathode Catalysts and Supports for PEM Fuel Cells                                              | 3M Company                          |
| Compact, Multi-Fuel Solid Oxide Fuel Cell (SOFC) System                                        | Technology Management, Inc.         |
| Complex Coolant for Polymer Electrolyte Membrane (PEM) Fuel Cells                              | Dynalene, Inc.                      |
| Conductive Compound for Molding Fuel Cell Bipolar Plates                                       | Bulk Molding Compounds, Inc.        |
| Corrosion Test Cell for PEM Bipolar Plate Materials                                            | Fuel Cell Technologies, Inc.        |
| Cost-Effective, High-Efficiency, Advanced Reforming Module (CHARM)                             | Nuvera Fuel Cells, Inc.             |
| Dimensionally-Stable High-Performance Membrane                                                 | Giner Electrochemical Systems, LLC  |
| Direct Methanol Fuel Cell (DMFC) Anode Catalysts                                               | NREL                                |
| Direct Methanol Fuel Cell for Handheld Electronics Applications                                | MTI Micro Fuel Cells, Inc.          |
| Direct-Write Inkjet Printing for Fabricating Hydrogen Sensors                                  | InnoSense, LLC                      |
| Durable Catalysts for Fuel Cell Protection During Transient Conditions                         | 3M Company                          |
| Engineered Nanostructured MEA Technology for Low-Temperature Fuel Cells                        | Nanosys, Inc.                       |
| Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes                          | NREL                                |
| FARADAYIC ElectroEtching of Stainless Steel Bipolar Plates                                     | Faraday Technology, Inc.            |
| Fuel Cell Membrane Measurement System for Manufacturing                                        | Scribner Associates, Inc.           |
| Fuel-Cell-Based Mobile Lighting                                                                | SNL                                 |
| GCtool: Fuel Cell Systems Analysis Software Model                                              | ANL                                 |
| GenDrive™ Fuel Cell Power System                                                               | Plug Power Inc.                     |
| GenSys® Blue: High-Temperature CHP Fuel Cell System                                            | Plug Power Inc.                     |
| High-Efficiency PEM Fuel Cell Combined Heat and Power System                                   | Intelligent Energy Inc.             |
| High-Performance, Low-Pt Cathodes Containing New Catalysts and Layer Structure                 | Cabot Superior MicroPowders         |
| High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies | BASF Fuel Cell, Inc.                |
| High-Temperature Membrane with Humidification-Independent Cluster Structure                    | FuelCell Energy, Inc.               |
| Improved Catalyst Coated Membrane (CCM) Manufacturing                                          | IRD Fuel Cells LLC                  |
| Improved Fuel Cell Cathode Catalysts Using Combinatorial Methods                               | NuVant Systems Inc.                 |
| Integrated Manufacturing for Advanced Membrane Electrode Assemblies                            | BASF Fuel Cell, Inc.                |
| Lifetime Improvements for PEM Fuel Cells                                                       | DuPont Fuel Cells                   |
| Low-Cost 3-10 kW Tubular SOFC Power System                                                     | Acumentrics Corporation             |
| Low-Cost Hydrogen Sensor for Transportation Safety                                             | Makel Engineering, Inc.             |
| Low-Cost Manufacturing of Sheet Molding Compound Bipolar Plates for PEM Fuel Cells             | Nanotek Instruments, Inc.           |
| Low-Cost PEM Fuel Cell Metal Bipolar Plates                                                    | TreadStone Technologies, Inc.       |
| Low Platinum Loading Fuel Cell Electrocatalysts                                                | BNL                                 |
| Manufacture of Durable Seals for PEM Fuel Cells                                                | Freudenberg-NOK General Partnership |
| Manufacturing of Low-Cost, Durable MEAs                                                        | W.L. Gore and Associates, Inc.      |
| Materials and Modules for Low-Cost, High-Performance Fuel Cell Humidifiers                     | W.L. Gore and Associates, Inc.      |
| Membranes and MEAs for Dry, Hot Operating Conditions                                           | 3M Company                          |
| Nitrided Metallic Bipolar Plates for PEM Fuel Cells                                            | ORNL                                |
| Novel Manufacturing Process for PEM Fuel Cell Stacks                                           | Protonex Technology Corporation     |
| Platinum and Fluoropolymer Recovery from PEM Fuel Cells                                        | Ion Power, Inc.                     |

# Fuel Cell Technologies (Cont'd)

| Platinum-Group-Metal Recycling Technology                                     | BASF Catalysts LLC               |
|-------------------------------------------------------------------------------|----------------------------------|
| Platinum Monolayer Electrocatalysts on Stable Low-Cost Supports               | BNL                              |
| Portable Reformed Methanol Fuel Cells                                         | UltraCell Corporation            |
| PowerEdge <sup>™</sup> Fuel Cell System                                       | Nuvera Fuel Cells, Inc.          |
| PureMotion® Model 120 Fuel Cell Power Plant                                   | UTC Power                        |
| Reduction in Fabrication Costs of Gas Diffusion Layers                        | Ballard Material Products, Inc.  |
| Resin-Impregnated, Expanded-Graphite GRAFCELL® Bipolar Plates                 | GrafTech International Ltd       |
| Scale-Up of Carbon-Carbon Composite Bipolar Plates                            | Porvair Advanced Materials, Inc. |
| Sensors for Automotive Fuel Cell Systems                                      | NexTech Materials, Ltd.          |
| Solid Acid Fuel Cell Stack for Auxiliary Power Unit Applications              | SAFCell, Inc.                    |
| Solid Oxide Fuel Cell Auxiliary Power Unit                                    | Delphi Corporation               |
| Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells                 | University of South Carolina     |
| Ultrasonics and Advanced Diagnostics for High-Temperature PEM MEA Manufacture | Rensselaer Polytechnic Institute |

# Production/Delivery Technologies

| Technology Title                                                                               | Company                                    |
|------------------------------------------------------------------------------------------------|--------------------------------------------|
| Active Magnetic Regenerative Liquefier                                                         | Emerald Energy NW, LLC                     |
| Centrifugal Hydrogen Pipeline Gas Compressor                                                   | Concepts NREC                              |
| Ceramic Membrane Reactor Systems for Converting Natural Gas to Hydrogen and Synthesis Gas (ITM | Air Products and Chemicals, Inc.           |
| Syngas)                                                                                        |                                            |
| Composite Pipeline Technology for Hydrogen Delivery                                            | ORNL                                       |
| FuelGen® Hydrogen Fueling Systems                                                              | Proton Energy Systems, Inc.                |
| H2 ProGen: A Total Supply Solution for Hydrogen Vehicles                                       | GreenField Compression                     |
| High-Performance, Low-Cost Hydrogen Generation from Renewable Energy                           | Proton Energy Systems, Inc.                |
| High Performance Palladium-Based Membrane                                                      | Pall Corporation                           |
| Highly Efficient Solid-State Electrochemical Hydrogen Compressor                               | FuelCell Energy, Inc.                      |
| HRS-100™ Hydrogen Recycling System                                                             | H2Pump, LLC                                |
| Hydrogen By Wire — Home Fueling System                                                         | Proton Energy Systems, Inc.                |
| Hydrogen Distributed Production System                                                         | Air Liquide Process and Construction, Inc. |
| Hydrogen Gas Sensing System                                                                    | Intelligent Optical Systems, Inc.          |
| Hydrogen Generation from Electrolysis                                                          | Proton Energy Systems, Inc.                |
| Hydrogen Production for Refineries                                                             | TDA Research                               |
| Hydrogen Production via a Commercially Ready Inorganic Membrane Reactor                        | Media and Process Technology, Inc.         |
| Hydrogen Safety Sensor for Advanced Energy Applications                                        | NexTech Materials, Ltd.                    |
| Integrated Ceramic Membrane System for Hydrogen Production                                     | Praxair, Inc.                              |
| Integrated Short Contact Time Hydrogen Generator                                               | GE Global Research Center                  |
| Leak Detection and Hydrogen Sensor Development                                                 | LANL                                       |
| Low-Cost, Large-Scale PEM Electrolysis for Renewable Energy Storage                            | Proton Energy Systems, Inc.                |
| Materials Solutions for Hydrogen Delivery in Pipelines                                         | Secat, Inc.                                |
| Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures         | U. of California-Berkeley                  |
| ME100 Methanol Reforming Hydrogen Generator                                                    | REB Research & Consulting                  |
| Membrane Structures for Hydrogen Separation                                                    | Genesis Fueltech, Inc.                     |
| MEMS Hydrogen Sensor for Leak Detection                                                        | ORNL                                       |
| Nanoscale Water Gas Shift Catalysts                                                            | NexTech Materials, Ltd.                    |
| Nanotube Array Photocatalysts                                                                  | Synkera Technologies, Inc.                 |
| Novel Catalytic Fuel Reforming                                                                 | InnovaTek, Inc.                            |
| Oil Free Hydrogen Compressor                                                                   | Mohawk Innovative Technology, Inc.         |
| PEM Electrolyzer Incorporating Low-Cost Membrane                                               | Giner Electrochemical Systems, LLC         |
| Photoelectrochemical Hydrogen Production                                                       | MVSystems, Inc.                            |
| Renewable Electrolysis Integrated System Development and Testing                               | NREL                                       |
| Reversible Liquid Carriers                                                                     | Air Products and Chemicals, Inc.           |
| Stackable Structural Reactor (SSR®) for Low-Cost Hydrogen Production                           | Catacel Corporation                        |
| TITANTM: High-Pressure Hydrogen Storage Tank for Gaseous Truck Delivery                        | Lincoln Composites, Inc.                   |
| Unitized Design for Home Refueling Appliance for Hydrogen Generation to 5,000 psi              | Giner Electrochemical Systems, LLC         |

# Storage Technologies

| Technology Title                                                                                 | Company                                          |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Electrochemical Reversible Formation of Alane                                                    | SRNL                                             |
| High-Strength, Low-Cost Microballoons for Hydrogen Storage                                       | Powdermet, Inc.                                  |
| Hydrogen Composite Tanks                                                                         | Quantum Technologies, Inc.                       |
| Hydrogen Storage in Cryo-Compressed Vessels                                                      | LLNL                                             |
| Low-Cost, High-Performance Metal Hydride Hydrogen Storage System for Forklift Applications       | Hawaii Hydrogen Carriers LLC                     |
| Low-Cost, High Strength Commercial Textile Precursor (PAN-MA)                                    | ORNL                                             |
| Manufacturing Technologies for Low-Cost Hydrogen Storage Vessels                                 | Quantum Fuel System Technologies Worldwide, Inc. |
| Rapid Manufacturing of Vehicle-Scale, Carbon-Composite, High-Pressure Hydrogen Storage Cylinders | Profile Composites Inc.                          |
| Safe and Effective Storage and Transmission of Hydrogen                                          | Safe Hydrogen, LLC                               |
| Sodium Silicide (NaSi) Hydrogen Generation System                                                | SiGNa Chemistry, Inc.                            |
| Ultralightweight High Pressure Hydrogen Fuel Tanks Reinforced with Carbon Nanotubes              | Applied Nanotech, Inc.                           |

# **Appendix B:** Patent Status Lists

| B.1 Fuel Cell Patents Status                  | B-3  |
|-----------------------------------------------|------|
| <b>B.2 Production/Delivery Patents Status</b> | B-33 |
| B.3 Storage Patents Status                    | B-61 |

| B.1 Fuel Cell Patents Status | 3 |
|------------------------------|---|
|------------------------------|---|

| Patent<br>Number | Award<br>Date | Organization                              | Title                                                                                                                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                        | Status                                                                                                              |
|------------------|---------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 8,481,227        | 07/09/13      | 3M Company                                | Proton conducting materials                                                                                                 | Fuel cell membrane materials with an increased number<br>of strong acid groups created in some embodiments by<br>reaction of these acid-containing molecules with acid-<br>containing organic molecules, metal oxide or phosphate<br>particles, metal salts, heteropolyacids, and the like.                                                                                                                                        | Still being used in ongoing<br>research efforts. Part of a<br><u>commercial fuel cell technology</u><br>project.    |
| 8,465,858        | 06/18/13      | University of<br>South Carolina           | Development of a novel<br>method for preparation of<br>PEMFC electrodes                                                     | A method for preparation of membrane electrode assemblies that is based on pulse electrodeposition.                                                                                                                                                                                                                                                                                                                                | Research complete - licensed/<br>seeking to license. Part of an<br><u>emerging fuel cell technology</u><br>project. |
| 8,420,271        | 04/16/13      | General Motors<br>Corporation             | Method to improve<br>reliability of a fuel<br>cell system using low<br>performance cell detection<br>at low power operation | A system and method for detecting a low performing<br>cell in a fuel cell stack using measured cell voltages.<br>The method includes determining that the fuel cell<br>stack is running, the stack coolant temperature is above<br>a certain temperature and the stack current density is<br>within a relatively low power range.                                                                                                  | Licensed to Honda.                                                                                                  |
| 8,415,070        | 04/09/13      | E.I. du Pont de<br>Nemours and<br>Company | Partially Fluorinated<br>Cyclic Ionic Polymers and<br>Membranes                                                             | Ionic polymers are made from selected partially<br>fluorinated dienes, in which the repeat units are<br>cycloaliphatic. The polymers are formed into<br>membranes.                                                                                                                                                                                                                                                                 | Still being used in ongoing research efforts.                                                                       |
| 8,394,352        | 03/12/13      | University of<br>South Carolina           | Porous metal oxide particles<br>and their methods of<br>synthesis                                                           | Methods for the formation of metal oxide nanoparticles that can be used in solid oxide fuel cells.                                                                                                                                                                                                                                                                                                                                 | Research complete - licensed/<br>seeking to license.                                                                |
| 8,394,298        | 03/12/13      | LANL                                      | Non-aqueous liquid<br>compositions comprising<br>ion exchange polymers                                                      | Compositions useful for formation of uniformly-<br>dispersed electrodes, which in turn are useful as a<br>component of membrane-electrode assemblies for, e.g.,<br>fuel cells, sensors and capacitors.                                                                                                                                                                                                                             | Still being used in ongoing research efforts.                                                                       |
| 8,329,006        | 12/11/12      | Faraday<br>Technology, Inc.               | Electroplating cell with<br>hydrodynamics facilitating<br>more uniform deposition<br>across a workpiece during<br>plating   | An apparatus for establishing more uniform deposition<br>across one or more faces of a workpiece in an<br>electroplating process. The apparatus employs eductors<br>in conjunction with a flow dampener member and other<br>measures to provide a more uniform current distribution<br>and a more uniform metal deposit distribution as<br>reflected in a coefficient of variability that is lower than<br>conventional processes. | Being used in ongoing research.<br>Part of a <u>commercial fuel cell</u><br><u>technology</u> project.              |
| 8,326,477        | 12/04/12      | General Motors<br>Corporation             | Heel and toe driving on fuel cell vehicle                                                                                   | A system and method for providing nearly instantaneous power in a fuel cell vehicle.                                                                                                                                                                                                                                                                                                                                               | Licensed to Honda.                                                                                                  |

| Patent<br>Number | Award<br>Date | Organization                          | Title                                                                                                         | Description                                                                                                                                                                                                                                                                                                                                                                       | Status                                                                                                                 |
|------------------|---------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 8,323,809        | 12/04/12      | 3M Company                            | Fuel cell electrolyte<br>membrane with basic<br>polymer                                                       | An electrolyte membrane comprising an acid and a basic<br>polymer, where the acid is a low-volatile acid that is<br>fluorinated and is either oligomeric or non-polymeric,<br>and where the basic polymer is protonated by the acid<br>and is stable to hydrolysis.                                                                                                               | Still being used in ongoing<br>research efforts. Part of a<br><u>commercial fuel cell technology</u><br>project.       |
| 8,308,989        | 11/13/12      | BNL                                   | Electrocatalyst for oxygen<br>reduction with reduced<br>platinum oxidation and<br>dissolution rates           | Methods for preventing the oxidation of the platinum<br>electrocatalyst in the cathodes of fuel cells by use of<br>platinum-metal oxide composite particles.                                                                                                                                                                                                                      | Still being used in research and<br>seeking to license. Part of an<br><u>emerging fuel cell technology</u><br>project. |
| 8,304,122        | 11/06/12      | Protonex<br>Technology<br>Corporation | Solid oxide fuel cell<br>systems with hot zones<br>having improved reactant<br>distribution                   | A solid oxide fuel cell system having a hot zone with<br>a center cathode air feed tube for improved reactant<br>distribution, a catalytic partial oxidation reactor attached<br>at the anode feed end of the hot zone with a tail gas<br>combustor at the opposing end for more uniform heat<br>distribution, and a counter-flow heat exchanger for<br>efficient heat retention. | Being used in ongoing research.                                                                                        |
| 8,278,011        | 10/02/12      | Nanosys, Inc.                         | Nanostructured catalyst supports                                                                              | Silicon carbide nanostructures that can be used as<br>catalyst supports in membrane electrode assemblies and<br>in fuel cells.                                                                                                                                                                                                                                                    | Being used in ongoing research.<br>Part of an <u>emerging fuel cell</u><br><u>technology</u> project.                  |
| 8,236,207        | 08/07/12      | LANL                                  | Non-aqueous liquid<br>compositions comprising<br>ion exchange polymers<br>reference to related<br>application | Compositions useful for formation of uniformly-<br>dispersed electrodes, which in turn are useful as a<br>component of membrane-electrode assemblies for, e.g.,<br>fuel cells, sensors and capacitors.                                                                                                                                                                            | Still being used in ongoing research efforts.                                                                          |
| 8,227,147        | 07/24/12      | LANL                                  | Advanced membrane<br>electrode assemblies for fuel<br>cells                                                   | Method for producing polymer electrolyte membranes<br>with improved performance and durability for fuel cell<br>use.                                                                                                                                                                                                                                                              | Still being used in ongoing research efforts.                                                                          |
| 8,227,140        | 07/24/12      | 3M Company                            | Proton conducting materials                                                                                   | Fuel cell membrane materials with an increased number<br>of strong acid groups created in some embodiments by<br>reaction of these acid-containing molecules with acid-<br>containing organic molecules, metal oxide or phosphate<br>particles, metal salts, heteropolyacids, and the like.                                                                                       | Still being used in ongoing<br>research efforts. Part of a<br><u>commercial fuel cell technology</u><br>project.       |
| 8,206,682        | 06/26/12      | BASF<br>Corporation                   | Method for recovering<br>catalytic elements from fuel<br>cell membrane electrode<br>assemblies                | A method for recovering catalytic elements from a fuel<br>cell membrane electrode assemblies. Recovery of the<br>membrane electrode assembly materials is achieved<br>by converting the membranes into particulate, forming<br>a slurry and then dissolving catalytic elements into a<br>soluble catalytic element salt.                                                          | Research complete - company<br>holding IP. Part of an <u>emerging</u><br><u>fuel cell technology</u> project.          |

| Patent<br>Number | Award<br>Date | Organization                 | Title                                                                                                                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Status                                                                                                        |
|------------------|---------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 8,197,955        | 06/12/12      | General Electric<br>Company  | Electrolyte membrane,<br>methods of manufacture<br>thereof and articles<br>comprising the same                                                   | Method to form an electrolyte membrane comprising<br>of polyhydroxy, aromatic polyhalide and alkali metal<br>hydroxide compounds. The process forms a porous<br>substrate; and a crosslinked proton conductor deposited<br>onto the porous substrate.                                                                                                                                                                                                                                    | Still being used in ongoing research.                                                                         |
| 8,178,463        | 05/15/12      | ANL                          | Highly durable nanoscale<br>electrocatalyst based on<br>core shell particles                                                                     | A multimetallic nanoscale catalyst having a core<br>portion enveloped by a shell portion and exhibiting high<br>catalytic activity and improved catalytic durability                                                                                                                                                                                                                                                                                                                     | Still being used in ongoing research efforts.                                                                 |
| 8,153,324        | 04/10/12      | Nanotek<br>Instruments, Inc. | Controlled-release vapor<br>fuel cell                                                                                                            | A controlled-release fuel cell that is particularly useful<br>for powering small vehicles and portable electronic<br>devices.                                                                                                                                                                                                                                                                                                                                                            | Being used in ongoing research.                                                                               |
| 8,137,858        | 03/20/12      | ANL                          | Method of fabricating<br>electrode catalyst layers<br>with directionally oriented<br>carbon support for proton<br>exchange membrane fuel<br>cell | A new method of preparing a membrane electrode<br>assembly (MEA) for a PEMFC that reduces precious<br>metal usage, eliminates the need for GDE and simplifies<br>the design and fabrication of bipolar plates.                                                                                                                                                                                                                                                                           | Still being used in ongoing research efforts.                                                                 |
| 8,129,306        | 03/06/12      | ANL                          | Non-platinum bimetallic<br>polymer electrolyte fuel cell<br>catalysts                                                                            | A polymetallic nanoparticle alloy having enhanced<br>catalytic properties including at least one noble metal<br>and at least one base metal, where the noble metal<br>is preferentially dispersed near the surface of the<br>nanoparticle and the base metal modifies the electronic<br>properties of the surface disposed noble metal.                                                                                                                                                  | Research complete; seeking to license.                                                                        |
| 8,124,261        | 02/28/12      | BASF<br>Corporation          | Process for recycling<br>components of a PEM fuel<br>cell membrane electrode<br>assembly                                                         | Process for recycling components of a PEM fuel cell<br>membrane electrode assembly. The membrane electrode<br>assembly (MEA) of a PEM fuel cell can be recycled by<br>dissolving the MEA with a lower alkyl alcohol solvent<br>which separates the membrane from the anode and<br>cathode layers of the assembly. The solution contains<br>both the polymer membrane and noble metal catalysts<br>which can be heated to form particulates which can then<br>be separated by filtration. | Research complete - company<br>holding IP. Part of an <u>emerging</u><br><u>fuel cell technology</u> project. |
| 8,114,547        | 02/14/12      | Ford Motor<br>Company        | Fuel cell stack flow diversion                                                                                                                   | A control valve to affect the flow of compressed gas in a fuel cell system.                                                                                                                                                                                                                                                                                                                                                                                                              | Being used in ongoing research.                                                                               |
| 8,101,317        | 01/24/12      | 3M Company                   | Durable fuel cell having<br>polymer electrolyte<br>membrane comprising<br>manganese oxide                                                        | Fuel cell membrane electrode assemblies and fuel cell<br>polymer electrolyte membranes are provided comprising<br>manganese oxides which demonstrate increased<br>durability.                                                                                                                                                                                                                                                                                                            | Still being used in ongoing research efforts.                                                                 |

| Patent<br>Number | Award<br>Date | Organization                              | Title                                                                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Status                                                                                                                 |
|------------------|---------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 8,092,954        | 01/10/12      | 3M Company                                | Method of making a fuel<br>cell polymer electrolyte<br>membrane comprising<br>manganese oxide       | Fuel cell membrane electrode assemblies and fuel cell<br>polymer electrolyte membranes are provided comprising<br>manganese oxides which demonstrate increased<br>durability. Methods of making the same are provided.                                                                                                                                                                                                                                                                                                                                                                                                                              | Still being used in ongoing research efforts.                                                                          |
| 8,088,526        | 01/03/12      | General Motors<br>Corporation             | Anode reactive bleed<br>and injector shift control<br>strategy                                      | A system and method for correcting a large fuel cell<br>voltage spread for a split sub-stack fuel cell system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Licensed to Honda.                                                                                                     |
| 8,062,552        | 11/22/11      | BNL                                       | Electrocatalyst for oxygen<br>reduction with reduced<br>platinum oxidation and<br>dissolution rates | Method for using platinum-metal oxide composite<br>particles as electrocatalysts in oxygen-reducing cathodes<br>in fuel cells. The method prevents oxidation of platinum<br>electrocatalyst at the cathodes.                                                                                                                                                                                                                                                                                                                                                                                                                                        | Still being used in research and<br>seeking to license. Part of an<br><u>emerging fuel cell technology</u><br>project. |
| 8,058,383        | 11/15/11      | E.I. du Pont de<br>Nemours and<br>Company | Arylene-fluorinated-<br>sulfonimide ionomers and<br>membranes for fuel cells                        | Method for preparation of aromatic sulfonimide<br>polymers for membranes in electrochemical cells. The<br>resulting polymers are useful as cation-exchange resins<br>which can be used for producing proton-exchange<br>membranes for fuel cells and can be used in any<br>application wherein cation-exchange capacity is desired.<br>The resins may also be used as electrolytes, electrode<br>binders, in lithium batteries in lithium salt form, and in<br>any application requiring charge-transfer phenomena,<br>such as components of light-emitting displays. The<br>polymers described herein can be either homopolymers<br>or copolymers. | Research complete - company<br>holding IP.                                                                             |
| 8,057,949        | 11/15/11      | Ford Motor<br>Company                     | Fuel cell stack flow diversion                                                                      | A control valve to affect the flow of compressed gas in a fuel cell system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Being used in ongoing research.                                                                                        |
| 8,048,548        | 01/11/11      | BNL                                       | Electrocatalyst for alcohol<br>oxidation at fuel cell anodes                                        | An electrocatalyst is used in an anode for oxidizing<br>alcohol in a fuel cell. The electrocatalyst consists of<br>a noble metal particle with surface clusters of $SnO_2$<br>and Rh. The noble metal particles include platinum,<br>palladium, ruthenium, iridium, gold, and combinations<br>thereof. In some embodiments the electrocatalyst<br>particle cores are nanoparticles.                                                                                                                                                                                                                                                                 | Still being used in research and<br>seeking to license. Part of an<br><u>emerging fuel cell technology</u><br>project. |

| Patent<br>Number | Award<br>Date | Organization                         | Title                                                                                                                     | Description                                                                                                                                                                                                                                                                                                                                                                                       | Status                                                                                                          |
|------------------|---------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 8,039,160        | 10/18/11      | Arkema Inc.                          | Multi-layer polyelectrolyte<br>membrane                                                                                   | Method to produce multi-layer polyelectrolyte<br>membranes containing polymeric resins, specifically<br>fluoropolymer and non-perfluorinated polymeric resins<br>containing ionic and/or ionizable groups (also referred<br>to as a "polyelectrolytes"). These are useful in a variety<br>of products such as fuel cells.                                                                         | Still being used in ongoing research efforts.                                                                   |
| 8,028,842        | 10/04/11      | Virginia<br>Polytechnic<br>Institute | Chlorine resistant<br>desalination membranes<br>based on directly sulfonated<br>poly(arylene ether sulfone)<br>copolymers | A method of making a hydrophilic-hydrophobic random copolymer membrane that can be used in fuel cells.                                                                                                                                                                                                                                                                                            | Research complete; seeking to license.                                                                          |
| 8,011,598        | 09/06/11      | Delphi<br>Technologies,<br>Inc.      | SOFC power system with<br>A/C system and heat<br>pump for stationary and<br>transportation applications                   | A combined heat and power system wherein the<br>compressor motor of a heat pump is powered by a<br>portion of the electricity generated by a solid oxide fuel<br>cell (SOFC), and wherein the thermal output of the heat<br>pump is increased by abstraction of heat from the SOFC<br>exhaust.                                                                                                    | Still being used in ongoing<br>research efforts. Part of an<br><u>emerging fuel cell technology</u><br>project. |
| 7,981,319        | 07/19/11      | LANL                                 | Non-aqueous liquid<br>compositions comprising<br>ion exchange polymers                                                    | Compositions useful for formation of uniformly-<br>dispersed electrodes, which in turn are useful as a<br>component of membrane-electrode assemblies for, e.g.,<br>fuel cells, sensors and capacitors.                                                                                                                                                                                            | Still being used in ongoing research efforts.                                                                   |
| 7,955,759        | 06/07/11      | ORNL                                 | Metallization of bacterial<br>cellulose for electrical<br>and electronic device<br>manufacture                            | Method for deposition of metals in bacterial cellulose<br>and the utilization of the metallized bacterial cellulose<br>in the construction of fuel cells and other electronic<br>devices.                                                                                                                                                                                                         | Still being used in ongoing research efforts.                                                                   |
| 7,943,266        | 05/17/11      | General Electric<br>Company          | SOFC seal and cell thermal management                                                                                     | A solid oxide fuel cell module in which the cell and<br>its peripheral gas-flow-directing components (e.g.,<br>manifold and seals) are cooled to reduce stress-inducing<br>thermal gradients and prevent cell cracking.                                                                                                                                                                           | Being used in continuing research at the company.                                                               |
| 7,927,748        | 04/19/11      | ANL                                  | Catalytic membranes for<br>fuel cells                                                                                     | A fuel cell of the present invention comprises a<br>cathode and an anode, one or both of the anode and<br>the cathode including a catalyst comprising a bundle<br>of longitudinally aligned graphitic carbon nanotubes<br>including a catalytically active transition metal<br>incorporated longitudinally and atomically distributed<br>throughout the graphitic carbon walls of said nanotubes. | Still being used in ongoing research efforts.                                                                   |

| Patent<br>Number | Award<br>Date | Organization                              | Title                                                                                                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Status                                                             |
|------------------|---------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 7,910,653        | 03/22/11      | E.I. du Pont de<br>Nemours and<br>Company | Process for the preparation<br>of arylene fluorinated<br>sulfonimide polymers and<br>membranes                          | Polymer electrolyte membrane fuel cells (PEMFC)<br>are expected to provide higher efficiencies, fewer<br>environmental pollutants, and reduced operating and<br>maintenance costs than traditional power sources.<br>An important component of a PEMFC is a polymer<br>electrolyte membrane (PEM). The range of potential<br>candidates for use as membrane materials in PEMFCs<br>is limited by a number of requirements, including<br>chemical, thermal, and mechanical stability, high<br>ionic conductivity, and low reactant permeability.<br>Developments have been made in the use of sulfonic<br>acid functionalized polymers, including membranes<br>such as Nafion.RTM. perfluorosulfonic acid membranes. | No longer being used.                                              |
| 7,906,251        | 03/15/11      | 3M Company                                | Oxygen-reducing catalyst<br>layer                                                                                       | Process for thin film deposition of oxygen-reducing<br>catalysts on a substrate using vapor deposition and<br>thermal treatment. The catalytic material film includes a<br>transition metal that is substantially free of platinum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Still being used in ongoing research.                              |
| 7,902,299        | 03/08/11      | LBNL                                      | Single ion conductor cross-<br>linked polymeric networks                                                                | The invention relates to the synthesis, characterization,<br>and electrochemical response of a new type of single-<br>ion comb-branch polymer electrolyte that can be used as<br>a proton exchange membrane in fuel cells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Being used in research at LBNL<br>and seeking to license.          |
| 7,901,940        | 03/08/11      | BASF<br>Corporation                       | Method for measuring<br>recovery of catalytic<br>elements from fuel cells                                               | A method for measuring the concentration of a catalytic<br>element in a fuel cell powder. The method includes<br>depositing a powder mixture consisting of the fuel cell<br>powder and an internal standard material on a porous<br>substrate, ablating a sample of the powder mixture using<br>a laser, and vaporizing the sample using an inductively<br>coupled plasma.                                                                                                                                                                                                                                                                                                                                          | No longer being used.                                              |
| 7,887,927        | 02/15/11      | Nanotek<br>Instruments, Inc.              | Highly conductive, multi-<br>layer composite precursor<br>composition to fuel cell flow<br>field plate or bipolar plate | A roll-to-roll method of producing a flexible graphite-<br>based, highly electrically conductive sheet molding<br>compound (SMC) and SMC-based flow field or bipolar<br>plates for use in a proton exchange membrane fuel cell.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Part of an <u>emerging fuel cell</u><br><u>technology</u> project. |
| 7,871,738        | 01/18/11      | ANL                                       | Nanosegregated surfaces as<br>catalysts for fuel cells                                                                  | A method of preparing a nanosegregated Pt alloy having<br>enhanced catalytic properties. The method includes<br>providing a sample of Pt and one or more of a transition<br>metal in a substantially inert environment, and annealing<br>the sample in such an environment for a period of time<br>and at a temperature profile to form a nanosegregated Pt<br>alloy having a Pt-skin on a surface.                                                                                                                                                                                                                                                                                                                 | Still being used in ongoing research efforts.                      |

| Patent<br>Number | Award<br>Date | Organization                              | Title                                                                                                                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                       | Status                                                              |
|------------------|---------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 7,868,086        | 01/11/11      | E.I. du Pont de<br>Nemours and<br>Company | Arylene fluorinated<br>sulfonimide polymers and<br>membranes                                                                                        | Aromatic sulfonimide polymers that are useful in making proton exchange membranes for fuel cells.                                                                                                                                                                                                                                                                                                                                                 | Being used in continuing research at the company.                   |
| 7,867,669        | 01/11/11      | Giner<br>Electrochemical<br>Systems, LLC  | Solid polymer electrolyte<br>composite membrane<br>comprising laser<br>micromachined porous<br>support                                              | A solid polymer electrolyte composite membrane and methods of manufacturing the same.                                                                                                                                                                                                                                                                                                                                                             | Part of an <u>emerging fuel cell</u><br><u>technology</u> project.  |
| 7,855,021        | 12/21/10      | BNL                                       | Electrocatalysts having<br>platinum monolayers on<br>palladium, palladium alloy,<br>and gold alloy core-shell<br>nanoparticles, and uses<br>thereof | The invention relates to platinum-coated particles useful<br>as fuel cell electrocatalysts. The particles are composed<br>of a noble metal or metal alloy core at least partially<br>encapsulated by an atomically thin surface layer of<br>platinum atoms. The invention particularly relates to<br>such particles having a palladium, palladium alloy, gold<br>alloy, or rhenium alloy core encapsulated by an atomic<br>monolayer of platinum. | Part of an <u>emerging fuel cell</u><br><u>technology</u> project.  |
| 7,851,399        | 12/14/10      | LANL                                      | Method of making<br>chalcogen catalysts for<br>polymer electrolyte fuel<br>cells                                                                    | A method of making a catalyst material for use in fuel<br>cell cathodes. The catalyst material includes a support<br>comprising at least one transition metal and at least one<br>chalcogen disposed on a surface of the transition metal.                                                                                                                                                                                                        | Being used in continuing research at LANL.                          |
| 7,838,612        | 11/23/10      | E.I. du Pont de<br>Nemours and<br>Company | Arylene fluorinated sulfonimide compositions                                                                                                        | Aromatic sulfonimide compositions that can be<br>used to prepare polymers useful as membranes in<br>electrochemical cells.                                                                                                                                                                                                                                                                                                                        | Still being used in ongoing research efforts.                       |
| 7,838,138        | 11/23/10      | 3M Company                                | Fuel cell electrolyte<br>membrane with basic<br>polymer                                                                                             | A fuel cell electrolyte membrane that includes an acid<br>and a basic polymer. The acid is a low-volatility acid<br>that is fluorinated and is either oligomeric or non-<br>polymeric. The basic polymer is protonated by the acid<br>and is stable to hydrolysis. As a result, the electrolyte<br>membrane may be used at high operating temperatures<br>while preserving proton conductivity.                                                   | Part of a <u>commercial fuel cell</u><br><u>technology</u> project. |
| 7,829,603        | 11/09/10      | E.I. du Pont de<br>Nemours and<br>Company | Stable trifluorostyrene<br>containing compounds<br>grafted to base polymers,<br>and their use as polymer<br>electrolyte membranes                   | Ion exchange polymers that are useful in preparing<br>catalyst coated membranes and membrane electrode<br>assemblies used in fuel cells.                                                                                                                                                                                                                                                                                                          | No longer being used.                                               |

| Patent<br>Number | Award<br>Date | Organization                             | Title                                                                                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                | Status                                                             |
|------------------|---------------|------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 7,829,194        | 11/09/10      | ORNL                                     | Iron-based alloy and<br>nitridation treatment for<br>PEM fuel cell bipolar plates                       | A corrosion resistant electrically conductive component<br>that can be used as a bipolar plate in a PEM fuel cell.<br>The plates are composed of an alloy substrate (Fe base<br>metal with 10-30 wt. % Cr and 0.5-7 wt. % V) and<br>a continuous surface layer of chromium nitride and<br>vanadium nitride.                                                                                                                                | Part of an <u>emerging fuel cell</u><br><u>technology</u> project. |
| 7,824,651        | 11/02/10      | Nanotek<br>Instruments, Inc.             | Method of producing<br>exfoliated graphite, flexible<br>graphite, and nano-scaled<br>graphene platelets | A method of exfoliating a layered material (e.g.,<br>graphite and graphite oxide) to produce nano-scaled<br>platelets having a thickness smaller than 100 nm and<br>typically smaller than 10 nm. The invention can be used<br>in the manufacturing of fuel cell bipolar plates.                                                                                                                                                           | Part of an <u>emerging fuel cell</u><br><u>technology</u> project. |
| 7,815,986        | 10/19/10      | Arkema Inc.                              | Blend of ionic (co)polymer<br>resins and matrix (co)<br>polymers                                        | A novel polymeric resin blend useful for forming<br>durable and chemical-resistant films for fuel cell<br>membranes.                                                                                                                                                                                                                                                                                                                       | No longer being used.                                              |
| 7,807,063        | 10/05/10      | Giner<br>Electrochemical<br>Systems, LLC | Solid polymer electrolyte<br>composite membrane<br>comprising plasma etched<br>porous support           | A solid polymer electrolyte composite membrane and methods of manufacturing the same.                                                                                                                                                                                                                                                                                                                                                      | Part of an <u>emerging fuel cell</u><br><u>technology</u> project. |
| 7,803,891        | 09/28/10      | Arkema Inc.                              | Blend of ionic (co)polymer<br>resins and matrix<br>(co)polymers                                         | A novel polymeric resin blend useful for forming<br>durable and chemical-resistant films for fuel cell<br>membranes.                                                                                                                                                                                                                                                                                                                       | No longer being used.                                              |
| 7,803,493        | 09/28/10      | General Electric<br>Company              | Fuel cell system with<br>separating structure bonded<br>to electrolyte                                  | The invention relates to a fuel cell assembly that is<br>sealed in an efficient way to keep the fuel and oxidant<br>paths separated at high operating temperatures.                                                                                                                                                                                                                                                                        | Being used in continuing research at the company.                  |
| 7,803,477        | 09/28/10      | ORNL                                     | Metallization of bacterial<br>cellulose for electrical<br>and electronic device<br>manufacture          | A method for the deposition of metals in bacterial<br>cellulose and for the employment of the metallized<br>bacterial cellulose in the construction of fuel cells and<br>other electronic devices.                                                                                                                                                                                                                                         | Being used in continuing research at ORNL.                         |
| 7,794,170        | 09/14/10      | PNNL                                     | Joint with application in electrochemical devices                                                       | A hermetic seal forming flexible joint for use in<br>electrochemical devices, such as solid oxide fuel cells<br>(SOFCs), oxygen separators, and hydrogen separators,<br>at operating temperatures of greater than 600°C and<br>other extreme operating conditions. The joint<br>is comprised of metal and ceramic pats and a<br>flexible gasket. The flexible gasket is metal,<br>but is thinner and more flexible than the metal<br>part. | Research Complete; Seeking to<br>License                           |

| Patent<br>Number | Award<br>Date | Organization                         | Title                                                                                                  | Description                                                                                                                                                                                                                                                                                                                                            | Status                                                              |
|------------------|---------------|--------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 7,790,837        | 09/07/10      | Virginia<br>Polytechnic<br>Institute | Ion-conducting sulfonated polymeric materials                                                          | Sulfonated polymers that can be formed into membranes<br>that may be used in proton exchange membrane fuel<br>cells.                                                                                                                                                                                                                                   | Licensed to Battelle Memorial<br>Institute.                         |
| 7,790,314        | 09/07/10      | Virginia<br>Polytechnic<br>Institute | Sulfonated polymer<br>composition for forming<br>fuel cell electrodes                                  | Materials for a fuel cell membrane electrode assembly that are formed from sulfonated polymers.                                                                                                                                                                                                                                                        | Licensed to Battelle Memorial<br>Institute.                         |
| 7,785,454        | 08/31/10      | BASF<br>Corporation                  | Gas diffusion electrodes,<br>membrane-electrode<br>assemblies and method for<br>the production thereof | The invention relates to the production of an improved<br>gas diffusion electrode for fuel cells. The electrode<br>consists of an electrically conductive web, a non-<br>catalyzed gas diffusion layer, and a noble metal coating.                                                                                                                     | Part of a <u>commercial fuel cell</u><br><u>technology</u> project. |
| 7,781,529        | 08/24/10      | Arkema Inc.                          | Blend of ionic (co)polymer<br>resins and matrix (co)<br>polymers                                       | A novel polymeric resin blend useful for forming<br>durable and chemical-resistant films for fuel cell<br>membranes.                                                                                                                                                                                                                                   | No longer being used.                                               |
| 7,781,364        | 08/24/10      | LANL                                 | Chalcogen catalysts for<br>polymer electrolyte fuel cell                                               | A cathode catalyst comprising a metal support that<br>includes at least one transition metal and at least one<br>chalcogen, both in elemental form. The catalyst is<br>intended for use in polymer electrolyte membrane fuel<br>cells and direct methanol fuel cells.                                                                                  | Being used in continuing research at LANL.                          |
| 7,767,616        | 08/03/10      | ANL                                  | Aligned carbon nanotube<br>with electro-catalytic<br>activity for oxygen<br>reduction reaction         | A catalyst for an electro-chemical oxygen reduction<br>reaction (ORR) of a bundle of longitudinally aligned<br>carbon nanotubes having a catalytically active transition<br>metal incorporated longitudinally in said nanotubes.                                                                                                                       | No longer being used in research/<br>no longer being pursued.       |
| 7,767,610        | 08/03/10      | SNL                                  | Metal nanoparticles as a conductive catalyst                                                           | A metal nanocluster composite material for use as a conductive catalyst in fuel cell electrodes. The material has noble metal nanoclusters on a carbon substrate formed within a porous zeolitic material.                                                                                                                                             | Being used in continuing research at SNL.                           |
| 7,763,217        | 07/27/10      | PNNL                                 | Rapid start fuel reforming<br>systems and techniques                                                   | An on-board fuel processor includes a microchannel<br>steam reforming reactor and a water vaporizer heated<br>in series with a combustion gas. A rapid cold start can<br>be achieved in under 30 seconds with a manageable<br>amount of electric power consumption, making the<br>device advantageous for use in automotive fuel cell<br>applications. | Research complete; seeking to license.                              |

| Patent<br>Number | Award<br>Date | Organization                              | Title                                                                                                                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Status                                                             |
|------------------|---------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 7,758,921        | 07/20/10      | ANL                                       | Method of fabricating<br>electrode catalyst layers<br>with directionally oriented<br>carbon support for proton<br>exchange membrane fuel<br>cell | A method of making a membrane electrode assembly<br>(MEA) having an anode and a cathode and a proton<br>conductive membrane there between. A bundle<br>of longitudinally aligned carbon nanotubes with a<br>catalytically active transition metal incorporated in the<br>nanotubes forms at least one portion of the MEA and is<br>in contact with the membrane.                                                                                                                   | No longer being used in research/<br>no longer being pursued.      |
| 7,758,783        | 07/20/10      | Nanotek<br>Instruments, Inc.              | Continious production<br>of exfoliated graphite<br>composite compositions and<br>flow field plates                                               | A process for continuously producing a composite<br>composition that can be used to make fuel cell bipolar<br>plates or flow field plates. The flow field plates have an<br>exceptionally high electrical conductivity in the plate<br>thickness direction.                                                                                                                                                                                                                        | Part of an <u>emerging fuel cell</u><br><u>technology</u> project. |
| 7,737,190        | 06/15/10      | E.I. du Pont de<br>Nemours and<br>Company | Process to prepare stable<br>trifluorostyrene containing<br>compounds grafted to base<br>polymers using a solvent/<br>water mixture              | A process for preparing a fluorinated ion exchange<br>polymer that involves grafting at least one monomer<br>derived from trifluorostyrene onto at least one base<br>polymer in an organic solvent/water mixture. These<br>ion exchange polymers are useful in preparing catalyst<br>coated membranes and membrane electrode assemblies<br>used in fuel cells.                                                                                                                     | No longer being used.                                              |
| 7,732,084        | 06/08/10      | General Electric<br>Company               | Solid oxide fuel cell<br>with internal reforming,<br>catalyzed interconnect for<br>use therewith, and methods                                    | A catalyzed interconnect for placement between<br>an anode and a current collector in a fuel cell. This<br>interconnect improves the efficiency of internal<br>reforming of hydrocarbon fuels in solid oxide fuel cells.                                                                                                                                                                                                                                                           | Being used in continuing research at the company.                  |
| 7,709,135        | 05/04/10      | BASF<br>Corporation                       | Efficient process for<br>precious metal recovery<br>from cell membrane<br>electrode assemblies                                                   | A method is provided for recovering a catalytic element<br>from a fuel cell membrane electrode assembly. The<br>method includes grinding the membrane electrode<br>assembly into a powder, extracting the catalytic element<br>by forming a slurry comprising the powder and an acid<br>leachate adapted to dissolve the catalytic element into<br>a soluble salt, and separating the slurry into a depleted<br>powder and a supernatant containing the catalytic<br>element salt. | Part of an <u>emerging fuel cell</u><br><u>technology</u> project. |
| 7,704,919        | 04/27/10      | BNL                                       | Elecrocatalysts having gold<br>monolayers on platinum<br>nanoparticle cores, and uses<br>thereof                                                 | Gold-coated particles useful as fuel cell electrocatalyts.<br>The particles are composed of a platinum or platinum<br>alloy core at least partially encapsulated by an outer<br>shell of gold or gold alloy.                                                                                                                                                                                                                                                                       | Being used in continuing research at BNL and seeking to license.   |

| Patent<br>Number | Award<br>Date | Organization                              | Title                                                                                                                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                            | Status                                                                                                                       |
|------------------|---------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 7,704,918        | 04/27/10      | BNL                                       | Synthesis of metal-metal<br>oxide catalysts and<br>electrocatalysts using a<br>metal cation adsorption/<br>reduction and adatom<br>replacement by more noble<br>ones | Platinum-metal oxide composite particles and their use<br>as electrocatalysts in oxygen-reducing cathodes and fuel<br>cells. The invention also relates to methods of making<br>the metal-metal oxide composites.                                                                                                                                                                                                                                      | Being used in continuing research<br>at BNL and seeking to license.                                                          |
| 7,699,916        | 04/20/10      | ANL                                       | Corrosion-resistant,<br>electrically-conductive plate<br>for use in a fuel cell stack                                                                                | A corrosion resistant, electrically-conductive, durable<br>plate at least partially coated with an anchor coating and<br>a corrosion resistant coating. Preferably, the plate is<br>used as a bipolar plate in a proton exchange membrane<br>(PEMFC) fuel cell stack.                                                                                                                                                                                  | Being used in continuing research efforts at ANL.                                                                            |
| 7,691,780        | 04/06/10      | BNL                                       | Platinum- and platinum<br>alloy-coated palladium and<br>palladium alloy particles<br>and uses thereof                                                                | The invention relates to particle and nanoparticle<br>composites useful as oxygen-reduction electrocatalysts.<br>The particle composites are composed of a palladium or<br>palladium-alloy particle or nanoparticle substrate coated<br>with an atomic submonolayer, monolayer, bilayer, or<br>trilayer of zerovalent platinum atoms.                                                                                                                  | Part of an <u>emerging fuel cell</u><br><u>technology</u> project. Non-<br>exclusive license to N.E. Chemcat<br>Corporation. |
| 7,691,770        | 04/06/10      | General Electric<br>Company               | Electrode structure and methods of making same                                                                                                                       | The invention relates to a new electrode structure that improves the performance of solid oxide fuel cells.                                                                                                                                                                                                                                                                                                                                            | Being used in continuing research at the company.                                                                            |
| 7,659,026        | 02/09/10      | E.I. du Pont de<br>Nemours and<br>Company | Fluorinated Sulfonamide<br>Compounds and Polymer<br>Electrolyte Membranes<br>Prepared Therefrom For<br>Use In Electrochemical<br>Cells                               | A fluorinated sulfonamide small molecule with an<br>aromatic heterocyclic group, carbon atoms substituted<br>by fluorinated sulfonamide groups and linear or<br>branched perfluoroalkylene groups, optionally<br>containing oxygen, chlorine, bromine, or iodine atoms.<br>These polymers and small molecules are useful in<br>making polymer electrode membranes, membrane<br>electrode assemblies, and electrochemical cells, such as<br>fuel cells. | No longer being used.                                                                                                        |
| 7,652,479        | 01/26/10      | Scribner<br>Associates, Inc.              | Electrolyte measurement<br>device and measurement<br>procedure                                                                                                       | A novel electrode design and measurement system<br>that allows rapid assessment of the through-thickness<br>resistance of bare, non-catalyzed thin electrolytes such<br>as those used in PEM fuel cells.                                                                                                                                                                                                                                               | Part of an <u>emerging fuel cell</u><br><u>technology</u> project.                                                           |

| Patent<br>Number | Award<br>Date | Organization                    | Title                                                                                                                       | Description                                                                                                                                                                                                                                                                                                                                                 | Status                                                                                                          |
|------------------|---------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 7,648,784        | 01/19/10      | Delphi<br>Technologies,<br>Inc. | Method and apparatus<br>for controlling a fuel cell<br>system having a variable<br>number of parallel-<br>connected modules | A fuel cell APU system comprising a plurality of<br>fuel cell modules connected in parallel. Each module<br>includes a local controller connected to a master<br>controller that coordinates the modules to achieve a<br>desired power output at any given time. Each module is<br>operated within an output range to maximize efficiency<br>of the system. | Still being used in ongoing<br>research efforts. Part of an<br><u>emerging fuel cell technology</u><br>project. |
| 7,635,534        | 12/22/09      | BASF<br>Corporation             | Simplified process for<br>leaching precious metals<br>from fuel cell membrane<br>electrode assemblies                       | An improved process for recovering precious metal catalysts from recycled fuel cell membrane electrode assemblies.                                                                                                                                                                                                                                          | Part of an <u>emerging fuel cell</u><br><u>technology</u> project.                                              |
| 7,633,267        | 12/15/09      | Farasis Energy,<br>Inc.         | Apparatus for combinatorial screening of electrochemical materials                                                          | A high throughput combinatorial screening method and<br>apparatus for the evaluation of electrochemical materials<br>using a single voltage source.                                                                                                                                                                                                         | No longer being used.                                                                                           |
| 7,632,601        | 12/15/09      | BNL                             | Palladium-cobalt particles<br>as oxygen-reduction<br>electrocatalysts                                                       | An electrocatalyst is provided for oxygen-reducing cathodes and fuel cells containing palladium-cobalt particles.                                                                                                                                                                                                                                           | Part of an <u>emerging fuel cell</u><br><u>technology</u> project.                                              |
| 7,632,595        | 12/15/09      | General Electric<br>Company     | Compliant fuel cell system                                                                                                  | A fuel cell assembly comprising at least one metallic<br>component, at least one ceramic component, and a<br>structure disposed between the metallic component and<br>the ceramic component. The assembly is designed to<br>withstand strain during thermal cycles.                                                                                         | Being used in continuing research at the company.                                                               |
| 7,632,593        | 12/15/09      | ANL                             | Bipolar plate supported<br>solid oxide fuel cell with a<br>sealed anode compartment                                         | A bipolar plate supported solid oxide fuel cell with a<br>sealed anode compartment. An improved method of<br>sealing is provided by extending the metal seal around<br>the entire perimeter of the cell between an electrolyte<br>and the bipolar plate to form the anode compartment.                                                                      | No longer being used in research/<br>no longer being pursued.                                                   |
| 7,629,426        | 12/08/09      | Arkema Inc.                     | Blend of ionic (co)polymer<br>resins and matrix (co)<br>polymers                                                            | A novel polymeric resin blend useful for forming<br>durable and chemical-resistant films for fuel cell<br>membranes.                                                                                                                                                                                                                                        | No longer being used.                                                                                           |
| 7,629,285        | 12/08/09      | University of<br>South Carolina | Carbon-based composite<br>electrocatalysts for low<br>temperature fuel cells                                                | A process for synthesis of a low-cost, easily<br>manufactured carbon-based composite catalyst for<br>use in proton exchange membrane (PEM) fuel cells is<br>provided.                                                                                                                                                                                       | Research complete - licensed/<br>seeking to license.                                                            |
| 7,618,915        | 11/17/09      | University of<br>South Carolina | Composite catalysts<br>supported on modified<br>carbon substrates and<br>methods of making the same                         | A method of producing a low-cost, easily manufactured<br>carbon-based composite catalyst for use in proton<br>exchange membrane (PEM) fuel cells is disclosed.                                                                                                                                                                                              | Research complete - licensed/<br>seeking to license.                                                            |

| Patent<br>Number | Award<br>Date | Organization                              | Title                                                                                                                             | Description                                                                                                                                                                                                                                                                                                                                                                                | Status                                                               |
|------------------|---------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 7,601,216        | 10/13/09      | BASF<br>Corporation                       | Gas diffusion electrodes,<br>membrane-electrode<br>assemblies and method for<br>the production thereof                            | The invention relates to the production of an improved<br>gas diffusion electrode for fuel cells. A method for<br>forming a patterned noble metal coating on a gas<br>diffusion medium is provided.                                                                                                                                                                                        | Part of a <u>commercial fuel cell</u><br><u>technology</u> project.  |
| 7,589,047        | 09/15/09      | LANL                                      | Composite materials and method of making                                                                                          | A method of depositing noble metals on a metal<br>hexaboride support. The method permits the deposition<br>of metallic films of controlled thickness and particle size<br>at room temperature without using separate reducing<br>agents. Composite materials comprising noble metal<br>films deposited on such metal hexaborides may be used<br>as catalysts and electrodes in fuel cells. | Being used in continuing research at LANL.                           |
| 7,588,857        | 09/15/09      | LANL                                      | Chalcogen catalysts for<br>polymer electolyte fuel cell                                                                           | A methanol-tolerant cathode catalyst and a membrane<br>electrode assembly for fuel cells that includes such<br>a cathode catalyst. The cathode catalyst includes a<br>support having at least one transition metal in elemental<br>form and a chalcogen disposed on the support. Methods<br>of making the cathode catalyst and membrane electrode<br>assembly are also described.          | Research complete; seeking to license.                               |
| 7,588,849        | 09/15/09      | Delphi<br>Technologies,<br>Inc.           | Solid-oxide fuel cell system<br>having tempering of fuel<br>cell stacks by exhaust gas                                            | A fuel cell system which enhances stack performance<br>via heat exchange with exhaust gas and use of a<br>tempering jacket space surrounding the stack.                                                                                                                                                                                                                                    | Part of an <u>emerging fuel cell</u><br><u>technology</u> project.   |
| 7,575,824        | 08/18/09      | LANL                                      | Method of improving<br>fuel cell performance by<br>removing at least one metal<br>oxide contaminant from a<br>fuel cell electrode | A method of removing contaminants from a fuel cell<br>electrode. The method includes providing a getter<br>electrode and a fuel cell catalyst electrode having at<br>least one contaminant to a bath and applying a voltage<br>sufficient to drive the contaminant from the fuel cell<br>catalyst electrode to the getter electrode.                                                       | Being used in continuing research<br>at LANL and seeking to license. |
| 7,572,534        | 08/11/09      | 3M Company                                | Fuel cell membrane<br>electrode assembly                                                                                          | A highly durable fuel cell membrane electrode assembly<br>and methods of manufacturing are provided.                                                                                                                                                                                                                                                                                       | Part of a <u>commercial fuel cell</u><br><u>technology</u> project.  |
| 7,563,532        | 07/21/09      | E.I. du Pont de<br>Nemours and<br>Company | Trifluorostyrene containing<br>compounds, and their use<br>in polymer electrolyte<br>membranes                                    | A method for preparing a fluorinated ion exchange<br>polymer by grafting a monomer onto a base polymer.<br>These ion exchange polymers are useful in preparing<br>catalyst coated membranes and membrane electrode<br>assemblies for fuel cells.                                                                                                                                           | No longer being used.                                                |

| Patent<br>Number | Award<br>Date | Organization                              | Title                                                                                                                      | Description                                                                                                                                                                                                                                                                                                                                       | Status                                                                                                                       |
|------------------|---------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 7,562,588        | 07/21/09      | Delphi<br>Technologies,<br>Inc.           | Method and apparatus for<br>controlling mass flow rate<br>of recycled anode tail gas in<br>solid oxide fuel cell system    | A system for controlling the mass flow rate of anode tail<br>gas being recycled in a solid oxide fuel cell system.                                                                                                                                                                                                                                | Still being used in ongoing research efforts.                                                                                |
| 7,550,223        | 06/23/09      | LANL                                      | Method of making metal-<br>polymer composite catalysts                                                                     | A metal-polymer-carbon composite catalyst for use<br>as a cathode electrocatalyst in fuel cells. The catalyst<br>includes a heteroatomic polymer, a transition metal<br>linked to the heteroatomic polymer by one of nitrogen,<br>sulfur, and phosphorus, and a recast ionomer dispersed<br>throughout the heteroatomic polymer-carbon composite. | Being used in continuing research at LANL.                                                                                   |
| 7,544,764        | 06/09/09      | Virginia<br>Polytechnic<br>Institute      | Sulfonated polymer<br>composition for forming<br>fuel cell electrodes                                                      | Materials for a fuel cell membrane electrode assembly that are formed from sulfonated polymers.                                                                                                                                                                                                                                                   | Licensed to Battelle Memorial<br>Institute.                                                                                  |
| 7,518,886        | 04/14/09      | Virginia<br>Polytechnic<br>Institute      | Multiphase soft switched<br>DC/DC converter and<br>active control technique<br>for fuel cell ripple current<br>elimination | A fuel cell having an n-phase transformer isolated<br>phase shift DC/DC converter, a three-phase transformer<br>isolated phase shift DC/DC converter, and/or an active<br>current ripple control.                                                                                                                                                 | Research complete; seeking to license.                                                                                       |
| 7,517,604        | 04/14/09      | 3M Company                                | Fuel cell electrolyte<br>membrane with acidic<br>polymer                                                                   | A fuel cell electrolyte membrane that can be used at<br>high operating temperatures while preserving proton<br>conductivity.                                                                                                                                                                                                                      | Part of a <u>commercial fuel cell</u><br><u>technology</u> project.                                                          |
| 7,507,495        | 03/24/09      | BNL                                       | Hydrogen absorption<br>induced metal deposition on<br>palladium and palladium-<br>alloy particles                          | Methods for producing metal-coated palladium or<br>palladium-alloy particles, and for producing catalysts<br>using the particles.                                                                                                                                                                                                                 | Being used in continuing research<br>at BNL and seeking to license.<br>Non-exclusive license to N.E.<br>Chemcat Corporation. |
| 7,473,714        | 01/06/09      | Virginia<br>Polytechnic<br>Institute      | Materials for use as proton<br>conducting membranes for<br>fuel cells                                                      | A family of polymers having pendent sulfonate moieties<br>connected to polymeric main chain phenyl groups.<br>These polymers can be used in proton exchange<br>membranes for fuel cells.                                                                                                                                                          | Licensed to Battelle Memorial<br>Institute.                                                                                  |
| 7,456,314        | 11/25/08      | E.I. du Pont de<br>Nemours and<br>Company | Partially fluorinated ionic compounds                                                                                      | Cation-exchange resins that are useful in making<br>proton-exchange membranes for electrochemical cells<br>such as fuel cells.                                                                                                                                                                                                                    | Still being used in ongoing research efforts.                                                                                |
| 7,449,111        | 11/11/08      | Arkema Inc.                               | Resins containing ionic or<br>ionizable groups with small<br>domain sizes and improved<br>conductivity                     | A polymer that contains at least one acrylic resin or<br>vinyl resin having at least one ionic or ionizable group.<br>The polymer has improved conductivity when formed<br>into a film and can be used in fuel cell membranes.                                                                                                                    | No longer being used.                                                                                                        |

| Patent<br>Number | Award<br>Date | Organization                         | Title                                                                                                  | Description                                                                                                                                                                                                                                                                                                                                     | Status                                                              |
|------------------|---------------|--------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 7,419,546        | 09/02/08      | BASF<br>Corporation                  | Gas diffusion electrodes,<br>membrane-electrode<br>assemblies and method for<br>the production thereof | The invention relates to the production of an improved<br>gas diffusion electrode for fuel cells. A method for<br>forming a noble metal coating on a gas diffusion<br>medium is provided.                                                                                                                                                       | Part of a <u>commercial fuel cell</u><br><u>technology</u> project. |
| 7,396,880        | 07/08/08      | Arkema Inc.                          | Blend of ionic (co)polymer<br>resins and matrix (co)<br>polymers                                       | A novel polymeric resin blend useful for forming<br>durable and chemical-resistant films for fuel cell<br>membranes.                                                                                                                                                                                                                            | No longer being used.                                               |
| 7,373,819        | 05/20/08      | Honeywell<br>International<br>Inc.   | Stress sensitive humidity<br>sensor based on a MEMS<br>structure                                       | A humidity sensing apparatus and method include a<br>substrate and a MEMS structure. The MEMS structure<br>comprises a humidity-sensitive material in association<br>with a movable member. Changes in humidity causes<br>movement in the MEMS structure providing an<br>indication of humidity based on a stress within the<br>MEMS structure. | No longer being used.                                               |
| 7,365,121        | 04/29/08      | Virginia<br>Polytechnic<br>Institute | Highly conductive<br>thermoplastic composites<br>for rapid production of fuel<br>cell bipolar plates   | A low-cost method of fabricating bipolar plates for use<br>in fuel cells that uses a wet lay process for combining<br>graphite particles, thermoplastic fibers, and reinforcing<br>fibers to produce a plurality of formable sheets.                                                                                                            | Research complete; seeking to license.                              |
| 7,361,729        | 04/22/08      | Virginia<br>Polytechnic<br>Institute | Ion-conducting sulfonated polymeric materials                                                          | Sulfonated polymers that can be formed into membranes<br>that may be used in proton exchange membrane fuel<br>cells.                                                                                                                                                                                                                            | Licensed to Battelle Memorial<br>Institute.                         |
| 7,323,159        | 01/29/08      | ANL                                  | Method for fast start of a fuel processor                                                              | An improved fuel processor for fuel cells is provided<br>whereby the startup time of the processor is less than 60<br>seconds and can be as low as 30 seconds, if not less.                                                                                                                                                                     | Not licensed and not being used in research at ANL.                 |
| 7,270,906        | 09/18/07      | Delphi<br>Technologies,<br>Inc.      | Solid-oxide fuel cell module<br>for a fuel cell stack                                                  | A novel fuel cell module having four sheet metal parts<br>stamped from flat stock. The parts do not require any<br>forming operations such as folding or dishing, and each<br>part may have a different thickness to suit its function.                                                                                                         | Part of an <u>emerging fuel cell</u><br><u>technology</u> project.  |
| 7,264,778        | 09/04/07      | SNL                                  | Carbon monoxide sensor<br>and method of use                                                            | Carbon monoxide sensors suitable for use in hydrogen<br>feed streams and methods of use. The sensors are<br>palladium metal/insulator/semiconductor sensors. The<br>methods and sensors are particularly suitable for use in<br>proton exchange membrane fuel cells.                                                                            | Not licensed and not being used in research at SNL.                 |

| Patent<br>Number | Award<br>Date | Organization                              | Title                                                                                                                                     | Description                                                                                                                                                                                                                                                                                                                   | Status                                                                  |
|------------------|---------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 7,255,798        | 08/14/07      | Ion Power, Inc.                           | Recycling of used<br>perfluorosulfonic acid<br>membranes                                                                                  | A method for recovering and recycling catalyst-<br>coated fuel cell membranes includes dissolving the<br>used membranes in water and solvent, heating the<br>dissolved membranes under pressure, and separating the<br>components.                                                                                            | Used in Ion Power's <u>emerging</u><br>technology.                      |
| 7,247,403        | 07/24/07      | ORNL                                      | Surface modified stainless<br>steels for PEM fuel cell<br>bipolar plates                                                                  | A nitridation treated stainless steel article (such as a<br>bipolar plate for a proton exchange membrane fuel cell)<br>having lower interfacial contact electrical resistance and<br>better corrosion resistance than an untreated stainless<br>steel article.                                                                | Part of an <u>emerging fuel cell</u><br><u>technology</u> project.      |
| 7,214,442        | 05/08/07      | LANL                                      | High specific power, direct methanol fuel cell stack                                                                                      | A fuel cell stack including at least one direct methanol<br>fuel cell. A cathode manifold is used to convey ambient<br>air to each fuel cell, and an anode manifold is used to<br>convey liquid methanol fuel to each fuel cell.                                                                                              | Being used in continuing research at LANL.                              |
| 7,211,346        | 05/01/07      | ORNL                                      | Corrosion-resistant metallic<br>bipolar plate                                                                                             | An electrically conductive component such as a<br>bipolar plate for a PEM fuel cell. The component has<br>a substantially external, continuous layer of chromium<br>nitride.                                                                                                                                                  | Part of an <u>emerging fuel cell</u><br><u>technology</u> project.      |
| 7,195,835        | 03/27/07      | ANL                                       | Proton conducting<br>membrane for fuel cells                                                                                              | An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure.                                                                                                                                                                                                                        | No licensee and no further<br>development of this technology at<br>ANL. |
| 7,138,199        | 11/21/06      | Dynalene, Inc.                            | Fuel cell and fuel cell coolant compositions                                                                                              | Directed to coolant compositions, particularly coolant<br>compositions useful in fuel cells, and to fuel cells<br>containing such coolant compositions.                                                                                                                                                                       | Part of a <u>commercial fuel cell</u><br><u>technology</u> project.     |
| 7,135,537        | 11/14/06      | E.I. du Pont de<br>Nemours and<br>Company | Sulfonimide-containing<br>poly(arylene ether)s and<br>poly(arylene ether sulfone)<br>s, methods for producing the<br>same, and their uses | Directed to sulfonimide-containing polymers, for use in conductive membranes and fuel cells.                                                                                                                                                                                                                                  | No longer being used.                                                   |
| 7,101,643        | 09/05/06      | LBNL                                      | Polymeric electrolytes based<br>on hydrosilyation reactions                                                                               | New polymer electrolytes that are prepared by in situ<br>cross-linking of allyl functional polymers based on a<br>hydrosilation reaction using a multifunctional silane<br>cross-linker and an organoplatinum catalyst. The<br>electrolyte membranes are insoluable in organic solvents<br>and have high mechanical strength. | Being used in research at LBNL<br>and seeking to license.               |
| 7,101,635        | 09/05/06      | LANL                                      | Methanol-tolerant cathode<br>catalyst composite for direct<br>methanol fuel cells                                                         | A direct methanol fuel cell having a methanol fuel supply, oxidant supply, and its membrane electrode assembly.                                                                                                                                                                                                               | Not licensed and not being used at LANL for research.                   |

| Patent<br>Number | Award<br>Date | Organization                   | Title                                                                                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                              | Status                                                                                 |
|------------------|---------------|--------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 7,101,527        | 09/05/06      | Iowa State<br>University       | Mixed anion materials and<br>compounds for novel proton<br>conducting membranes                            | The present invention provides new amorphous<br>or partially crystalline mixed anion chalcogenide<br>compounds for use in proton exchange membranes<br>which are able to operate over a wide variety of<br>temperature ranges, including in the intermediate<br>temperature range of about 100 ° C. to 300° C., and<br>new uses for crystalline mixed anion chalcogenide<br>compounds in such proton exchange membranes. | Being used in research at Iowa<br>State University and seeking to<br>license.          |
| 7,052,793        | 05/30/06      | Foster-Miller,<br>Inc.         | Composite solid polymer<br>electrolyte membranes                                                           | The invention relates to composite solid polymer<br>electrolyte membranes (SPEMs), which include a<br>porous polymer substrate interpenetrated with an<br>ion-conducting material. These SPEMs are useful in<br>electrochemical applications, including fuel cells and<br>electrodialysis.                                                                                                                               | Being used in continuing research at the company.                                      |
| 7,022,810        | 04/04/06      | SNL                            | Proton exchange<br>membrane materials<br>for the advancement of<br>direct methanol fuel-cell<br>technology | A new class of hybrid organic-inorganic materials, and<br>methods of synthesis, which can be used as a proton<br>exchange membrane in a direct methanol fuel cell.                                                                                                                                                                                                                                                       | Not licensed and not being used in research at SNL.                                    |
| 7,018,604        | 03/28/06      | Iowa State<br>University       | Compounds for novel<br>proton conducting<br>membranes and methods of<br>making same                        | A new set of compounds for use in polymer electrolyte<br>membranes which are able to operate in a wide variety<br>of temperature ranges, including in the intermediate<br>temperature range of about 100°C to 700°C.                                                                                                                                                                                                     | Being used in research at Iowa<br>State University and seeking to<br>license.          |
| 7,014,931        | 03/21/06      | LANL                           | Methanol-tolerant cathode<br>catalyst composite for direct<br>methanol fuel cells                          | A direct methanol fuel cell having a methanol fuel supply, oxidant supply, and its membrane electrode assembly.                                                                                                                                                                                                                                                                                                          | Not licensed and not being used at LANL for research.                                  |
| 6,995,114        | 02/07/06      | Symyx<br>Technologies,<br>Inc. | Platinum-ruthenium-<br>palladium fuel cell<br>electrocatalyst                                              | A catalyst for use in electrochemical reactor devices, the catalyst containing platinum, ruthenium, and palladium.                                                                                                                                                                                                                                                                                                       | Not licensed and no research being done with this patent.                              |
| 6,994,829        | 02/07/06      | PNNL                           | Fluid processing device and method                                                                         | A fluid processing unit having first and second<br>interleaved flow paths in a cross flow configuration.<br>The device can be used for vaporization of water,<br>gasoline, and other fluids, and is useful for automotive<br>fuel cell applications requiring rapid startup.                                                                                                                                             | Research complete; seeking to license.                                                 |
| 6,986,963        | 01/17/06      | ORNL                           | Metallization of bacterial<br>cellulose for electrical<br>and electronic device<br>manufacture             | Metallized bacterial cellulose used in constructing fuel cells and other electronic devices.                                                                                                                                                                                                                                                                                                                             | No commercialization and no<br>further development being pursued<br>using this patent. |

| Patent<br>Number | Award<br>Date | Organization                          | Title                                                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Status                                                                                                 |
|------------------|---------------|---------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 6,986,961        | 01/17/06      | LANL                                  | Fuel cell stack with passive air supply                                          | A fuel cell stack comprised of a plurality of polymer electrolyte fuel cells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Not licensed and not being used at LANL for research.                                                  |
| 6,977,122        | 12/20/05      | ANL                                   | Proton conducting<br>membrane for fuel cells                                     | An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No licensee and no further<br>development of this technology at<br>ANL.                                |
| 6,962,760        | 11/08/05      | LANL                                  | Methods of conditioning direct methanol fuel cells                               | Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Not licensed and not being used at LANL for research.                                                  |
| 6,960,235        | 11/01/05      | LLNL                                  | Chemical microreactor and method thereof                                         | A chemical microreactor suitable for generation of<br>hydrogen fuel from liquid sources such as ammonia,<br>methanol, and butane through steam reforming<br>processes when mixed with an appropriate amount of<br>water contains capillary microchannels with integrated<br>resistive heaters to facilitate the occurrence of catalytic<br>steam reforming reactions.                                                                                                                                                                                                                                          | Licensed to Bren-Tronics, Inc.;<br>part of a <u>commercial fuel cell</u><br><u>technology</u> project. |
| 6,956,083        | 10/18/05      | LBNL                                  | Single ion conductor cross-<br>linked polymeric networks                         | The invention relates to the synthesis, characterization,<br>and electrochemical response of a new type of single-<br>ion comb-branch polymer electrolyte that can be used as<br>a proton exchange membrane in fuel cells.                                                                                                                                                                                                                                                                                                                                                                                     | Being used in research at LBNL<br>and seeking to license.                                              |
| 6,926,986        | 08/09/05      | Energy<br>Conversion<br>Devices, Inc. | Fuel cell with encapsulated electrodes                                           | A fuel cell utilizing parallel flow of a hydrogen stream,<br>an oxygen stream, and an electrolyte solution with<br>respect to the electrodes, while maintaining mechanical<br>support within the fuel cell. The fuel cell utilizes<br>encapsulated electrodes to maintain a high air flow rate<br>and low pressure throughout the fuel cell.                                                                                                                                                                                                                                                                   | No longer being used.                                                                                  |
| 6,921,605        | 07/26/05      | Symyx<br>Technologies,<br>Inc.        | Platinum-ruthenium-nickel<br>fuel cell electrocatalyst                           | A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum, ruthenium, and nickel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not licensed and no research being done with this patent.                                              |
| 6,921,595        | 07/26/05      | Nuvera Fuel<br>Cells, Inc.            | Joint-cycle high-efficiency<br>fuel cell system with power<br>generating turbine | Process for increasing the efficiency of a system<br>comprising a fuel reformer coupled to a fuel cell.<br>Pressurized air and heat generated by the fuel cell are<br>used to make a pressurized air/steam mixture. The air/<br>steam mixture is then fed as an oxidant into a fuel<br>burner; producing a steam-containing exhaust having<br>an expansion potential from the fuel burner; driving an<br>expander using the expansion potential of the steam-<br>containing exhaust; and recovering mechanical energy<br>from the expander in excess of the energy used in<br>compressing the pressurized air. | No longer being used in research/<br>no longer being pursued.                                          |

| Patent<br>Number | Award<br>Date | Organization                          | Title                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Status                                                                                           |
|------------------|---------------|---------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 6,916,564        | 07/12/05      | Nuvera Fuel<br>Cells, Inc.            | High-efficiency fuel cell<br>power system with power<br>generating expander  | A hydrogen fuel cell power system with improved<br>efficiency comprising of a fuel cell, hydrogen gas<br>source, compressor for creating a pressurized air<br>stream, and a liquid supply which is heated by waste<br>heat form the power system to produce a pressurized<br>air and steam mixture. The pressurized air/steam<br>mixture, which is preferably used as the oxidant in the<br>fuel cell, is combusted with fuel in a burner to produce<br>a high-temperature steam-laden exhaust stream. The<br>high-temperature steam-laden exhaust stream drives<br>an expander to produce a power output, and a power<br>take-off from the expander uses the expander power to,<br>for instance, drive an electrical generator, or drive other<br>system components. | No longer being used in research/<br>no longer being pursued.                                    |
| 6,864,004        | 03/08/05      | LANL                                  | Direct methanol fuel cell stack                                              | A stack of direct methanol fuel cells exhibiting a circular footprint.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Not licensed and not being used at LANL for research.                                            |
| 6,861,169        | 03/01/05      | Nuvera Fuel<br>Cells, Inc.            | Cogeneration of power and<br>heat by an integrated fuel<br>cell power system | Methods and apparatus for the cogeneration of power<br>and heat from a fuel cell stack and an associated fuel<br>processor assembly (i.e., a fuel reforming system) to<br>provide both electricity and heating for a particular site,<br>such as a building or a group of buildings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No longer being used in research/<br>no longer being pursued.                                    |
| 6,847,188        | 01/25/05      | General Motors<br>Corporation         | Fuel cell stack monitoring<br>and system control                             | A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Being used in continuing research at the company.                                                |
| 6,828,057        | 12/07/04      | Energy<br>Conversion<br>Devices, Inc. | Fuel cell with framed electrodes                                             | A fuel cell utilizing parallel flow of a hydrogen stream,<br>an oxygen stream, and an electrolyte solution with<br>respect to the electrodes, while maintaining mechanical<br>support within the fuel cell. The fuel cell utilizes framed<br>electrodes to maintain a high air flow rate and low<br>pressure throughout the fuel cell.                                                                                                                                                                                                                                                                                                                                                                                                                                | Being used in ongoing research<br>as part of Tactical Fuel Cells at<br>Energy Technologies, Inc. |
| 6,818,341        | 11/16/04      | LANL                                  | Fuel cell anode<br>configuration for CO<br>tolerance                         | A polymer electrolyte fuel cell (PEFC) is designed to<br>operate on a reformate fuel stream containing oxygen<br>and diluted hydrogen fuel with CO impurities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Being used in research at LANL but no licensees.                                                 |
| 6,808,838        | 10/26/04      | LANL                                  | Direct methanol fuel cell<br>and system                                      | A fuel cell having an anode and a cathode and a polymer<br>electrolyte membrane located between anode and<br>cathode gas diffusion backings uses a methanol vapor<br>fuel supply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not licensed and not being used at LANL for research.                                            |

| Patent<br>Number | Award<br>Date | Organization                               | Title                                                                                                         | Description                                                                                                                                                                                                                                                                                                                                                          | Status                                                                          |
|------------------|---------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 6,790,548        | 09/14/04      | General Motors<br>Corporation              | Staged venting of fuel<br>cell system during rapid<br>shutdown                                                | A venting methodology and system for rapid shutdown<br>of a fuel cell apparatus used in a vehicle propulsion<br>system.                                                                                                                                                                                                                                              | Being used in continuing research at the company.                               |
| 6,723,678        | 04/20/04      | Symyx<br>Technologies,<br>Inc.             | Platinum-ruthenium-nickel<br>alloy for use as a fuel cell<br>catalyst                                         | An improved noble metal alloy composition for a fuel<br>cell catalyst, the alloy containing platinum, ruthenium,<br>and nickel. The alloy shows methanol oxidation activity.                                                                                                                                                                                         | Not licensed and no research being done with this patent.                       |
| 6,696,382        | 02/24/04      | LANL                                       | Catalyst inks and method<br>of application for direct<br>methanol fuel cells                                  | Inks are formulated for forming anode and cathode<br>catalyst layers and applied to anode and cathode sides of<br>a membrane for a direct methanol fuel cell.                                                                                                                                                                                                        | Not licensed and not being used at LANL for research.                           |
| 6,692,851        | 02/17/04      | General Motors<br>Corporation              | Fuel cell stack monitoring and system control                                                                 | A control method for monitoring the voltage and current from a fuel cell stack.                                                                                                                                                                                                                                                                                      | Being used in continuing research at the company.                               |
| 6,686,084        | 02/03/04      | Hybrid Power<br>Generation<br>Systems, LLC | Gas block mechanism for<br>water removal in fuel cells                                                        | An apparatus and method for removing water from the cathode side of a fuel cell.                                                                                                                                                                                                                                                                                     | No longer being used.                                                           |
| 6,682,837        | 01/27/04      | Symyx<br>Technologies,<br>Inc.             | Method for producing<br>electricity using a platinum-<br>ruthenium-palladium<br>catalyst in a fuel cell       | A method for producing electricity using a fuel cell<br>that utilizes a ternary alloy composition as a fuel cell<br>catalyst, the ternary alloy composition containing<br>platinum, ruthenium, and palladium.                                                                                                                                                        | Not licensed and no research being done with this patent.                       |
| 6,670,305        | 12/30/03      | ANL                                        | Free-standing monolithic<br>catalyst with micro-scale<br>channel dimensions                                   | A monolithic catalyst with micro-scale flow channels<br>and methods of making such a monolithic catalyst.                                                                                                                                                                                                                                                            | No longer being used in research/<br>no longer being pursued.                   |
| 6,670,301        | 12/30/03      | BNL                                        | Carbon monoxide tolerant<br>electrocatalyst with low<br>platinum loading and a<br>process for its preparation | An electrocatalyst is provided for use in a fuel cell that<br>has low platinum loading and a high tolerance to carbon<br>monoxide poisoning.                                                                                                                                                                                                                         | Part of an <u>emerging fuel cell</u><br><u>technology</u> project.              |
| 6,653,005        | 11/25/03      | University of<br>Central Florida           | Portable hydrogen<br>generator-fuel cell apparatus                                                            | A compact hydrogen generator is coupled to or integrated with a fuel cell for portable power applications.                                                                                                                                                                                                                                                           | Being used in research at<br>University of Central Florida but<br>no licensees. |
| 6,635,369        | 10/21/03      | LANL                                       | Method for improving fuel cell performance                                                                    | A method is provided for operating a fuel cell at high voltage for sustained periods of time.                                                                                                                                                                                                                                                                        | Being used in research at LANL but no licensees.                                |
| 6,617,065        | 09/09/03      | Teledyne Energy<br>Systems, Inc.           | Method and apparatus for<br>maintaining neutral water<br>balance in a fuel cell system                        | A method for maintaining a neutral water balance in<br>a fuel cell system, wherein water from the exhaust<br>of a fuel cell stack is recycled for use in the system's<br>humidifiers and other components. The water balance<br>is maintained by adjusting the fuel cell stack operating<br>temperature based on the water level in the system's<br>water reservoir. | No longer being used.                                                           |

| Patent<br>Number | Award<br>Date | Organization                     | Title                                                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                | Status                                                    |
|------------------|---------------|----------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 6,607,854        | 08/19/03      | Honeywell<br>International Inc.  | Three-wheel air<br>turbocompressor for PEM<br>fuel cell systems                                      | A fuel cell system that utilizes a pair of parallel<br>turbines engaged to a compressor for increased system<br>efficiency.                                                                                                                                                                                                                                                                | No longer being used.                                     |
| 6,602,624        | 08/05/03      | General Motors<br>Corporation    | Control apparatus and<br>method for efficiently<br>heating a fuel processor in a<br>fuel cell system | An apparatus and method for efficiently controlling the<br>amount of heat generated by a fuel processor in a fuel<br>cell system. A temperature error between actual and<br>desired fuel processor temperatures is determined; this<br>error is converted to a combustor fuel injector command<br>signal or a heat dump valve position command signal<br>depending upon the type of error. | Being used in continuing research at the company.         |
| 6,596,422        | 07/22/03      | LANL                             | Air breathing direct<br>methanol fuel cell                                                           | A method for activating a membrane electrode assembly<br>for a direct methanol fuel cell is disclosed. The method<br>comprises operating the fuel cell with humidified<br>hydrogen as the fuel followed by running the fuel cell<br>with methanol as the fuel.                                                                                                                             | Not licensed and not being used at LANL for research.     |
| 6,576,359        | 06/10/03      | General Motors<br>Corporation    | Controlled air injection for a fuel cell system                                                      | A method and apparatus for injecting oxygen into a<br>fuel cell reformate stream to reduce the level of carbon<br>monoxide while preserving the level of hydrogen in a<br>fuel cell system.                                                                                                                                                                                                | Being used in continuing research at the company.         |
| 6,551,736        | 04/22/03      | Teledyne Energy<br>Systems, Inc. | Fuel cell collector plates<br>with improved mass transfer<br>channels                                | Fuel cell collector plates with new channel constructions<br>for improving the transportation of gases to the cell's gas<br>diffusion layers.                                                                                                                                                                                                                                              | Research complete; seeking to license.                    |
| 6,528,198        | 03/04/03      | Plug Power, Inc.                 | Fuel cell membrane<br>hydration and fluid metering                                                   | A hydration system includes fuel cell fluid flow plate(s) and injection port(s).                                                                                                                                                                                                                                                                                                           | No longer being used.                                     |
| 6,517,965        | 02/11/03      | Symyx<br>Technologies,<br>Inc.   | Platinum-ruthenium-nickel<br>alloy for use as a fuel cell<br>catalyst                                | An improved noble metal alloy composition for a fuel<br>cell catalyst, the alloy containing platinum, ruthenium,<br>and nickel. The alloy shows methanol oxidation activity.                                                                                                                                                                                                               | Not licensed and no research being done with this patent. |
| 6,498,121        | 12/24/02      | Symyx<br>Technologies,<br>Inc.   | Platinum-ruthenium-<br>palladium alloys for use as a<br>fuel cell catalyst                           | A noble metal alloy composition for a fuel cell catalyst,<br>a ternary alloy composition containing platinum,<br>ruthenium and palladium. The alloy shows increased<br>activity compared with well-known catalysts.                                                                                                                                                                        | Not licensed and no research being done with this patent. |
| 6,497,970        | 12/24/02      | General Motors<br>Corporation    | Controlled air injection for a fuel cell system                                                      | A method and apparatus for injecting oxygen into a<br>fuel cell reformate stream to reduce the level of carbon<br>monoxide while preserving the level of hydrogen in a<br>fuel cell system.                                                                                                                                                                                                | Being used in continuing research at the company.         |

B-24

| Patent<br>Number | Award<br>Date | Organization                     | Title                                                                  | Description                                                                                                                                                                                                                                                                                                                                                                          | Status                                                                |
|------------------|---------------|----------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 6,492,052        | 12/10/02      | LANL                             | Air breathing direct<br>methanol fuel cell                             | An air breathing direct methanol fuel cell is provided<br>with a membrane electrode assembly, a conductive<br>anode assembly that is permeable to air and directly<br>open to atmospheric air, and a conductive cathode<br>assembly that is permeable to methanol and directly<br>contacting a liquid methanol source.                                                               | Not licensed and not being used at LANL for research.                 |
| 6,490,812        | 12/10/02      | PNNL                             | Active microchannel fluid<br>processing unit and method<br>of making   | An active microchannel fluid processing unit.                                                                                                                                                                                                                                                                                                                                        | Exclusive license to Velocys, Inc.                                    |
| 6,458,479        | 10/01/02      | LANL                             | Air breathing direct<br>methanol fuel cell                             | An air breathing direct methanol fuel cell is provided<br>with a membrane electrode assembly, a conductive<br>anode assembly that is permeable to air and directly<br>open to atmospheric air, and a conductive cathode<br>assembly that is permeable to methanol and directly<br>contacting a liquid methanol source.                                                               | Not licensed and not being used at LANL for research.                 |
| 6,455,180        | 09/24/02      | General Motors<br>Corporation    | Flexible method for<br>monitoring fuel cell voltage                    | A method for monitoring the voltage of different<br>groups of cells (a.k.a., "clusters") within a fuel cell<br>stack, wherein the number of cells in a cluster can be<br>varied. The method improves fuel cell stack diagnostic<br>monitoring by enabling identification of individual cells<br>within the stack that are contributing to a voltage drop<br>across the entire stack. | Being used in continuing research at the company.                     |
| 6,454,922        | 09/24/02      | LANL                             | Corrosion test cell for<br>bipolar plates                              | A corrosion test cell for evaluating corrosion resistance<br>in fuel cell bipolar plates.                                                                                                                                                                                                                                                                                            | Exclusive license to Fuel Cell<br>Technologies, Inc <u>Commercial</u> |
| 6,451,471        | 09/17/02      | Teledyne Energy<br>Systems, Inc. | Conductivity fuel cell<br>collector plate and method<br>of fabrication | An improved method of manufacturing PEM fuel cell collector plates that increases the electrical conductivity and mechanical strength of the plates.                                                                                                                                                                                                                                 | Research complete; seeking to license.                                |
| 6,451,465        | 09/17/02      | General Motors<br>Corporation    | Method for operating a combustor in a fuel cell system                 | A method of operating a combustor to heat a fuel<br>processor in a fuel cell system, in which the fuel<br>processor includes a reactor which generates a hydrogen<br>containing stream.                                                                                                                                                                                              | No longer being pursued, abandoned.                                   |
| 6,436,561        | 08/20/02      | General Motors<br>Corporation    | Methanol tailgas combustor<br>control method                           | A method for controlling the power, temperature, and<br>fuel source of a combustor used to supply heat to a fuel<br>reformer used for generating hydrogen from liquid fuels<br>(e.g., methanol) in on-board automotive applications.                                                                                                                                                 | Being used in continuing research at the company.                     |

| Patent<br>Number | Award<br>Date | Organization                  | Title                                                                                             | Description                                                                                                                                                                                                                                                                                                         | Status                                                |
|------------------|---------------|-------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 6,416,893        | 07/09/02      | General Motors<br>Corporation | Method and apparatus<br>for controlling combustor<br>temperature during transient<br>load changes | A method and apparatus for controlling the temperature<br>of a combustor in an automotive fuel cell system. The<br>method includes a fast acting air bypass valve connected<br>in parallel with an air inlet to the combustor.                                                                                      | Being used in continuing research at the company.     |
| 6,413,662        | 07/02/02      | General Motors<br>Corporation | Fuel cell system shutdown<br>with anode pressure control                                          | A venting methodology and pressure sensing and vent<br>valving arrangement for monitoring anode bypass<br>valve operating during the normal shutdown of a fuel<br>cell apparatus of the type used in vehicle propulsion<br>systems.                                                                                 | Being used in continuing research at the company.     |
| 6,413,661        | 07/02/02      | General Motors<br>Corporation | Method for operating a<br>combustor in a fuel cell<br>system                                      | A method of operating a combustor to heat a fuel<br>processor to a desired temperature in a fuel cell system,<br>wherein the fuel processor generates hydrogen from a<br>hydrocarbon for reaction within a fuel cell to generate<br>electricity.                                                                    | No longer being pursued, abandoned.                   |
| 6,395,414        | 05/28/02      | General Motors<br>Corporation | Staged venting of fuel<br>cell system during rapid<br>shutdown                                    | A venting methodology and system for rapid shutdown<br>of a fuel cell apparatus of the type used in a vehicle<br>propulsion system.                                                                                                                                                                                 | Being used in continuing research at the company.     |
| 6,376,112        | 04/23/02      | General Motors<br>Corporation | Controlled shutdown of a fuel cell                                                                | A method is provided for the shutdown of a fuel cell<br>system to relieve system overpressure while maintaining<br>air compressor operation, and corresponding vent<br>valving and control arrangement. The method and<br>venting arrangement can be employed in a fuel cell<br>system used for vehicle propulsion. | Being used in continuing research at the company.     |
| 6,372,376        | 04/16/02      | General Motors<br>Corporation | Corrosion resistant PEM<br>fuel cell                                                              | A PEM fuel cell having electrical contact elements<br>comprising a corrosion-susceptible substrate metal<br>coated with an electrically conductive, corrosion-<br>resistant polymer.                                                                                                                                | Being used in continuing research at the company.     |
| 6,306,531        | 10/23/01      | General Motors<br>Corporation | Combustor air flow control<br>method for fuel cell<br>apparatus                                   | A method for controlling the heat output of a combustor<br>used to provide heat to a fuel reformer in a fuel cell<br>apparatus.                                                                                                                                                                                     | Being used in continuing research at the company.     |
| 6,296,964        | 10/02/01      | LANL                          | Enhanced methanol<br>utilization in direct<br>methanol fuel cell                                  | The fuel utilization of a direct methanol fuel cell is<br>enhanced for improved cell efficiency.                                                                                                                                                                                                                    | Not licensed and not being used at LANL for research. |
| 6,277,513        | 08/21/01      | General Motors<br>Corporation | Layered electrode for<br>electrochemical cells                                                    | A fuel cell electrode structure consisting of a current<br>collector sheet and first and second layers of electrode<br>material. The electrode design improves catalyst<br>utilization and water management.                                                                                                        | Being used in continuing research at the company.     |

| Patent<br>Number | Award<br>Date | Organization                              | Title                                                                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Status                                                                               |
|------------------|---------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 6,268,074        | 07/31/01      | General Motors<br>Corporation             | Water injected fuel cell<br>system compressor                                                   | A fuel cell system that uses a dry compressor for<br>pressurizing air supplied to the cathode side of the fuel<br>cell. An injector sprays a controlled amount of water<br>onto the compressor's rotor(s) to improve the energy<br>efficiency of the compressor.                                                                                                                                                                                                                                                       | Being used in continuing research at the company.                                    |
| 6,265,222        | 07/24/01      | Advanced<br>Technology<br>Materials, Inc. | Micro-machined thin film<br>hydrogen gas sensor and<br>method of making and using<br>the sensor | A hydrogen sensor including a thin film sensor element<br>formed, e.g., by metalorganic chemical vapor deposition<br>or physical vapor deposition, on a microhotplate<br>structure.                                                                                                                                                                                                                                                                                                                                    | Patent sold to Honeywell but no further R&D being done with the patent at this time. |
| 6,265,092        | 07/24/01      | General Motors<br>Corporation             | Method of controlling<br>injection of oxygen into<br>hydrogen-rich fuel cell feed<br>stream     | A method of operating a $H_2 - O_2$ fuel cell fueled by<br>hydrogen-rich fuel stream containing CO. The CO<br>content is reduced to acceptable levels by injecting<br>oxygen into the fuel gas stream.                                                                                                                                                                                                                                                                                                                 | Being used in continuing research at the company.                                    |
| 6,255,012        | 07/03/01      | LANL                                      | Pleated metal bipolar<br>assembly                                                               | Bipolar plates for electrochemical cells are formed<br>from conductive foils that are supported by a polymer<br>support plate. The polymer support plate can be readily<br>configured with flow fields during a manufacturing<br>process, such as injection molding, without the need<br>for machining. Likewise, the conductive foils can<br>be stamped or corrugated to matching configurations<br>without any need for machining. The resulting structure<br>is inexpensive to form and is compact and lightweight. | Being used in continuing research at LANL.                                           |
| 6,248,469        | 06/19/01      | Foster-Miller,<br>Inc.                    | Composite solid polymer<br>electrolyte membranes                                                | The invention relates to composite solid polymer<br>electrolyte membranes (SPEMs), which include a<br>porous polymer substrate interpenetrated with an<br>ion-conducting material. These SPEMs are useful in<br>electrochemical applications, including fuel cells and<br>electrodialysis.                                                                                                                                                                                                                             | Being used in continuing research at the company.                                    |
| 6,248,467        | 06/19/01      | LANL                                      | Composite bipolar plate for electrochemical cells                                               | A bipolar separator plate for fuel cells consists of a molded mixture of a vinyl ester resin and graphite powder.                                                                                                                                                                                                                                                                                                                                                                                                      | Exclusive license to BMCI -<br>Commercial                                            |
| 6,232,005        | 05/15/01      | General Motors<br>Corporation             | Fuel cell system combustor                                                                      | A fuel cell system including a fuel reformer heated<br>by a catalytic combustor fired by anode and cathode<br>effluents.                                                                                                                                                                                                                                                                                                                                                                                               | No longer being pursued, abandoned.                                                  |

| Patent<br>Number | Award<br>Date | Organization                       | Title                                                                                          | Description                                                                                                                                                                                                                                                                   | Status                                                                                                           |
|------------------|---------------|------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 6,207,312        | 03/27/01      | Energy Partners,<br>LC             | Self-humidifying fuel cell                                                                     | A self-humidifying polymer electrolyte membrane<br>(PEM) fuel cell assembly that has an ion-exchange<br>membrane interposed between hydrogen and oxygen<br>diffusion layers to form a membrane electrode assembly<br>(MEA).                                                   | No longer being used.                                                                                            |
| 6,207,310        | 03/27/01      | LANL                               | Fuel cell with metal screen flow-field                                                         | A polymer electrolyte membrane fuel cell is provided<br>with electrodes supplied with a reactant on each side of<br>a catalyzed membrane assembly.                                                                                                                            | Not licensed and not being used at LANL for research.                                                            |
| 6,200,536        | 03/13/01      | PNNL                               | Active microchannel heat exchanger                                                             | An active microchannel heat exchanger with an active<br>heat source and with microchannel architecture. The<br>invention is particularly useful as a liquid fuel vaporizer<br>and/or a steam generator for fuel cell power systems.                                           | Exclusive license to Velocys, Inc.                                                                               |
| 6,192,596        | 02/27/01      | PNNL                               | Active microchannel fluid<br>processing unit and method<br>of making                           | An active microchannel fluid processing unit.                                                                                                                                                                                                                                 | Exclusive license to Velocys, Inc.,<br>and in pilot testing now.                                                 |
| 6,183,894        | 02/06/01      | BNL                                | Electrocatalyst for alcohol oxidation in fuel cells                                            | Binary and ternary electrocatalysts are provided for oxidizing alcohol in a fuel cell.                                                                                                                                                                                        | Not licensed or commercialized.<br>Research is on-going.                                                         |
| 6,180,275        | 01/30/01      | Energy Partners,<br>LC             | Fuel cell collector plate and method of fabrication                                            | An improved molding composition is provided for<br>compression molding or injection molding a current<br>collector plate for a polymer electrolyte membrane fuel<br>cell.                                                                                                     | No longer being used in research.                                                                                |
| 6,171,720        | 01/09/01      | ORNL                               | Bipolar plate/diffuser for a proton exchange membrane fuel cell                                | A combination bipolar plate/diffuser fuel cell component<br>that includes an electrically conducting solid material<br>having a porous region and a hermetic region.                                                                                                          | Being used in <u>commercially</u><br><u>available</u> bipolar plates sold by<br>Porvair Advanced Materials, Inc. |
| 6,159,626        | 12/12/00      | General Motors<br>Corporation      | Fuel cell system logic for<br>differentiating between<br>rapid and normal shutdown<br>commands | A method of controlling the operation of a fuel cell<br>system wherein each shutdown command for the system<br>is subjected to decision logic which determines whether<br>the command should be a normal shutdown command or<br>rapid shutdown command.                       | Being used in continuing research at the company.                                                                |
| 6,159,533        | 12/12/00      | Southwest<br>Research<br>Institute | Method of depositing<br>a catalyst on a fuel cell<br>electrode                                 | Fuel cell electrodes comprising a minimal load of<br>catalyst having maximum catalytic activity and a<br>method of forming such fuel cell electrodes.                                                                                                                         | No licensee and no research being done with this technology.                                                     |
| 6,129,973        | 10/10/00      | PNNL                               | Microchannel laminated<br>mass exchanger and method<br>of making                               | A microchannel mass exchanger having a first plurality<br>of inner thin sheets and a second plurality of outer<br>thin sheets is described. The device enables solute<br>molecules in a solvent to pass from the solvent to a mass<br>transfer medium in an efficient manner. | Exclusive license to Velocys, Inc.                                                                               |

| Patent<br>Number | Award<br>Date | Organization                  | Title                                                                                 | Description                                                                                                                                                                                                                                                                                                                              | Status                                                |  |
|------------------|---------------|-------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
| 6,126,723        | 10/03/00      | PNNL                          | Microcomponent assembly<br>for efficient contacting of<br>fluid                       | Method and apparatus for a microcomponent assembly<br>that achieves state-of-the-art chemical separation via<br>absorption and/or adsorption mechanisms. The device<br>can be utilized as a fuel processing system in fuel-cell-<br>powered automobiles for removal of catalyst poisons<br>(e.g., $H_2S$ and CO) from the fuel stream.   | Exclusive license to Velocys, Inc.                    |  |
| 6,117,577        | 09/12/00      | LANL                          | Ambient pressure fuel cell system                                                     | An ambient pressure fuel cell system is provided with<br>a fuel cell stack formed from a plurality of fuel cells<br>having membrane/electrode assemblies.                                                                                                                                                                                | Non-exclusive license to IdaTech -<br>Not being used. |  |
| 6,103,409        | 08/15/00      | General Motors<br>Corporation | Fuel cell flooding detection and correction                                           | A method and apparatus for monitoring PEM fuel cells to detect and correct flooding.                                                                                                                                                                                                                                                     | Being used in continuing research at the company.     |  |
| 6,099,984        | 08/08/00      | General Motors<br>Corporation | Mirrored serpentine flow<br>channels for fuel cell                                    | A PEM fuel cell having serpentine flow field channels,<br>wherein the input/inlet legs of each channel border the<br>input/inlet legs of the next adjacent channels in the same<br>flow field.                                                                                                                                           | Being used in continuing research at the company.     |  |
| 6,077,620        | 06/20/00      | General Motors<br>Corporation | Fuel cell system with combustor-heated reformer                                       | A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell.                                                                                                                                                             | No longer being pursued, abandoned.                   |  |
| 6,074,692        | 06/13/00      | General Motors<br>Corporation | Method of making MEA for<br>PEM/SPE fuel cell                                         | A method of making a membrane-electrode-assembly<br>(MEA) for a PEM/SPE fuel cell by applying a slurry of<br>electrode-forming material directly onto a membrane-<br>electrolyte film.                                                                                                                                                   | Being used in continuing research at the company.     |  |
| 6,066,408        | 05/23/00      | Plug Power,<br>LLC            | Fuel cell cooler-humidifier plate                                                     | A cooler-humidifier plate for use in a proton exchange<br>membrane fuel cell stack assembly. The cooler-<br>humidifier plate combines functions of cooling and<br>humidification within the fuel cell stack assembly,<br>thereby providing a more compact structure, simpler<br>manifolding, and reduced reject heat from the fuel cell. | No longer being used.                                 |  |
| 6,063,516        | 05/16/00      | General Motors<br>Corporation | Method of monitoring CO<br>concentrations in hydrogen<br>feed to a PEM fuel cell      | The CO concentration in the $H_2$ feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream.                                                                                                                                 | Being used in continuing research at the company.     |  |
| 6,017,648        | 01/25/00      | Plug Power,<br>LLC            | Insertable fluid flow passage bridgepiece and method                                  | A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate.                                                                                                                                                                                                                               | No longer being used.                                 |  |
| 6,007,933        | 12/28/99      | Plug Power,<br>LLC            | Fuel cell assembly unit for<br>promoting fluid service and<br>electrical conductivity | Fluid service and/or electrical conductivity for a fuel cell assembly.                                                                                                                                                                                                                                                                   | Still being used in research.                         |  |

| Patent<br>Number | Award<br>Date | Organization                  | Title                                                              | Description                                                                                                                                                                                                                                                                                                                                                                                | Status                                                   |
|------------------|---------------|-------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 6,001,499        | 12/14/99      | General Motors<br>Corporation | Fuel cell CO sensor                                                | The CO concentration in the $H_2$ feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream.                                                                                                                                                                                   | Being used in continuing research at the company.        |
| 5,998,054        | 12/07/99      | Plug Power,<br>LLC            | Fuel cell membrane<br>hydration and fluid metering                 | A hydration system including fuel cell fluid flow plate(s)<br>and injection port(s). Each plate has flow channel(s)<br>with respective inlet(s) for receiving portion(s) of a<br>reactant fluid for a fuel cell. Each injection port injects<br>a portion of liquid water directly into its respective flow<br>channel to mix its portion of liquid water with a portion<br>of the stream. | No longer being used.                                    |
| 5,952,119        | 09/14/99      | LANL                          | Fuel cell membrane<br>humidification                               | A method for supplying liquid water to the polymer<br>electrolyte membrane of a fuel cell using distribution<br>channels over the gas diffusion backing. This simple<br>membrane humidification system uniformly distributes<br>water to the membrane surface thus improving the<br>performance of the fuel cell.                                                                          | Non-exclusive license to IdaTech -<br>Not being used.    |
| 5,945,229        | 08/31/99      | General Motors<br>Corporation | Pattern recognition<br>monitoring of PEM fuel cell                 | The CO-concentration in the $H_2$ feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack.                                                                                                                                                                                            | Being used in continuing research at the company.        |
| 5,932,185        | 08/03/99      | LLNL                          | Method for making thin carbon foam electrodes                      | A method for fabricating thin, flat carbon electrodes by<br>infiltrating highly porous carbon papers, membranes,<br>felts, metal fibers/powders, or fabrics with an<br>appropriate carbon foam precursor material.                                                                                                                                                                         | No licenses and no research being done with this patent. |
| 5,916,710        | 06/29/99      | LBNL                          | Sodium cobalt bronze<br>batteries and a method for<br>making same  | A solid state secondary battery utilizing a low cost,<br>environmentally sound, sodium cobalt bronze electrode.                                                                                                                                                                                                                                                                            | No longer being used.                                    |
| 5,798,187        | 08/25/98      | LANL                          | Fuel cell with metal screen flow-field                             | A polymer electrolyte membrane fuel cell is provided<br>with electrodes supplied with a reactant on each side of<br>a catalyzed membrane assembly.                                                                                                                                                                                                                                         | Not licensed and not being used at LANL for research.    |
| 5,783,152        | 07/21/98      | SRNL                          | Thin-film fiber optic<br>hydrogen and temperature<br>sensor system | A sensor probe device for monitoring of hydrogen gas<br>concentrations and temperatures.                                                                                                                                                                                                                                                                                                   | No longer being used in research;<br>returned to DOE.    |

| Patent<br>Number | Award<br>Date | Organization                  | Title                                                                                                | Description                                                                                                                                                                                                                                                                              | Status                                                   |
|------------------|---------------|-------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 5,776,624        | 07/07/98      | General Motors<br>Corporation | Brazed bipolar plates for<br>PEM fuel cells                                                          | A liquid-cooled, bipolar plate separating adjacent cells<br>of a PEM fuel cell comprising corrosion-resistant<br>metal sheets brazed together so as to provide a passage<br>between the sheets through which a dielectric coolant<br>flows.                                              | Being used in continuing research at the company.        |
| 5,763,113        | 06/09/98      | General Motors<br>Corporation | PEM fuel cell monitoring<br>system                                                                   | A method and apparatus for monitoring the performance<br>of PEM fuel cells. Outputs from a cell/stack voltage<br>monitor and a cathode exhaust gas hydrogen sensor<br>are corrected for stack operating conditions, and then<br>compared to predetermined levels of acceptability.       | Being used in continuing research at the company.        |
| 5,743,646        | 04/28/98      | General Motors<br>Corporation | Temperature sensor with<br>improved thermal barrier<br>and gas seal between the<br>probe and housing | An improved temperature sensor that can be used to<br>measure gas temperature in automotive exhaust systems<br>or in fuel cell subsystems used to generate electric<br>power.                                                                                                            | Being used in continuing research at the company.        |
| 5,707,755        | 01/13/98      | General Motors<br>Corporation | PEM/SPE fuel cell                                                                                    | A PEM/SPE fuel cell including a membrane-electrode<br>assembly (MEA) having a plurality of oriented filament<br>embedded the face thereof for supporting the MEA and<br>conducting current therefrom to contiguous electrode<br>plates.                                                  | Being used in continuing research at the company.        |
| 5,654,109        | 08/05/97      | General Motors<br>Corporation | Composite fuel cell<br>membranes                                                                     | A bilayer or trilayer composite ion exchange membrane<br>suitable for use in a fuel cell. The composite membrane<br>has a high equivalent weight thick layer in order to<br>provide sufficient strength and low equivalent weight<br>surface layers for improved electrical performance. | Being used in continuing research at the company.        |
| 5,641,586        | 06/24/97      | LANL                          | Fuel cell with interdigitated porous flow-field                                                      | A polymer electrolyte membrane fuel cell is formed<br>with an improved system for distributing gaseous<br>reactants to the membrane surface.                                                                                                                                             | Not licensed and not being used at LANL for research.    |
| 5,636,437        | 06/10/97      | LLNL                          | Fabricating solid carbon<br>porous electrodes from<br>powders                                        | Fabrication of conductive solid porous carbon electrodes<br>for use in batteries, double layer capacitors, fuel cells,<br>capacitive deionization, and waste treatment.                                                                                                                  | No licenses and no research being done with this patent. |
| 5,624,769        | 04/29/97      | General Motors<br>Corporation | Corrosion resistant PEM<br>fuel cell                                                                 | A PEM fuel cell having electrical contact elements (e.g.,<br>bipolar plates) that consist of a titanium-nitride-coated,<br>lightweight metal core, with a passivating, protective<br>metal layer between the core and the titanium nitride.                                              | Being used in continuing research at the company.        |
| 5,601,938        | 02/11/97      | LLNL                          | Carbon aerogel electrodes<br>for direct energy conversion                                            | A direct energy conversion device, such as a fuel cell,<br>using carbon aerogel electrodes, wherein the carbon<br>aerogel is loaded with a noble catalyst, such as platinum<br>or rhodium and soaked with phosphoric acid.                                                               | No licenses and no research being done with this patent. |

| Patent<br>Number | Award<br>Date | Organization                          | Title                                                                                                            | Description                                                                                                                                                                                                                                                                 | Status                                                         |
|------------------|---------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 5,558,961        | 09/24/96      | LBNL                                  | Secondary cell with<br>orthorhombic alkali metal/<br>manganese oxide phase<br>active cathode material            | An alkali metal manganese oxide secondary cell that<br>can provide a high rate of discharge, good cycling<br>capabilities, good stability of the cathode material, high<br>specific energy (energy per unit of weight) and high<br>energy density (energy per unit volume). | No longer being used.                                          |
| 5,443,601        | 08/22/95      | LBNL                                  | Method for intercalating<br>alkali metal ions into carbon<br>electrodes                                          | A low cost, relatively flexible, carbon electrode for<br>use in a secondary battery. Methods for producing the<br>electrode are also provided, including intercalating<br>alkali metal salts such as sodium and lithium into<br>carbon.                                     | No longer being used.                                          |
| 5,316,871        | 05/31/94      | General Motors<br>Corporation         | Method of making<br>membrane-electrode<br>assemblies for<br>electrochemical cells and<br>assemblies made thereby | A method of making a combination, unitary, membrane<br>and electrode assembly having a solid polymer<br>electrolyte membrane, and first and second electrodes<br>at least partially embedded in opposed surfaces of the<br>membrane.                                        | Being used in continuing research at the company.              |
| 5,248,566        | 09/28/93      | ANL                                   | Fuel cell system for transportation applications                                                                 | A propulsion system for a vehicle having pairs of front<br>and rear wheels and a fuel tank.                                                                                                                                                                                 | Not licensed but being used in research at ANL.                |
| 4,657,829        | 04/14/87      | United<br>Technologies<br>Corporation | Fuel cell power supply<br>with oxidant and fuel gas<br>switching                                                 | Relating to a fuel cell vehicular power plant, fuel for<br>the fuel stack is supplied by a hydrocarbon (methanol)<br>catalytic cracking reactor and CO shift reactor.                                                                                                       | Patent has expired and not used by UTC in commercial products. |
| 4,650,727        | 03/17/87      | LANL                                  | Fuel processor for fuel cell<br>power system                                                                     | A catalytic organic fuel processing apparatus, which can<br>be used in a fuel cell power system, contains within a<br>housing ca catalyst chamber, a variable speed fan, and a<br>combustion chamber.                                                                       | Not licensed and not being used for research at LANL.          |

| B.2 Production/Delivery Patents Status | .33 |
|----------------------------------------|-----|
|----------------------------------------|-----|

| Patent<br>Number | Award Date | Organization                          | Title                                                                                                                                                                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                          | Status                                                                                                                                                   |
|------------------|------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8,492,595        | 07/23/13   | Virent Energy<br>Systems, Inc.        | Methods and systems for generating polyols                                                                                                                                               | Methods for generating propylene glycol, ethylene glycol<br>and other polyols, diols, ketones, aldehydes, carboxylic<br>acids and alcohols using hydrogen produced from<br>biomass.                                                                                                                                                                                                                                                                  | Being used in<br>continuing research<br>at the company; non-<br>exclusive license to<br>Equilon Enterprises,<br>LLC (d.b.a. Shell Oil<br>Products U.S.). |
| 8,455,382        | 06/04/13   | Air Products &<br>Chemicals, Inc.     | Fabrication of catalyzed ion transport membrane systems                                                                                                                                  | A process for fabricating a catalyzed ion transport<br>membrane having essentially constant oxygen<br>stoichiometry and no anion mobility.                                                                                                                                                                                                                                                                                                           | Still being used in<br>ongoing research<br>efforts.                                                                                                      |
| 8,410,183        | 04/02/13   | Virent Energy<br>Systems, Inc.        | Method for producing bio-<br>fuel that integrates heat from<br>carbon-carbon bond-forming<br>reactions to drive biomass<br>gasification reactions                                        | A low-temperature catalytic process for converting<br>biomass (preferably glycerol recovered from the<br>fabrication of bio-diesel) to synthesis gas (i.e., H <sub>2</sub> /CO gas<br>mixture) in an endothermic gasification reaction.                                                                                                                                                                                                              | Being used in<br>continuing research<br>at the company; non-<br>exclusive license to<br>Equilon Enterprises,<br>LLC (d.b.a. Shell Oil<br>Products U.S.). |
| 8,397,508        | 03/19/13   | University of<br>Colorado             | Metal ferrite spinel energy<br>storage device and methods<br>for making and using same                                                                                                   | Metal ferrite spinel coatings are provided on substrates,<br>preferably by using an atomic layer deposition process.<br>The coatings are able to store energy such as solar<br>energy, and to release that stored energy, via a redox<br>reaction. The coating is first thermally or chemically<br>reduced. The reduced coating is then oxidized in a<br>second step to release energy and/or hydrogen, carbon<br>monoxide or other reduced species. | Licensed to ALD<br>NanoSolutions, Inc.                                                                                                                   |
| 8,349,151        | 1/8/13     | Giner Electrochemical<br>Systems, LLC | Universal cell frame for high-<br>pressure water electrolyzer<br>and electrolyzer including the<br>same                                                                                  | A universal cell frame generic for use as an anode frame<br>and as a cathode frame in a water electrolyzer.                                                                                                                                                                                                                                                                                                                                          | Being used in ongoing<br>research. Part of an<br><u>emerging hydrogen</u><br><u>production technology</u><br>project.                                    |
| 8,349,035        | 01/08/13   | ANL                                   | Autothermal and partial<br>oxidation reformer-based<br>fuel processor, method for<br>improving catalyst function<br>in autothermal and partial<br>oxidation reformer-based<br>processors | Segmented catalyst systems for reforming fuels for use in fuel cells.                                                                                                                                                                                                                                                                                                                                                                                | Still being used in<br>ongoing research<br>efforts.                                                                                                      |

| Patent<br>Number | Award Date | Organization                      | Title                                                          | Description                                                                                                                                                                                                                                                                                                                                                                              | Status                                                                                                                                                   |
|------------------|------------|-----------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8,323,614        | 12/04/12   | University of South<br>Carolina   | Hydrolysis reactor for<br>hydrogen production                  | A novel reactor configuration and method for delivering<br>a hydride to a reaction zone in a manner that enables<br>rapid reaction with water to produce hydrogen.                                                                                                                                                                                                                       | Research complete<br>- licensed/seeking to<br>license.                                                                                                   |
| 8,262,755        | 09/11/12   | Air Products &<br>Chemicals, Inc. | Staged membrane oxidation<br>reactor system                    | An ion transport membrane oxidation system comprising<br>two or more membrane oxidation stages, each stage<br>comprising a reactant zone, an oxidant zone, one or<br>more ion transport membranes separating the reactant<br>zone from the oxidant zone, a reactant gas inlet region,<br>a reactant gas outlet region, an oxidant gas inlet region,<br>and an oxidant gas outlet region. | Still being used in<br>ongoing research<br>efforts.                                                                                                      |
| 8,231,857        | 07/31/12   | Virent Energy<br>Systems, Inc.    | Catalysts and methods<br>for reforming oxygenated<br>compounds | Catalysts and methods that can reform aqueous solutions<br>of oxygenated compounds such as ethylene glycol,<br>glycerol, sugar alcohols, and sugars to generate products<br>such as hydrogen and alkanes.                                                                                                                                                                                | Being used in<br>continuing research<br>at the company; non-<br>exclusive license to<br>Equilon Enterprises,<br>LLC (d.b.a. Shell Oil<br>Products U.S.). |
| 8,231,697        | 07/31/12   | PNNL                              | Rapid start fuel reforming systems and techniques              | An on-board fuel processor includes a microchannel<br>steam reforming reactor and a water vaporizer heated in<br>series with a combustion gas.                                                                                                                                                                                                                                           | Research complete;<br>seeking to license.                                                                                                                |
| 8,226,750        | 07/24/12   | Genesis Fueltech, Inc.            | Hydrogen purifier module<br>with membrane support              | Hydrogen purifier utilizing a hydrogen-permeable<br>membrane to purify hydrogen from mixed gases<br>containing hydrogen. A purifier module with improved<br>mechanical support for the permeable membrane is<br>described, enabling forward or reverse differential<br>pressurization of the membrane.                                                                                   | Research complete<br>-seeking to license.                                                                                                                |
| 8,210,360        | 07/03/12   | Synkera Technologies,<br>Inc.     | Composite membranes and<br>methods for making same             | Composite membranes that are adapted for separation,<br>purification, filtration, analysis, reaction and sensing.<br>The composite membranes can include a porous support<br>structure having elongate pore channels extending<br>through the support structure.                                                                                                                         | Being used in ongoing research.                                                                                                                          |
| 8,198,486        | 06/12/12   | Virent Energy<br>Systems, Inc.    | Methods and systems for generating polyols                     | Methods for generating propylene glycol, ethylene glycol<br>and other polyols, diols, ketones, aldehydes, carboxylic<br>acids and alcohols using hydrogen produced from<br>biomass.                                                                                                                                                                                                      | Being used in<br>continuing research<br>at the company; non-<br>exclusive license to<br>Equilon Enterprises,<br>LLC (d.b.a. Shell Oil<br>Products U.S.). |

| Patent<br>Number | Award Date | Organization                      | Title                                                                                                                                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Status                                                                                                                                                   |
|------------------|------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8,187,731        | 05/29/12   | University of<br>Colorado         | Metal ferrite spinel energy<br>storage devices and methods<br>for making and using same                                                           | Metal ferrite spinel coatings are provided on substrates,<br>preferably by using an atomic layer deposition process.<br>The coatings are able to store energy such as solar<br>energy, and to release that stored energy, via a redox<br>reaction. The coating is first thermally or chemically<br>reduced. The reduced coating is then oxidized in a<br>second step to release energy and/or hydrogen, carbon<br>monoxide or other reduced species.                                                                        | Licensed to ALD<br>NanoSolutions, Inc.                                                                                                                   |
| 8,172,913        | 05/08/12   | Intelligent Energy, Inc.          | Array of planar membrane<br>modules for producing<br>hydrogen                                                                                     | Membrane reactor containing planar membrane modules<br>with top and bottom thin foil membranes supported by<br>both an intermediary porous support plate and a central<br>base which has both solid extended members and hollow<br>regions or a hollow region whereby the two sides of<br>the base are in fluid communication. The membrane<br>reactor operates at elevated temperatures for generating<br>hydrogen from hydrogen rich feed fuels.                                                                          | Still being used in ongoing research.                                                                                                                    |
| 8,153,698        | 04/10/12   | Virent Energy<br>Systems, Inc.    | Method for producing bio-<br>fuel that integrates heat from<br>carbon-carbon bond-forming<br>reactions to drive biomass<br>gasification reactions | A low-temperature catalytic process for converting<br>biomass (preferably glycerol recovered from the<br>fabrication of bio-diesel) to synthesis gas (i.e., H <sub>2</sub> /CO gas<br>mixture) in an endothermic gasification reaction.                                                                                                                                                                                                                                                                                     | Being used in<br>continuing research<br>at the company; non-<br>exclusive license to<br>Equilon Enterprises,<br>LLC (d.b.a. Shell Oil<br>Products U.S.). |
| 8,148,583        | 04/03/12   | Air Products &<br>Chemicals, Inc. | Feed gas contaminant removal<br>in ion transport membrane<br>systems                                                                              | An oxygen ion transport membrane process wherein<br>a heated oxygen-containing gas having one or more<br>contaminants is contacted with a reactive solid material<br>to remove the one or more contaminants.                                                                                                                                                                                                                                                                                                                | Still being used in<br>ongoing research<br>efforts.                                                                                                      |
| 8,110,022        | 02/07/12   | Genesis Fueltech, Inc.            | Hydrogen purifier module and<br>method for forming the same                                                                                       | A hydrogen purifier utilizing a hydrogen permeable<br>membrane, and a gas-tight seal, where the seal is uses a<br>low temperature melting point metal, which forms a seal<br>when heated above the melting point which is greater<br>than the purifier operating temperature. The purifier is<br>constructed such that a degree of isolation exists between<br>the metal that melts to form the seal and the active area<br>of the purifier membrane, so that the active area of the<br>purifier membrane is not corrupted. | Research complete<br>-seeking to license.                                                                                                                |

| Patent<br>Number | Award Date | Organization                       | Title                                                                                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Status                                                                                                                                                   |
|------------------|------------|------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8,088,261        | 01/03/12   | Gas Technology<br>Institute        | CuCl thermochemical cycle<br>for hydrogen production                                                           | This invention relates to a method and apparatus for<br>electrochemically producing high porosity, high activity<br>copper powders for high-temperature thermochemical<br>water splitting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Still being used in ongoing research.                                                                                                                    |
| 8,070,860        | 12/06/11   | United Technologies<br>Corporation | Pd membrane having<br>improved H <sub>2</sub> -permeance, and<br>method of making                              | Improved palladium membranes for the separation of hydrogen from a gas stream.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Being used in ongoing research.                                                                                                                          |
| 8,002,854        | 08/23/11   | University of Central<br>Florida   | Thermocatalytic process<br>for CO <sub>2</sub> -free production of<br>hydrogen and carbon from<br>hydrocarbons | Process and apparatus for sustainable $CO_2$ -free<br>production of hydrogen and carbon by thermocatalytic<br>decomposition (dissociation, pyrolysis, cracking)<br>of hydrocarbon fuels over carbon-based catalysts in<br>the absence of air and/or water. The apparatus and<br>thermocatalytic process improve the activity and stability<br>of carbon catalysts during the thermocatalytic process<br>and produce both high purity hydrogen (at least, 99.0<br>volume %) and carbon, from any hydrocarbon fuel,<br>including sulfurous fuels. The process and apparatus can<br>be conveniently integrated with any type of fuel cell to<br>generate electricity. | Research complete;<br>seeking to license.                                                                                                                |
| 7,989,664        | 08/02/11   | Virent Energy<br>Systems, Inc.     | Methods and systems for generating polyols                                                                     | Methods for generating propylene glycol, ethylene glycol<br>and other polyols, diols, ketones, aldehydes, carboxylic<br>acids and alcohols using hydrogen produced from<br>biomass.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Being used in<br>continuing research<br>at the company; non-<br>exclusive license to<br>Equilon Enterprises,<br>LLC (d.b.a. Shell Oil<br>Products U.S.). |
| 7,988,925        | 08/02/11   | ANL                                | Fuel processing device                                                                                         | An improved fuel processor for fuel cells is provided<br>whereby the startup time of the processor is less than<br>sixty seconds and can be as low as 30 seconds, if not<br>less. A rapid startup time is achieved by either igniting<br>or allowing a small mixture of air and fuel to react over<br>and warm up the catalyst of an autothermal reformer<br>(ATR).                                                                                                                                                                                                                                                                                                | Still being used in<br>ongoing research<br>efforts.                                                                                                      |

| Patent<br>Number | Award Date | Organization                           | Title                                                                                                                                                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Status                                                                     |
|------------------|------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 7,981,261        | 07/19/11   | ANL                                    | Integrated device and<br>substrate for separating<br>charged carriers and reducing<br>photocorrosion and method<br>for the photoelectrochemical<br>production of electricity and<br>photocatalytic production of<br>hydrogen | A system for separating oppositely-charged charge<br>carriers that can be used for producing electricity or<br>hydrogen gas.                                                                                                                                                                                                                                                                                                                                                                                                        | Still being used in<br>ongoing research<br>efforts.                        |
| 7,951,283        | 05/31/11   | INL                                    | High temperature electrolysis for syngas production                                                                                                                                                                          | A method for producing at least one syngas component<br>that involves directly exposing water and carbon dioxide<br>to heat generated by a nuclear power source.                                                                                                                                                                                                                                                                                                                                                                    | No longer being used<br>in research/no longer<br>being pursued.            |
| 7,947,116        | 05/24/11   | Eltron Research &<br>Development, Inc. | Hydrogen separation process                                                                                                                                                                                                  | Method for separating a hydrogen-rich product stream<br>from a feed stream comprised of hydrogen and at least<br>one carbon-containing gas, at an inlet pressure greater<br>than atmospheric pressure and a temperature greater than<br>200°C, to a hydrogen separation membrane system that<br>is selectively permeable to hydrogen, and producing a<br>hydrogen-rich permeate product stream on the permeate<br>side of the membrane and a carbon dioxide-rich product<br>raffinate stream on the raffinate side of the membrane. | Still being used in ongoing research.                                      |
| 7,939,026        | 05/10/11   | INL                                    | Apparatus for chemical<br>synthesis                                                                                                                                                                                          | A method and apparatus for forming a chemical hydride<br>which includes a pseudo-plasma-electrolysis reactor<br>which is operable to receive a solution capable of<br>forming a chemical hydride and includes a cathode and<br>a movable anode. The anode is moved into and out of<br>fluidic, ohmic electrical contact with the solution capable<br>of forming a chemical hydride and when energized<br>produces an oxygen plasma which facilitates the<br>formation of a chemical hydride in the solution.                        | No longer being used<br>in research/no longer<br>being pursued.            |
| 7,932,437        | 04/26/11   | ORNL                                   | Designer proton-channel<br>transgenic algae for<br>photobiological hydrogen<br>production                                                                                                                                    | A designer proton-channel transgenic alga for<br>photobiological hydrogen production that is specifically<br>designed for production of molecular hydrogen through<br>photosynthetic water splitting.                                                                                                                                                                                                                                                                                                                               | Assigned to inventor<br>- no longer being<br>pursued.                      |
| 7,926,793        | 04/19/11   | PNNL                                   | Mixing in wicking structures<br>and the use of enhanced<br>mixing within wicks in<br>microchannel devices                                                                                                                    | Advanced wicking structures and methods utilizing these<br>structures are described. Particularly improved results in<br>fluid contacting processes can be achieved by enhanced<br>mixing within a wicking layer within a microchannel.                                                                                                                                                                                                                                                                                             | Being used in<br>continuing research at<br>PNNL and seeking to<br>license. |

| Patent<br>Number | Award Date | Organization                     | Title                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Status                                                                                                                             |
|------------------|------------|----------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 7,914,683        | 03/29/11   | University of Central<br>Florida | Particles of spilled oil-<br>absorbing carbon in contact<br>with water                       | Hydrogen generator coupled to or integrated with a<br>fuel cell for portable power applications. Hydrogen<br>is produced via thermocatalytic decomposition<br>(cracking, pyrolysis) of hydrocarbon fuels in oxidant-<br>free environment. The apparatus can utilize a variety<br>of hydrocarbon fuels, including natural gas, propane,<br>gasoline, kerosene, diesel fuel, crude oil (including<br>sulfurous fuels). The hydrogen-rich gas produced is free<br>of carbon oxides or other reactive impurities, so it could<br>be directly fed to any type of a fuel cell. | Research complete;<br>seeking to license.                                                                                          |
| 7,910,373        | 03/22/11   | NREL                             | H <sub>2</sub> O doped WO <sub>3</sub> , ultra-fast,<br>high-sensitivity hydrogen<br>sensors | An improved sensor for optically detecting hydrogen gas<br>at low concentrations. The sensor consists of a substrate,<br>a water-doped WO <sub>3</sub> layer coated on the substrate, and a<br>palladium layer coated on the water-doped WO <sub>3</sub> layer.                                                                                                                                                                                                                                                                                                          | Research complete;<br>seeking to license.                                                                                          |
| 7,906,079        | 03/15/11   | Catacel Corporation              | Stackable structural reactor                                                                 | A reactor including a monolith having a plurality of<br>fins in an annular arrangement for receiving fluid flow<br>through the reactor. The monolith is disposed within a<br>generally cylindrical outer tube, and around a corrugated<br>inner tube. The reactor includes a device for urging the<br>monolith radially outward, so as to maintain contact<br>between the monolith and the outer tube.                                                                                                                                                                   | Part of a <u>commercial</u><br><u>hydrogen production</u><br><u>technology</u> project.                                            |
| 7,897,122        | 03/01/11   | Media & Process<br>Technology    | Hybrid adsorptive membrane<br>reactor                                                        | A hybrid adsorbent-membrane reactor in which the<br>chemical reaction, membrane separation, and product<br>adsorption are coupled. In the reaction chamber one or<br>more reactants and a catalyst react in a water-gas-shift<br>(WGS) reaction producing at least one desired product<br>and at least one by-product. A membrane selectively<br>permits the desired product and the by-product to pass<br>from the chamber to an adsorbent for the by-product; and<br>an outlet for the desired product.                                                                | Still being used in<br>ongoing research.<br>Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project. |
| 7,879,750        | 02/01/11   | General Electric<br>Company      | Anodes for alkaline electrolysis                                                             | A method of making an anode for alkaline electrolysis cells used for the production of hydrogen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Research complete; seeking to license.                                                                                             |

| Patent<br>Number | Award Date | Organization                      | Title                                                                                                                                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                     | Status                                                                                                                                                   |
|------------------|------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7,872,054        | 01/18/11   | Virent Energy<br>Systems, Inc.    | Method for producing bio-<br>fuel that integrates heat from<br>carbon-carbon bond-forming<br>reactions to drive biomass<br>gasification reactions | A low-temperature catalytic process for converting<br>biomass (preferably glycerol recovered from the<br>fabrication of bio-diesel) to synthesis gas (i.e., H <sub>2</sub> /CO gas<br>mixture) in an endothermic gasification reaction.                                                                                                                                                                                         | Being used in<br>continuing research<br>at the company; non-<br>exclusive license to<br>Equilon Enterprises,<br>LLC (d.b.a. Shell Oil<br>Products U.S.). |
| 7,850,838        | 12/14/10   | Proton Energy<br>Systems, Inc.    | Cold weather hydrogen<br>generation system and method<br>of operation                                                                             | An enclosed system that produces hydrogen gas from<br>the electrolysis of water. Operation in cold climates<br>is enabled by one or more heat generation devices that<br>prevent the system's components from freezing.                                                                                                                                                                                                         | Being used by Proton<br>Energy Systems in a<br><u>commercial product</u> ,<br>FuelGen® Hydrogen<br>Fueling Systems.                                      |
| 7,842,276        | 11/30/10   | University of Central<br>Florida  | Catalysts for the evolution of<br>hydrogen from borohydride<br>solution                                                                           | Organic pigments which can catalyze the decomposition<br>reaction of hydrogen-rich, stabilized, borohydride<br>solutions to generate hydrogen gas. These are useful for<br>on-board hydrogen-consuming devices such as motor<br>vehicles or other combustion engines. The organic<br>pigments can be used in hydrogen generating systems<br>and for controlling the generation of hydrogen gas from<br>metal hydride solutions. | Research complete;<br>seeking to license.                                                                                                                |
| 7,818,993        | 10/26/10   | ANL                               | High-performance flexible<br>hydrogen sensors                                                                                                     | Single-walled carbon nanotubes (SWNTs) are decorated<br>with metal nanoparticles to form high-performance<br>flexible hydrogen sensors.                                                                                                                                                                                                                                                                                         | Still being used in<br>ongoing research<br>efforts.                                                                                                      |
| 7,771,519        | 08/10/10   | Air Products &<br>Chemicals, Inc. | Liners for ion transport<br>membrane systems                                                                                                      | An ion transport membrane system consisting of<br>a pressure vessel, a series of planar ion transport<br>membrane modules in the interior of the pressure vessel,<br>a gas manifold that is in flow communication with each<br>membrane module, and a liner within the inlet/outlet<br>conduits to the pressure vessel and on the interior surface<br>of the gas manifold.                                                      | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project.                                                                   |
| 7,767,867        | 08/03/10   | Virent Energy<br>Systems, Inc.    | Methods and systems for generating polyols                                                                                                        | Methods for generating propylene glycol, ethylene glycol<br>and other polyols, diols, ketones, aldehydes, carboxylic<br>acids and alcohols using hydrogen produced from<br>biomass.                                                                                                                                                                                                                                             | Being used in<br>continuing research<br>at the company; non-<br>exclusive license to<br>Equilon Enterprises,<br>LLC (d.b.a. Shell Oil<br>Products U.S.). |

| Patent<br>Number | Award Date | Organization                           | Title                                                                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                     | Status                                                                                                                                    |
|------------------|------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 7,745,696        | 06/29/10   | University of<br>California - Berkeley | Suppression of TLA1 gene<br>expression for improved solar<br>conversion efficiency and<br>photosynthetic productivity in<br>plants and algae | Methods and compositions to minimize the chlorophyll<br>antenna size of photosynthesis by decreasing TLA1<br>gene expression, thereby improving solar conversion<br>efficiencies and photosynthetic productivity in plants,<br>e.g., green microalgae, under bright sunlight conditions.                                                                                                                                        | Non-exclusive license<br>to Benson Hill<br>Biosystems. Part of<br>an <u>emerging hydrogen</u><br><u>production technology</u><br>project. |
| 7,744,733        | 06/29/10   | Proton Energy<br>Systems, Inc.         | Gas venting system                                                                                                                           | A system for venting a moist gas stream resulting from<br>operation of electrochemical cells within an enclosure,<br>and for preventing the water vapor in the moist gas<br>stream from freezing within the enclosure.                                                                                                                                                                                                          | Being used by Proton<br>Energy Systems in a<br><u>commercial product</u> ,<br>FuelGen® Hydrogen<br>Fueling Systems.                       |
| 7,736,609        | 06/15/10   | Ergenics Corporation                   | Hydrogen purification system                                                                                                                 | The invention provides a system to purify hydrogen<br>involving the use of a hydride compressor and catalytic<br>converters combined with a process controller.                                                                                                                                                                                                                                                                 | Research complete;<br>seeking to license.                                                                                                 |
| 7,732,174        | 06/08/10   | NREL                                   | Multi-stage microbial system<br>for continuous hydrogen<br>production                                                                        | The invention relates to a continuous $H_2$ production<br>system in which photosynthetic $O_2$ evolution and $H_2$<br>photoproduction are separated physically in two separate<br>bioreactors.                                                                                                                                                                                                                                  | Being used in<br>continuing research<br>efforts at NREL and<br>seeking to license.                                                        |
| 7,722,853        | 05/25/10   | University of Central<br>Florida       | Catalysts for the evolution of<br>hydrogen from borohydride<br>solution                                                                      | Organic pigments which can catalyze the decomposition<br>reaction of hydrogen-rich, stabilized, borohydride<br>solutions to generate hydrogen gas. These are useful for<br>on-board hydrogen-consuming devices such as motor<br>vehicles or other combustion engines. The organic<br>pigments can be used in hydrogen generating systems<br>and for controlling the generation of hydrogen gas from<br>metal hydride solutions. | Research complete;<br>seeking to license.                                                                                                 |
| 7,722,757        | 05/25/10   | ANL                                    | Process for the production of<br>hydrogen from water                                                                                         | A method and device for the production of hydrogen<br>from water and electricity using an active metal alloy.<br>The active metal alloy reacts with water producing<br>hydrogen and a metal hydroxide.                                                                                                                                                                                                                          | No longer being used<br>in research/no longer<br>being pursued. DOE<br>now owns patent.                                                   |
| 7,703,472        | 04/27/10   | Air Products &<br>Chemicals, Inc.      | Module isolation devices                                                                                                                     | Gas flow isolation devices for Ion Transport Membrane<br>(ITM) modules designed for producing purified<br>oxygen from an oxygen-containing gas (e.g., air) or for<br>producing synthesis gas. The devices isolate the flow<br>of gas from one module into one or more other modules<br>that are joined together through one or more common<br>headers.                                                                          | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project.                                                    |

| Patent<br>Number | Award Date | Organization                      | Title                                                                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Status                                                                                                              |
|------------------|------------|-----------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 7,695,580        | 04/13/10   | Air Products &<br>Chemicals, Inc. | Method of forming a ceramic to ceramic joint                                          | A method of forming a joint at an interface between two<br>sintered bodies comprising metallic oxides of specific<br>crystal structure. The method can be used to form gas-<br>tight joints between ceramic components in an oxygen<br>separation device.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project.                              |
| 7,691,775        | 04/06/10   | University of<br>Michigan         | Reducible oxide based catalysts                                                       | The invention relates to an improved catalyst for the water gas shift reaction, which is used in the production of hydrogen. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Research complete;<br>seeking to license.                                                                           |
| 7,682,580        | 03/23/10   | Catacel Corporation               | Catalytic reactor having radial<br>leaves                                             | All-metal structure, cylindrical reactor for surface<br>catalytic reactions and/or heat exchange and avoids<br>the low conductivity problems associated with the use<br>of packed bed ceramic materials in the manufacture<br>and operation of catalytic reactors. Also, the thermal<br>mismatch between the metal and ceramic portions of<br>prior art reactors eventually leads to pulverization of<br>the ceramic material, thus limiting the useful life of the<br>reactor. This design has leaves that are not spiral, but<br>radially extend outward from the interior of the reactor to<br>its exterior to provide improved heat transfer between the<br>exterior and the interior of the reactor. | No licenses issued & no<br>internal research being<br>done with this patent                                         |
| 7,678,251        | 03/16/10   | Proton Energy<br>Systems, Inc.    | System and method for<br>detecting gas                                                | A method for detecting the presence of a specific gas<br>in a mixture of gases resulting from operation of an<br>electrochemical cell.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Being used by Proton<br>Energy Systems in a<br><u>commercial product</u> ,<br>FuelGen® Hydrogen<br>Fueling Systems. |
| 7,666,534        | 02/23/10   | ANL                               | Electro-catalytic oxidation<br>device for removing carbon<br>from a fuel reformate    | An electro-catalytic oxidation device (ECOD) for the<br>removal of contaminates, preferably carbonaceous<br>materials, from an influent comprising an ECOD anode,<br>an ECOD cathode, and an ECOD electrolyte.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Being used in<br>continuing research<br>efforts at ANL.                                                             |
| 7,658,788        | 02/09/10   | Air Products &<br>Chemicals, Inc. | Ion transport membrane<br>module and vessel system<br>with directed internal gas flow | An ion transport membrane reactor system which can<br>be used to oxidize a reactant gas feed stream containing<br>hydrocarbons, such as methane, and thereby produce<br>a product gas stream containing hydrogen and carbon<br>oxides.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project.                              |

| Patent<br>Number | Award Date | Organization                      | Title                                                                                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                        | Status                                                                            |
|------------------|------------|-----------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 7,651,669        | 01/26/10   | PNNL                              | Microsystem process networks                                                                | Various aspects and applications of microsystem process<br>networks which can be improved by employing ortho-<br>cascading mass, heat, or other unit process operations<br>are described. One such application is the production of<br>hydrogen via steam reformation of hydrocarbons.                                                                                                                                             | No longer being<br>pursued at PNNL;<br>owned by the U.S.<br>Department of Energy. |
| 7,642,405        | 01/05/10   | ORNL                              | Switchable photosystem-<br>II designer algae for<br>photobiological hydrogen<br>production  | A switchable photosystem-II (PSII) designer algae for<br>photobiological hydrogen production. The designer<br>transgenic algae includes at least two transgenes for<br>enhanced photobiological $H_2$ production wherein<br>a first transgene serves as a genetic switch that can<br>control PSII oxygen evolution and a second transgene<br>encodes for creation of free proton channels in the algal<br>photosynthetic membrane. | No longer being used.                                                             |
| 7,604,771        | 10/20/09   | ANL                               | Thermal method for<br>fabricating a hydrogen<br>separation membrane on a<br>porus substrate | A thermal method of making a hydrogen permeable<br>composition for use in hydrogen separation membranes.                                                                                                                                                                                                                                                                                                                           | Being used in<br>continuing research<br>efforts at ANL.                           |
| 7,591,864        | 09/22/09   | University of Central<br>Florida  | Catalysts for the evolution of<br>hydrogen from borohydride<br>solution                     | Organic pigments which can catalyze the decomposition<br>reaction of hydrogen-rich, stabilized, borohydride<br>solutions to generate hydrogen gas. These are useful for<br>on-board hydrogen-consuming devices such as motor<br>vehicles or other combustion engines. The organic<br>pigments can be used in hydrogen generating systems<br>and for controlling the generation of hydrogen gas from<br>metal hydride solutions.    | Research complete;<br>seeking to license.                                         |
| 7,588,626        | 09/15/09   | Boston University                 | Composite mixed oxide ionic<br>and electronic conductors for<br>hydrogen separation         | A mixed ionic and electrically conducting membrane<br>that includes a two-phase solid state ceramic composite,<br>wherein the first phase is an oxygen ion conductor and<br>the second phase is an n-type electrically conductive<br>oxide. The membrane can be used to separate hydrogen<br>from a mixture of gases and purify it for use in fuel cells.                                                                          | Research complete;<br>seeking to license.                                         |
| 7,581,765        | 09/01/09   | Air Products &<br>Chemicals, Inc. | Seal assembly for materials<br>with different coefficients of<br>thermal expansion          | An improved seal assembly for couplings and joints<br>between materials with different coefficients of thermal<br>expansion (e.g., metals and ceramics) used in high-<br>temperature gas processing devices.                                                                                                                                                                                                                       | Part of an <u>emerging</u><br>hydrogen production<br>technology project.          |

| Patent<br>Number | Award Date | Organization                | Title                                                                                              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Status                                                                       |
|------------------|------------|-----------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 7,575,614        | 08/18/09   | Nuvera Fuel Cells,<br>Inc.  | Startup burner                                                                                     | Startup burner design to make fuel reformers with<br>sufficient energy density suitable for automotive use.<br>The design however, compact does not necessarily<br>provide rapid startup. One of the limiting factors<br>in starting up a cold reformer is heating the catalyst<br>contained therein to a desired light off temperature. The<br>burner produces a hot gas emission suitable for heating a<br>catalyst (e.g., a catalyst used in an autothermal reforming<br>(ATR)) to a desired temperature (e.g., the light-off<br>temperature of the catalyst). Preferably the catalyst<br>achieves the desired temperature in about three minutes<br>or less, or more generally in about one-quarter or less of<br>the time required to heat the catalyst without the burner. | No longer being used<br>in research/no longer<br>being pursued.              |
| 7,569,293        | 08/04/09   | Nuvera Fuel Cells,<br>Inc.  | Methods and systems<br>for efficient operation of<br>integrated fuel cell-fuel<br>reformer systems | Methods and related systems for determining an efficient<br>operating state for an integrated fuel cell/fuel reformer<br>power system. The method optimizes the efficiency of<br>operation of a power system comprising a fuel processor<br>and a fuel cell operating in an integrated way. The<br>operating properties of the system components are used<br>to for controlling and optimizing system efficiency at any<br>desired power output level.                                                                                                                                                                                                                                                                                                                           | No longer being used<br>in research/no longer<br>being pursued.              |
| 7,565,743        | 07/28/09   | Catacel Corporation         | Method for insertion and<br>removal of a catalytic reactor<br>cartridge                            | Cartridge that can be used for catalytic or non-catalytic<br>combustion and/or as a heat exchanger which can<br>be stacked with similar cartridges in a long tube<br>or pipe. The cartridge also requires a method of<br>moving a cartridge into or out of a pipe, and a tool for<br>accomplishing such a transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No licenses issued & no<br>internal research being<br>done with this patent. |
| 7,563,292        | 07/21/09   | ANL                         | Fuel processor and method for<br>generating hydrogen for fuel<br>cells                             | A method of producing a $H_2$ rich gas stream includes<br>supplying an $O_2$ rich gas, steam, and fuel to an inner<br>reforming zone of a fuel processor that includes a partial<br>oxidation catalyst and a steam reforming catalyst or<br>a combined partial oxidation and stream reforming<br>catalyst.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Being used in<br>continuing research<br>efforts at ANL.                      |
| 7,559,978        | 07/14/09   | General Electric<br>Company | Gas-liquid separator and method of operation                                                       | A system for gas-liquid separation in electrolysis equipment used for hydrogen production.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Research complete; seeking to license.                                       |

| Patent<br>Number | Award Date | Organization                      | Title                                                                                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                | Status                                                                                 |
|------------------|------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 7,556,675        | 07/07/09   | Air Products &<br>Chemicals, Inc. | Feed gas contaminant control<br>in ion transport membrane<br>systems                                      | Methods for constructing ion transport membrane (ITM) reactor systems so that the system's metal components do not react with high-temperature mixtures of steam, methane, and/or synthesis gas, thereby preventing the production of ITM-poisoning contaminant vapors.                                                                                                                                                                                    | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project. |
| 7,540,475        | 06/02/09   | PNNL                              | Mixing in wicking structures<br>and the use of enhanced<br>mixing within wicks in<br>microchannel devices | Advanced wicking structures and methods utilizing these<br>structures are described. Particularly improved results in<br>fluid contacting processes can be achieved by enhanced<br>mixing within a wicking layer within a microchannel.                                                                                                                                                                                                                    | Being used in<br>continuing research at<br>PNNL and seeking to<br>license.             |
| 7,520,917        | 04/21/09   | PNNL                              | Devices with extended area<br>structures for mass transfer<br>processing of fluids                        | The invention relates to microchannel devices used for performing fluid processing and heat exchange.                                                                                                                                                                                                                                                                                                                                                      | Being used in<br>continuing research at<br>PNNL.                                       |
| 7,513,932        | 04/07/09   | Air Products &<br>Chemicals, Inc. | Planar ceramic membrane<br>assembly and oxidation<br>reactor system                                       | A planar ceramic membrane assembly comprising a<br>dense layer of mixed-conducting multi-component metal<br>oxide material, wherein the dense layer has a first side<br>and a second side, a porous layer of mixed-conducting<br>multi-component metal oxide material in contact with<br>the first side of the dense layer, and a ceramic channeled<br>support layer in contact with the second side of the dense<br>layer.                                | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project. |
| 7,507,690        | 03/24/09   | ANL                               | Autothermal reforming<br>catalyst having perovskite<br>structure                                          | A novel fuel reforming catalyst with a perovskite<br>structure that can be used to produce hydrogen for use in<br>fuel cells.                                                                                                                                                                                                                                                                                                                              | Being used in<br>continuing research<br>efforts at ANL.                                |
| 7,507,384        | 03/24/09   | Nuvera Fuel Cells,<br>Inc.        | Preferential oxidation reactor<br>temperature regulation                                                  | Hydrocarbon fuel reforming system for reforming<br>a gaseous or liquid hydrocarbon fuel to produce a<br>hydrogen-rich product stream for use in, among other<br>things, fuel cells. A method and apparatus for selective<br>or preferential oxidation of carbon monoxide, and<br>particularly in the control of reactor temperature during<br>this process is provided.                                                                                    | No longer being used<br>in research/no longer<br>being pursued.                        |
| 7,501,102        | 03/10/09   | Catacel Corporation               | Reactor having improved heat<br>transfer                                                                  | A reactor or heat exchanger with an annular monolith<br>with multiple leaves inside a cylindrical outer tube, and<br>around a corrugated inner tube. The reactor includes a<br>device for urging the monolith radially outward, so as<br>to maintain contact between the monolith and the outer<br>tube. The reactor compensates for metal creep, and<br>virtually insures continued contact between the monolith<br>and the outer tube for heat transfer. | No licenses issued & no<br>internal research being<br>done with this patent.           |

| Patent<br>Number | Award Date | Organization                      | Title                                                                                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Status                                                                                 |
|------------------|------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 7,501,101        | 03/10/09   | PNNL                              | Microchannel apparatus<br>comprising plural<br>microchannels and methods of<br>conducting unit operations | A microchannel apparatus comprising a header and<br>plural flow microchannels is described in which orifices<br>connect the header and the flow microchannels. Methods<br>of conducting unit operations in the apparatus are also<br>described.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Exclusive license to Velocys, Inc.                                                     |
| 7,485,161        | 02/03/09   | Air Products &<br>Chemicals, Inc. | Dehydrogenation of liquid<br>fuel in microchannel catalytic<br>reactor                                    | An improved process for the storage and delivery<br>of hydrogen by the reversible hydrogenation/<br>dehydrogenation of an organic compound in a<br>microchannel reactor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project. |
| 7,472,936        | 01/06/09   | Catacel Corporation               | Tool for insertion and removal<br>of a catalytic reactor cartridge                                        | A reactor cartridge includes a plurality of spaced-apart<br>monoliths, formed along a tube or other mandrel. Each<br>monolith is formed of a pair of flat and corrugated<br>metal strips, spirally wound around the tube. These<br>strips could be made of solid or screen material. The<br>corrugations are skewed, such that the monolith imparts<br>a swirl to gases flowing through it to promote mixing<br>of gases and better heat transfer from the exterior to the<br>interior of the cartridge. An insertion and removal tool<br>simplifies the procedure for stacking such cartridges in a<br>long pipe, or for removing cartridges from the pipe. The<br>all-metal construction facilitates heat transfer through the<br>entire reactor, and avoids the problems associated with<br>packed ceramic beds. | No licenses Issued & no<br>internal research being<br>done with this patent            |
| 7,468,092        | 12/23/08   | Air Products &<br>Chemicals, Inc. | Operation of mixed<br>conducting metal oxide<br>membrane systems under<br>transient conditions            | A method of operating an oxygen-permeable mixed<br>conducting membrane having an oxidant feed side, an<br>oxidant feed surface, a permeate side, and a permeate<br>surface. The method consists of controlling the<br>differential strain between the permeate surface and<br>the oxidant feed surface by varying the oxygen partial<br>pressure on either or both sides of the membrane.                                                                                                                                                                                                                                                                                                                                                                                                                           | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project. |
| 7,434,547        | 10/14/08   | Nuvera Fuel Cells,<br>Inc.        | Fuel fired hydrogen generator                                                                             | A system that combines an IC engine with a fuel<br>processor for hydrocarbon fuels and generates and stores<br>hydrogen with high efficiency and low operation cost.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Still being used in ongoing research.                                                  |
| 7,429,372        | 09/30/08   | Air Products &<br>Chemicals, Inc. | Hydrogen storage by<br>reversible hydrogenation of<br>pi-conjugated substrates                            | A novel process for the storage and release of hydrogen<br>by means of a substantially reversible catalytic<br>hydrogenation of extended pi-conjugated substrates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project. |

| Patent<br>Number | Award Date | Organization                      | Title                                                                                                                                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Status                                                                                 |
|------------------|------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 7,425,231        | 09/16/08   | Air Products &<br>Chemicals, Inc. | Feed gas contaminant removal<br>in ion transport membrane<br>systems                                                                                     | A method for purification of a gas stream containing<br>contaminants such as volatile metal oxy-hydroxides,<br>volatile metal oxides, and volatile silicon hydroxide. The<br>method consists of contacting the feed gas stream with<br>a reactive solid material in a guard bed to form a solid<br>reaction product, after which the purified gas stream is<br>withdrawn from the guard bed.                                                                                                                                                                                                                  | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project. |
| 7,419,635        | 09/02/08   | NREL                              | $Pd/V_2O_5$ device for<br>colorimetric H <sub>2</sub> detection                                                                                          | A sensor structure for chemochromic optical detection of hydrogen gas over a wide response range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Research complete; seeking to license.                                                 |
| 7,367,996        | 05/06/08   | Nuvera Fuel Cells,<br>Inc.        | Heat transfer optimization in multi shelled reformers                                                                                                    | A hydrocarbon fuel reformers for reforming a gaseous or<br>liquid hydrocarbon fuel into a hydrogen-enriched product<br>stream or reformate for use in hydrogen fuel cells. The<br>reformer consists of coaxially arranged zones, through<br>which reactants and processed streams are cooperatively<br>flowed to accomplish necessary reactions, preheating and<br>thermal efficiency.                                                                                                                                                                                                                        | Still being used in ongoing research.                                                  |
| 7,354,465        | 04/08/08   | Nuvera Fuel Cells,<br>Inc.        | Device for cooling and<br>humidifying reformate                                                                                                          | A device for cooling and humidifying a reformate stream<br>from a reforming reactor as well as related methods,<br>modules and systems includes a heat exchanger and a<br>sprayer. The heat exchanger is adapted to allow a flow of<br>a first fluid (e.g. water) inside the conduit and to establish<br>a heat exchange relationship between the first fluid and<br>a second fluid (e.g. reformate from a reforming reactor)<br>flowing outside the conduit. The sprayer is coupled to<br>the outlet of the heat exchanger for spraying the first fluid<br>exiting the heat exchanger into the second fluid. | No longer being used<br>in research/no longer<br>being pursued.                        |
| 7,351,395        | 04/01/08   | Air Products &<br>Chemicals, Inc. | Hydrogen storage by<br>reversible hydrogenation of<br>pi-conjugated substrates                                                                           | A novel process for the storage and release of hydrogen<br>by means of a substantially reversible catalytic<br>hydrogenation of extended pi-conjugated substrates.                                                                                                                                                                                                                                                                                                                                                                                                                                            | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project. |
| 7,344,576        | 03/18/08   | PNNL                              | Conditions for fluid<br>separations in microchannels,<br>capillary-driven fluid<br>separations, and laminated<br>devices capable of separating<br>fluids | Methods of separating fluids using capillary forces and/<br>or improved conditions. The improved methods may<br>include control of the ratio of gas and liquid Reynolds<br>numbers relative to the Suratman number. Also disclosed<br>are wick-containing, laminated devices that are capable<br>of separating fluids.                                                                                                                                                                                                                                                                                        | Exclusive license to<br>Velocys, Inc.                                                  |
| 7,340,938        | 03/11/08   | University of<br>Colorado         | MIS-based sensors with hydrogen selectivity                                                                                                              | Hydrogen-selective metal-insulator-semiconductor<br>sensors which include a layer of hydrogen-selective<br>material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Licensed to the Electric<br>Power Research<br>Institute.                               |

| Patent<br>Number | Award Date | Organization                      | Title                                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                             | Status                                                                                 |
|------------------|------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 7,335,247        | 02/26/08   | Air Products &<br>Chemicals, Inc. | Ion transport membrane<br>module and vessel system                                                           | An ion transport membrane reactor system which can<br>be used to oxidize a reactant gas feed stream containing<br>hydrocarbons, such as methane, and thereby produce<br>a product gas stream containing hydrogen and carbon<br>oxides.                                                                                                                                                                                  | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project. |
| 7,311,755        | 12/25/07   | Air Products &<br>Chemicals, Inc. | Control of differential strain<br>during heating and cooling of<br>mixed conducting metal oxide<br>membranes | A method of operating an oxygen-permeable mixed<br>conducting membrane having an oxidant feed side and<br>a permeate side. The method consists of controlling the<br>differential strain between the oxidant feed side and the<br>permeate side by varying the oxygen partial pressure on<br>either or both sides of the membrane.                                                                                      | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project. |
| 7,297,324        | 11/20/07   | PNNL                              | Microchannel reactors with temperature control                                                               | Microchannel devices and methods of use are disclosed<br>wherein a reaction microchamber is in thermal contact<br>with a heat exchange channel. A catalyst can be provided<br>in the microchamber in sheet form such that reactants<br>flow by the catalyst sheet.                                                                                                                                                      | Exclusive license to<br>Velocys, Inc.                                                  |
| 7,279,027        | 10/09/07   | Air Products &<br>Chemicals, Inc. | Planar ceramic membrane<br>assembly and oxidation<br>reactor system                                          | Planar ceramic membrane assembly comprising a dense<br>layer of mixed-conducting multi-component metal oxide<br>material, wherein the dense layer has a first side and a<br>second side, a porous layer of mixed-conducting multi-<br>component metal oxide material in contact with the first<br>side of the dense layer, and a ceramic channeled support<br>layer in contact with the second side of the dense layer. | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project. |
| 7,276,306        | 10/02/07   | LLNL                              | System for the co-production of electricity and hydrogen                                                     | System for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%.                                                                                                                                                                                                                                                                        | No license issued and<br>no research being done<br>with this patent.                   |
| 7,272,941        | 09/25/07   | PNNL                              | Methods for fluid separations,<br>and devices capable of<br>separating fluids                                | A wick-containing apparatus and methods of separating fluids using wicks.                                                                                                                                                                                                                                                                                                                                               | Being used in<br>continuing research at<br>PNNL.                                       |
| 7,270,905        | 09/18/07   | PNNL                              | Microsystem process networks                                                                                 | Various aspects and applications of microsystem process<br>networks which can be improved by employing ortho-<br>cascading mass, heat, or other unit process operations<br>are described. One such application is the production of<br>hydrogen via steam reformation of hydrocarbons.                                                                                                                                  | Research complete;<br>seeking to license.                                              |

| Patent<br>Number | Award Date | Organization                                            | Title                                                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Status                                                                                                                               |
|------------------|------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 7,233,034        | 06/19/07   | NREL                                                    | Hydrogen permeable<br>protective coating for a<br>catalytic surface                                  | A protective coating for a surface comprising a layer<br>permeable to hydrogen, said coating being deposited on a<br>catalyst layer wherein the catalytic activity of the catalyst<br>layer is preserved.                                                                                                                                                                                                                                                                            | Exclusive license<br>to Nuclear Filter<br>Technology. Still<br>working with NREL<br>via CRADA on further<br>development.             |
| 7,229,785        | 06/12/07   | NREL                                                    | Fluorescence technique for<br>on-line monitoring of state<br>of hydrogen-producing<br>microorganisms | An in situ method for external on-line monitoring<br>of the physiological state of an algal culture inside a<br>closed photobioreactor system to ascertain the culture's<br>production of hydrogen.                                                                                                                                                                                                                                                                                  | Not licensed but still<br>being used in research<br>at NREL.                                                                         |
| 7,179,323        | 02/20/07   | Air Products &<br>Chemicals, Inc.                       | Ion transport membrane<br>module and vessel system                                                   | An ion transport membrane reactor system which can<br>be used to oxidize a reactant gas feed stream containing<br>hydrocarbons, such as methane, and thereby produce<br>a product gas stream containing hydrogen and carbon<br>oxides.                                                                                                                                                                                                                                               | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project.                                               |
| 7,176,005        | 02/13/07   | University of<br>California - Berkeley                  | Modulation of sulfate<br>permease for photosynthetic<br>hydrogen production                          | Sustained hydrogen production is obtained by the culturing of a genetically-modified algae, where the ability of the chloroplasts to intake sulfate is reduced or eliminated compared with wild-type algae.                                                                                                                                                                                                                                                                          | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project.                                               |
| 7,157,167        | 01/02/07   | University of Central<br>Florida Research<br>Foundation | Thermocatalytic process for $CO_2$ -free production of hydrogen and carbon from hydrocarbons         | A novel process and apparatus for sustainable $CO_2$ -free<br>production of hydrogen and carbon by thermocatalytic<br>decomposition (dissociation, pyrolysis, cracking) of<br>hydrocarbon fuels over carbon-based catalysts in the<br>absence of air and/or water.                                                                                                                                                                                                                   | Exclusive license to<br>Contained Energy, Inc.<br>Continued development<br>with the goal of a<br>commercial product in<br>3-5 years. |
| 7,148,389        | 12/12/06   | University of<br>Michigan                               | Selective sorbents for<br>purification of hydrocartons                                               | A method for removing thiophene and thiophene<br>compounds from liquid fuel using an adsorbent<br>which preferentially adsorbs thiophene and thiophene<br>compounds. The adsorption takes place at a selected<br>temperature and pressure, thereby producing a non-<br>adsorbed component and a thiophene/thiophene<br>compound-rich adsorbed component. A further method<br>includes selective removal of aromatic compounds from<br>a mixture of aromatic and aliphatic compounds. | Research complete;<br>seeking to license.                                                                                            |
| 7,125,540        | 10/24/06   | PNNL                                                    | Microsystem process networks                                                                         | Various aspects and applications of microsystem process<br>networks which can be improved by employing ortho-<br>cascading mass, heat, or other unit process operations<br>are described. One such application is the production of<br>hydrogen via steam reformation of hydrocarbons.                                                                                                                                                                                               | Exclusive license to<br>Velocys, Inc.                                                                                                |

| Patent<br>Number | Award Date | Organization                      | Title                                                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Status                                                                                 |
|------------------|------------|-----------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 7,122,873        | 10/17/06   | U. of Hawaii                      | Hybrid solid state/<br>electrochemical<br>photoelectrode for hydrogen<br>production                  | A semiconductor device for producing a gas from a material comprising the gas using light as the sole power source.                                                                                                                                                                                                                                                                                                                                                                  | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project. |
| 7,101,530        | 09/05/06   | Air Products &<br>Chemicals, Inc. | Hydrogen storage by<br>reversible hydrogenation of<br>pi-conjugated substrates                       | A novel process for the storage and release of hydrogen<br>by means of a substantially reversible catalytic<br>hydrogenation of extended pi-conjugated substrates.                                                                                                                                                                                                                                                                                                                   | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project. |
| 7,094,333        | 08/22/06   | University of<br>Michigan         | Selective sorbents for<br>purification of hydrocartons                                               | A method for removing thiophene and thiophene<br>compounds from liquid fuel using an adsorbent<br>which preferentially adsorbs thiophene and thiophene<br>compounds. The adsorption takes place at a selected<br>temperature and pressure, thereby producing a non-<br>adsorbed component and a thiophene/thiophene<br>compound-rich adsorbed component. A further method<br>includes selective removal of aromatic compounds from<br>a mixture of aromatic and aliphatic compounds. | Research complete;<br>seeking to license.                                              |
| 7,094,301        | 08/22/06   | Air Products &<br>Chemicals, Inc. | Method of forming a joint                                                                            | A method of forming a joint at an interface between two<br>sintered bodies comprising multicomponent metallic<br>oxides of specific crystal structure. Typical sintered<br>bodies are an ion transport membrane (an electrolyte),<br>ceramic tubes, and additional supporting equipment such<br>as seals and conduits.                                                                                                                                                               | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project. |
| 7,087,211        | 08/08/06   | ANL                               | Hydrogen production by high<br>temperature water splitting<br>using electron conducting<br>membranes | A device and method for separating water into hydrogen and oxygen.                                                                                                                                                                                                                                                                                                                                                                                                                   | No longer being used<br>in research/no longer<br>being pursued.                        |
| 7,067,453        | 06/27/06   | InnovaTek, Inc.                   | Hydrocarbon fuel reforming<br>catalyst and use thereof                                               | The subject invention is a catalyst consisting of an oxide<br>or mixed oxide support and bimetallic catalytically active<br>compounds.                                                                                                                                                                                                                                                                                                                                               | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project. |
| 7,066,973        | 06/27/06   | Nuvera Fuel Cells,<br>Inc.        | Integrated reformer and shift reactor                                                                | A hydrocarbon fuel reformer for producing diatomic hydrogen gas.                                                                                                                                                                                                                                                                                                                                                                                                                     | Being used in the New<br>Millenium Project.                                            |

| Patent<br>Number | Award Date | Organization                | Title                                                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Status                                                                                     |
|------------------|------------|-----------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 7,063,131        | 06/20/06   | Nuvera Fuel Cells,<br>Inc.  | Perforated fin heat exchangers<br>and catalytic support                             | Perforated fins are provided to improve the capabilities<br>of fin and tube type heat exchangers, and to adapt them<br>for flow outside of the tube that is essentially parallel to<br>the axis of the tube. The fins are made of a thermally<br>conductive material, such as metal, with perforations in<br>the fins. The perforations allow heat exchange with the<br>contents of a tube of a fluid flowing essentially parallel<br>to the axis of the tube, in contrast to conventional fin-<br>tube heat exchangers. The fins may also be bonded to a<br>post or other securing means and inserted into the inside<br>of a tube or other hollow body to improve efficiency of<br>heat exchange. In addition, the fins may carry a catalyst,<br>optionally carried on a washcoat or similar treatment to<br>increase surface area. | No longer being used<br>in research/no longer<br>being pursued.                            |
| 7,059,364        | 06/13/06   | Gas Technology<br>Institute | Control method for high-<br>pressure hydrogen vehicle<br>fueling station dispensers | A method for quick filling a vehicle hydrogen storage<br>vessel with hydrogen, the key component of which is an<br>algorithm used to control the fill process, which interacts<br>with the hydrogen dispensing apparatus to determine the<br>vehicle hydrogen storage vessel capacity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Being used in a<br><u>commercial product</u> , H2<br>ProGen, by GreenField<br>Compression. |
| 7,053,256        | 05/30/06   | University of<br>Michigan   | Selective sorbents for<br>purification of hydrocartons                              | A method for removing thiophene and thiophene<br>compounds from liquid fuel includes contacting the<br>liquid fuel with an adsorbent which preferentially<br>adsorbs the thiophene and thiophene compounds.<br>The adsorption takes place at a selected temperature<br>and pressure, thereby producing a non-adsorbed<br>component and a thiophene/thiophene compound-rich<br>adsorbed component. The adsorbent includes either<br>a metal or a metal cation that is adapted to form .pi<br>complexation bonds with the thiophene and/or thiophene<br>compounds, and the preferential adsorption occurs by<br>.picomplexation. A further method includes selective<br>removal of aromatic compounds.                                                                                                                                  | Research complete;<br>seeking to license.                                                  |
| 7,051,540        | 05/30/06   | PNNL                        | Methods for fluid separations,<br>and devices capable of<br>separating fluids       | A wick-containing apparatus and methods of separating fluids using wicks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Being used in<br>continuing research at<br>PNNL and seeking to<br>license.                 |

| Patent<br>Number | Award Date | Organization                      | Title                                                                                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Status                                                                                    |
|------------------|------------|-----------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 7,033,570        | 04/25/06   | University of<br>Colorado         | Solar-thermal fluid-wall reaction processing                                                | A method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy.                                                                                                                                                                                                                                                                                                                                                                                                  | Licensed to Sundrop<br>Fuels, Inc. and still<br>being used in research<br>at the company. |
| 7,029,574        | 04/18/06   | University of<br>Michigan         | Selective sorbents for<br>purification of hydrocartons                                      | A method for removing thiophene and thiophene<br>compounds from liquid fuel using an adsorbent<br>which preferentially adsorbs thiophene and thiophene<br>compounds. The adsorption takes place at a selected<br>temperature and pressure, thereby producing a non-<br>adsorbed component and a thiophene/thiophene<br>compound-rich adsorbed component. A further method<br>includes selective removal of aromatic compounds from<br>a mixture of aromatic and aliphatic compounds.                                                             | Research complete;<br>seeking to license.                                                 |
| 7,011,898        | 03/14/06   | Air Products &<br>Chemicals, Inc. | Method of joining ITM<br>materials using a partially or<br>fully-transient liquid phase     | A method of forming a joint at an interface between two<br>sintered bodies comprising multicomponent metallic<br>oxides of specific crystal structure. Typical sintered<br>bodies are an ion transport membrane (an electrolyte),<br>ceramic tubes, and additional supporting equipment such<br>as seals and conduits.                                                                                                                                                                                                                           | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project.    |
| 7,011,694        | 03/14/06   | University of<br>Kentucky         | CO <sub>2</sub> -selective membranes<br>containing amino groups                             | A $CO_2$ -selective membrane constructed in the hollow-<br>fiber configuration using air as the sweep gas for use in<br>water gas shift reactors to aid in the production of high-<br>purity $H_2$ .                                                                                                                                                                                                                                                                                                                                             | Still being used in on-<br>going research efforts.                                        |
| 6,989,252        | 01/24/06   | NREL                              | Hydrogen production using<br>hydrogenase-containing<br>oxygenic photosynthetic<br>organisms | A reversible physiological process provides for the<br>temporal separation of oxygen evolution and hydrogen<br>production in a microorganism.                                                                                                                                                                                                                                                                                                                                                                                                    | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project.    |
| 6,986,797        | 01/17/06   | Nuvera Fuel Cells,<br>Inc.        | Auxiliary reactor for a<br>hydrocarbon reforming system                                     | An integrated hydrocarbon fuel reforming system<br>for reforming a gaseous or liquid hydrocarbon fuel<br>to produce a hydrogen-rich product stream used in,<br>among other things, hydrogen fuel cells. An improved<br>integrated hydrocarbon reforming system is detailed,<br>including, an autothermal reformer having distinct zones<br>for partial oxidation reforming and steam reforming, an<br>integrated shift bed for reducing carbon monoxide in the<br>product stream, a preferential oxidation reactor, and an<br>auxiliary reactor. | No longer being used<br>in research/no longer<br>being pursued.                           |

| Patent<br>Number | Award Date | Organization                | Title                                                                                                                                                    | Description                                                                                                                                                                                                                                                                                                            | Status                                                                                                                                             |
|------------------|------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 6,985,082        | 01/10/06   | NexTech Materials,<br>Ltd.  | Carbon monoxide sensor and method of use                                                                                                                 | A sensor and method of use for detection of low levels of carbon monoxide in gas mixtures.                                                                                                                                                                                                                             | Not being pursued at this time. Put on the shelf.                                                                                                  |
| 6,967,063        | 11/22/05   | ANL                         | Autothermal<br>hydrodesulfurizing reforming<br>method and catalyst                                                                                       | A method for reforming a sulfur-containing carbonaceous fuel in which the sulfur-containing carbonaceous fuel is mixed with $H_2O$ and an oxidant, forming a fuel/ $H_2O$ / oxidant mixture.                                                                                                                           | Licensed to a small<br>company that wishes to<br>remain anonymous and<br>being used in research.                                                   |
| 6,887,728        | 05/03/05   | U. of Hawaii                | Hybrid solid state/<br>electrochemical<br>photoelectrode for hydrogen<br>production                                                                      | A semiconductor device for production of a gas from a material comprising the gas using light as the sole power source.                                                                                                                                                                                                | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project.                                                             |
| 6,878,362        | 04/12/05   | General Electric<br>Company | Fuel processor apparatus and<br>method based on autothermal<br>cyclic reforming                                                                          | In a fuel processor based on autothermal cyclic<br>reforming process, a method of generating hydrogen<br>gas includes receiving a mixture of fuel and steam in the<br>reformer reactor operating in a reforming step to produce<br>hydrogen-rich reformate gas.                                                        | Research not continuing<br>in this area and nothing<br>being done with patent.                                                                     |
| 6,875,247        | 04/05/05   | PNNL                        | Conditions for fluid<br>separations in microchannels,<br>capillary-driven fluid<br>separations, and laminated<br>devices capable of separating<br>fluids | Methods of separating fluids using capillary forces and/<br>or improved conditions. The improved methods may<br>include control of the ratio of gas and liquid Reynolds<br>numbers relative to the Suratman number. Also disclosed<br>are wick-containing, laminated devices that are capable<br>of separating fluids. | Exclusive license to<br>Velocys, Inc. The<br>patent is not planned<br>for development for<br>hydrogen production but<br>for distillation purposes. |
| 6,872,378        | 03/29/05   | NREL                        | Solar thermal aerosol flow<br>reaction process                                                                                                           | An environmentally beneficial process using<br>concentrated sunlight to heat radiation absorbing<br>particles to carry out highly endothermic gas phase<br>chemical reactions ultimately resulting in the production<br>of hydrogen or hydrogen synthesis gases.                                                       | Licensed to Sundrop<br>Fuels, Inc. and still<br>being used in research<br>at the company.                                                          |
| 6,869,462        | 03/22/05   | PNNL                        | Methods of contacting<br>substances and microsystem<br>contactors                                                                                        | The invention provides an apparatus and methods for<br>efficiently capturing and separating fluids from gas/liquid<br>streams. One possible application of the invention is for<br>recycling water used in fuel cells.                                                                                                 | Being used in<br>continuing research at<br>PNNL and seeking to<br>license.                                                                         |

| Patent<br>Number | Award Date | Organization                  | Title                                                                                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Status                                                                                                                               |
|------------------|------------|-------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 6,783,742        | 08/31/04   | Nuvera Fuel Cells,<br>Inc.    | Reactor for producing<br>hydrogen from hydrocarbon<br>fuels                                                    | A reformer for producing a hydrogen-rich gas with<br>multiple reaction zones and a product gas collection<br>space. The zones are sequentially adjacent and the flow<br>path directs flow of the reactants in diverging directions.<br>Divergent flow permits flow into and through a zone<br>over more than just a single cross-sectional geometry<br>of the zone or a single cross-section of the flow path.<br>This technique can be used for at lower pressure for<br>flowing the reaction stream so as to reduce the parasitic<br>requirements of the reactor, and can also be used to<br>increase throughput of the reactor. | Still being used in<br>ongoing research.                                                                                             |
| 6,726,893        | 04/27/04   | ANL                           | Hydrogen production by high-<br>temperature water splitting<br>using electron-conducting<br>membranes          | A device and method for separating water into hydrogen and oxygen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No longer being used<br>in research/no longer<br>being pursued.                                                                      |
| 6,723,566        | 04/20/04   | NREL                          | Pd/Ni-WO <sub>3</sub> anodic double<br>layer gasochromic device                                                | An anodic double layer gasochromic sensor structure for<br>optical detection of hydrogen in improved response time<br>and with improved optical absorption real time constants.                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exclusive license<br>to Nuclear Filter<br>Technology. Still<br>working with NREL<br>via CRADA on further<br>development.             |
| 6,716,275        | 04/06/04   | SNL                           | Gas impermeable glaze for<br>sealing a porous ceramic<br>surface                                               | A process for fabricating a gas impermeable seal on a porous ceramic surface using a thin, glass-based, pinhole free glaze.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Not licensed to anyone<br>but still being used in<br>research.                                                                       |
| 6,713,040        | 03/30/04   | ANL                           | Method for generating<br>hydrogen for fuel cells                                                               | A method of producing a $H_2$ rich gas stream includes<br>supplying an $O_2$ rich gas, steam, and fuel to an inner<br>reforming zone of a fuel processor that includes a partial<br>oxidation catalyst and a steam reforming catalyst or<br>a combined partial oxidation and stream reforming<br>catalyst.                                                                                                                                                                                                                                                                                                                         | Being used in<br>continuing research<br>efforts at ANL.                                                                              |
| 6,670,058        | 12/20/03   | University Central<br>Florida | Thermocatalytic process<br>for CO <sub>2</sub> -free production of<br>hydrogen and carbon from<br>hydrocarbons | A novel process for sustainable CO <sub>2</sub> -free production of hydrogen and carbon by thermocatalytic decomposition (or dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water.                                                                                                                                                                                                                                                                                                                                                                               | Exclusive license to<br>Contained Energy, Inc.<br>Continued development<br>with the goal of a<br>commercial product in<br>3-5 years. |

| Patent<br>Number | Award Date | Organization                      | Title                                                                                                                                | Description                                                                                                                                                                                                                                                          | Status                                                                                                              |
|------------------|------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 6,666,909        | 12/23/03   | PNNL                              | Microsystem capillary<br>separations                                                                                                 | Laminated, multiphase separators and contactors<br>having wicking structures and gas flow channels. Some<br>preferred embodiments are combined with microchannel<br>heat exchange. Integrated systems containing these<br>components are also part of the invention. | Exclusive license<br>to Velocys, Inc.<br>Being developed for<br>distillation uses.                                  |
| 6,641,625        | 11/04/03   | Nuvera Fuel Cells,<br>Inc.        | Integrated hydrocarbon<br>reforming system and controls                                                                              | A hydrocarbon reformer system including a first reactor<br>configured to generate hydrogen-rich reformate.                                                                                                                                                           | Being used by Nuvera<br>in research in a demo<br>prototype for truck<br>APUs. Five years from<br>commercialization. |
| 6,623,720        | 09/23/03   | University of<br>Michigan         | Transition metal carbides,<br>nitrides and borides, and their<br>oxygen containing analogs<br>useful as water gas shift<br>catalysts | Mono- and bimetallic transition metal carbides, nitrides<br>and borides, and their oxygen containing analogs (e.g.<br>oxycarbides) for use as water gas shift catalysts.                                                                                             | No license yet<br>but looking for a<br>commercial partner for<br>future research.                                   |
| 6,572,829        | 06/03/03   | University Central<br>Florida     | Closed cycle photocatalytic<br>process for decomposition<br>of hydrogen sulfide to its<br>constituent elements                       | System for separating hydrogen and sulfur from hydrogen sulfide $(H_2S)$ gas produced from oil and gas waste streams.                                                                                                                                                | Not licensed and no<br>research being done at<br>University of Central<br>Florida.                                  |
| 6,551,561        | 04/22/03   | University Central<br>Florida     | Apparatus for decoupled<br>thermo-photocatalytic<br>pollution control                                                                | A new method for design and scale-up of photocatalytic<br>and thermocatalytic processes.                                                                                                                                                                             | Not licensed and no<br>research being done at<br>University of Central<br>Florida.                                  |
| 6,531,035        | 03/11/03   | University Central<br>Florida     | Apparatus and method for low<br>flux photocatalytic pollution<br>control                                                             | A new method for design and scale-up of photocatalytic<br>and thermocatalytic processes.                                                                                                                                                                             | Not licensed and no<br>research being done at<br>University of Central<br>Florida.                                  |
| 6,492,290        | 12/10/02   | Air Products &<br>Chemicals, Inc. | Mixed conducting membranes<br>for syngas production                                                                                  | A new class of multicomponent metallic oxides that are<br>particularly suited in fabricating components used in<br>processes for producing syngas.                                                                                                                   | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project.                              |
| 6,478,077        | 11/12/02   | SNL                               | Self supporting heat transfer<br>element                                                                                             | An improved internal heat exchange element arranged<br>so as to traverse the inside diameter of a container vessel<br>such that it makes good mechanical contact with the<br>interior wall of that vessel.                                                           | Not licensed and no<br>research being done at<br>SNL.                                                               |

| Patent<br>Number | Award Date | Organization                      | Title                                                                                                                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Status                                                                                                              |
|------------------|------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 6,468,499        | 10/22/02   | ANL                               | Method of generating<br>hydrogen by catalytic<br>decomposition of water                                                | A method for producing hydrogen includes providing<br>a feed stream comprising water; contacting at least one<br>proton conducting membrane adapted to interact with<br>the feed stream; splitting the water into hydrogen and<br>oxygen at a predetermined temperature; and separating<br>the hydrogen from the oxygen.                                                                                                                                                            | No longer being used<br>in research/no longer<br>being pursued.                                                     |
| 6,468,480        | 10/22/02   | Nuvera Fuel Cells,<br>Inc.        | Apparatus for converting<br>hydrocarbon fuel into<br>hydrogen gas and carbon<br>dioxide                                | Hydrocarbon fuel reformer suitable for producing<br>synthesis hydrogen gas from reactions with hydrocarbons<br>fuels, oxygen, and steam.                                                                                                                                                                                                                                                                                                                                            | Being used by Nuvera<br>in research in a demo<br>prototype for truck<br>APUs. Five years from<br>commercialization. |
| 6,448,068        | 09/10/02   | NREL                              | System for rapid biohydrogen<br>phenotypic screening of<br>microorganisms using a<br>chemochromic sensor               | A system for identifying a hydrogen gas producing organism.                                                                                                                                                                                                                                                                                                                                                                                                                         | Currently in licensing negotiations.                                                                                |
| 6,395,252        | 05/28/02   | ORNL                              | Method for the continuous production of hydrogen                                                                       | A method for the continuous production of hydrogen.                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not licensed and no research being done at ORNL.                                                                    |
| 6,391,484        | 05/21/02   | General Motors<br>Corporation     | Fuel processor temperature monitoring and control                                                                      | A method and system for maintaining temperature<br>control in a fuel processor (reformer) used to produce<br>hydrogen for a fuel cell.                                                                                                                                                                                                                                                                                                                                              | Being used in<br>continuing research at<br>the company.                                                             |
| 6,303,098        | 10/16/01   | ANL                               | Steam reforming catalyst                                                                                               | A method of forming a hydrogen rich gas from a source of hydrocarbon fuel.                                                                                                                                                                                                                                                                                                                                                                                                          | No longer being used in research.                                                                                   |
| 6,302,402        | 10/16/01   | Air Products &<br>Chemicals, Inc. | Compliant high temperature<br>seals for dissimilar materials                                                           | A high temperature, gas-tight seal is formed by utilizing<br>one or more compliant metallic toroidal ring sealing<br>elements, where the applied pressure serves to activate<br>the seal, thus improving the quality of the seal. The<br>compliant nature of the sealing element compensates for<br>differences in thermal expansion between the materials to<br>be sealed, and is particularly useful in sealing a metallic<br>member and a ceramic tube at elevated temperatures. | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project.                              |
| 6,277,589        | 08/21/01   | NREL                              | Method and apparatus for<br>rapid biohydrogen phenotypic<br>screening of microorganisms<br>using a chemochromic sensor | An assay system for identifying a hydrogen-gas-<br>producing organism, including a sensor film having a<br>first layer comprising a transition metal oxide or oxysalt<br>and a second layer comprising hydrogen-dissociative<br>catalyst metal.                                                                                                                                                                                                                                     | Currently in licensing negotiations.                                                                                |

| Patent<br>Number | Award Date | Organization                  | Title                                                                                              | Description                                                                                                                                                                                                                                                                                           | Status                                                                                                              |
|------------------|------------|-------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 6,254,839        | 07/03/01   | Arthur D. Little, Inc.        | Apparatus for converting<br>hydrocarbon fuel into<br>hydrogen gas and carbon<br>dioxide            | A hydrocarbon fuel reformer suitable for producing<br>synthesis hydrogen gas from reactions with hydrocarbons<br>fuels, oxygen, and steam.                                                                                                                                                            | Being used by Nuvera<br>in research in a demo<br>prototype for truck<br>APUs. Five years from<br>commercialization. |
| 6,244,367        | 06/12/01   | ANL                           | Methanol partial oxidation reformer                                                                | A partial oxidation reformer comprising a longitudinally<br>extending chamber having a methanol, water, and an air<br>inlet and an outlet.                                                                                                                                                            | No longer being used in research.                                                                                   |
| 6,238,815        | 05/29/01   | GM Corp.                      | Thermally integrated staged<br>methanol reformer and<br>method                                     | A thermally integrated two-stage methanol reformer<br>including a heat exchanger and first and second reactors<br>colocated in a common housing in which a gaseous heat<br>transfer medium circulates to carry heat from the heat<br>exchanger into the reactors.                                     | No longer being<br>pursued, abandoned.                                                                              |
| 6,207,122        | 03/27/01   | Arthur D. Little, Inc.        | Method for converting<br>hydrocarbon fuel into<br>hydrogen gas and carbon<br>dioxide               | A hydrocarbon fuel reforming method suitable for<br>producing synthesis hydrogen gas from reactions with<br>hydrocarbons fuels, oxygen, and steam.                                                                                                                                                    | Being used by Nuvera<br>in research in a demo<br>prototype for truck<br>APUs. Five years from<br>commercialization. |
| 6,162,558        | 12/19/00   | General Motors<br>Corporation | Method and apparatus for selective removal of carbon monoxide                                      | A method and apparatus for reducing the carbon monoxide content of a hydrogen-rich gas.                                                                                                                                                                                                               | Being used in<br>continuing research at<br>the company.                                                             |
| 6,132,689        | 10/17/00   | General Motors<br>Corporation | Multi-stage, isothermal CO<br>preferential oxidation reactor                                       | A multi-stage, isothermal, carbon monoxide preferential<br>oxidation (PrOx) reactor comprising a plurality of<br>serially arranged, catalyzed heat exchangers, each<br>separated from the next by a mixing chamber for<br>homogenizing the gases exiting one heat exchanger and<br>entering the next. | Being used in<br>continuing research at<br>the company.                                                             |
| 6,126,908        | 10/03/00   | Arthur D. Little, Inc.        | Method and apparatus for<br>converting hydrocarbon fuel<br>into hydrogen gas and carbon<br>dioxide | An apparatus and a method for converting hydrocarbon<br>fuel or an alcohol into hydrogen gas and carbon dioxide.                                                                                                                                                                                      | Being used by Nuvera<br>in research in a demo<br>prototype for truck<br>APUs. Five years from<br>commercialization. |
| 6,123,913        | 09/26/00   | Arthur D. Little, Inc.        | Method for converting<br>hydrocarbon fuel into<br>hydrogen gas and carbon<br>dioxide               | A method for synthesizing hydrogen gas from<br>hydrocarbon fuel. A first mixture of steam and a first fuel<br>are directed into a first tube to subject the first mixture to<br>a first steam reforming reaction in the presence of a first<br>catalyst.                                              | Being used by Nuvera<br>in research in a demo<br>prototype for truck<br>APUs. Five years from<br>commercialization. |

| Patent<br>Number | Award Date | Organization                      | Title                                                                                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                     | Status                                                                                                              |
|------------------|------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 6,114,400        | 09/05/00   | Air Products &<br>Chemicals, Inc. | Synthesis gas production by<br>mixed conducting membranes<br>with integrated conversion<br>into liquid products | Natural gas or other methane-containing feed gas<br>is converted to a $C_5 - C_{19}$ hydrocarbon liquid in an<br>integrated system comprising an oxygenative synthesis<br>gas generator, a non-oxygenative synthesis gas generator,<br>and a hydrocarbon synthesis process such as the<br>Fischer-Tropsch process. The oxygenative synthesis<br>gas generator is a mixed conducting membrane reactor<br>system. | Part of an <u>emerging</u><br><u>hydrogen production</u><br><u>technology</u> project.                              |
| 6,110,861        | 08/29/00   | ANL                               | Partial oxidation catalyst                                                                                      | A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion.                                                                                                                                                                                                                                                                                                                   | Research complete; seeking to license.                                                                              |
| 6,083,425        | 07/04/00   | Arthur D. Little, Inc.            | Method for converting<br>hydrocarbon fuel into<br>hydrogen gas and carbon<br>dioxide                            | A method for converting hydrocarbon fuel into hydrogen<br>gas and carbon dioxide within a reformer.                                                                                                                                                                                                                                                                                                             | Being used by Nuvera<br>in research in a demo<br>prototype for truck<br>APUs. Five years from<br>commercialization. |
| 6,051,125        | 04/18/00   | LLNL                              | Natural gas-assisted steam<br>electrolyzer                                                                      | An efficient method of producing hydrogen by high<br>temperature steam electrolysis that will lower the<br>electricity consumption to an estimated 65 percent<br>lower than has been achievable with previous steam<br>electrolyzer systems.                                                                                                                                                                    | One commercial license<br>was issued but is<br>terminated.                                                          |
| 5,942,346        | 08/24/99   | ANL                               | Methanol partial oxidation reformer                                                                             | A partial oxidation reformer comprising a longitudinally<br>extending chamber having a methanol, water, and an air<br>inlet and an outlet.                                                                                                                                                                                                                                                                      | No longer being used in research.                                                                                   |
| 5,939,025        | 08/17/99   | ANL                               | Methanol partial oxidation reformer                                                                             | A partial oxidation reformer comprising a longitudinally<br>extending chamber having a methanol, water and an air<br>inlet and an outlet.                                                                                                                                                                                                                                                                       | No longer being used in research.                                                                                   |
| 5,929,286        | 07/27/99   | ANL                               | Method for making hydrogen<br>rich gas from hydrocarbon<br>fuel                                                 | A method of forming a hydrogen rich gas from a<br>source of hydrocarbon fuel in which the hydrocarbon<br>fuel contacts a two-part catalyst comprising a<br>dehydrogenation portion and an oxide-ion conducting<br>portion.                                                                                                                                                                                      | Research complete;<br>seeking to license.                                                                           |
| 5,895,518        | 04/20/99   | SNL                               | Synthesis of alloys with controlled phase structure                                                             | A method for preparing controlled phase alloys useful for<br>engineering and hydrogen storage applications.                                                                                                                                                                                                                                                                                                     | Not licensed and no<br>research being done at<br>SNL.                                                               |
| 5,886,614        | 03/23/99   | General Motors<br>Corporation     | Thin film hydrogen sensor                                                                                       | A thin film hydrogen sensor consisting of a flat ceramic<br>substrate, a thin film temperature-responsive resistor, and<br>a thin film hydrogen-responsive metal resistor.                                                                                                                                                                                                                                      | Being used in<br>continuing research at<br>the company.                                                             |

| Patent<br>Number | Award Date | Organization                       | Title                                                             | Description                                                                                                                                                                                                                                             | Status                                                                  |
|------------------|------------|------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 5,821,111        | 10/13/98   | Bioengineering<br>Resources, Inc.  | Bioconversion of waste<br>biomass to useful products              | A process for converting waste biomass to useful<br>products by gasifying the biomass to produce synthesis<br>gas and converting the synthesis gas substrate to one or<br>more useful products.                                                         | No longer being<br>pursued for hydrogen<br>production                   |
| 5,637,415        | 06/10/97   | General Motors<br>Corporation      | Controlled CO preferential oxidation                              | A method for controlling the supply of air to a<br>preferential oxidation reactor in which the CO content of<br>a hydrogen-rich gas stream is reduced.                                                                                                  | Being used in<br>continuing research at<br>the company.                 |
| 5,271,916        | 12/21/93   | General Motors<br>Corporation      | Device for staged carbon<br>monoxide oxidation                    | A method and apparatus for selectively oxidizing carbon monoxide in a hydrogen-rich feed stream.                                                                                                                                                        | Being used in<br>continuing research at<br>the company.                 |
| 4,473,622        | 09/25/84   | United Technologies<br>Corporation | Rapid starting methanol reactor system                            | A methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant.                                                                                                                                                                 | Patent has expired and<br>is not being used at<br>UTC.                  |
| 4,358,429        | 11/09/82   | ANL                                | Oxygen stabilized zirconium<br>vanadium intermetallic<br>compound | A new oxygen stabilized intermetallic compound that can<br>repeatedly sorbing hydrogen from a mixture of gases.                                                                                                                                         | No licensee and no<br>further development of<br>this technology at ANL. |
| 4,142,300        | 03/06/79   | ANL                                | Lanthanum nickel aluminum alloy                                   | A ternary intermetallic compound capable of reversible<br>sorption of hydrogen having the chemical formula<br>$LaNi_5-x Al_x$ , where x is in the range of about 0.01<br>to 1.5 and the method of storing hydrogen using the<br>intermetallic compound. | No licensee and no<br>further development of<br>this technology at ANL. |

| Storage Patents Status |
|------------------------|
|------------------------|

| Patent<br>Number | Award<br>Date | Organization                | Title                                                                                                  | Description                                                                                                                                                                                                                                                                                                                                                                                    | Status                                               |
|------------------|---------------|-----------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 8,426,337        | 12/11/12      | University of<br>Michigan   | Metal salt catalysts for<br>enhancing hydrogen spillover                                               | A composition for hydrogen storage including receptor<br>with hydrogen dissociating metal and metal salt doping<br>is configured to spill over hydrogen to the receptor, and<br>the metal salt is configured to increase the rate of the<br>spill over of the hydrogen to the receptor.                                                                                                        | Research complete; seeking to license.               |
| 8,372,369        | 02/12/13      | University of<br>Michigan   | Enhancing hydrogen spillover<br>and storage                                                            | Methods for enhancing hydrogen spillover and storage<br>are disclosed. One embodiment of the method includes<br>doping a hydrogen receptor with metal particles, and<br>exposing the hydrogen receptor to ultrasonication<br>during doping. Another embodiment includes doping a<br>hydrogen receptor with metal particles, and exposing the<br>doped hydrogen receptor to a plasma treatment. | Research complete; seeking to license.               |
| 8,338,330        | 12/25/12      | University of<br>Michigan   | Chemical bridges for<br>enhancing hydrogen storage<br>by spillover and methods for<br>forming the same | A composition for hydrogen storage includes a source<br>of hydrogen atoms, a receptor, and a chemical bridge<br>formed between the source and the receptor. The<br>chemical bridge is formed from a precursor material.<br>The receptor is adapted to receive hydrogen spillover<br>from the source.                                                                                           | Research complete; seeking to license.               |
| 8,329,140        | 12/11/12      | LANL                        | Method and system for<br>hydrogen evolution and<br>storage                                             | A method and system for storing and evolving hydrogen<br>that uses chemical compounds that can be hydrogenated<br>to store hydrogen and dehydrogenated to evolve<br>hydrogen. A catalyst lowers the energy required for<br>storing and evolving hydrogen.                                                                                                                                      | Still being used in ongoing research efforts.        |
| 8,268,288        | 09/18/12      | BNL                         | Regeneration of aluminum<br>hydride                                                                    | Methods and materials for the formation of hydrogen storage alanes, $AlH_x$ , where x is greater than 0 and less than or equal to 6 at reduced $H_2$ pressures and temperatures.                                                                                                                                                                                                               | Still being used in research and seeking to license. |
| 8,193,113        | 06/05/12      | General Electric<br>Company | Hydrogen storage material<br>and related processes                                                     | A metal hydride comprising of a complex hydride and<br>a borohydride catalyst that can be used for hydrogen<br>storage. The borohydride catalyst comprises a BH <sub>4</sub><br>group, and a group IV metal, a group V metal, or a<br>combination of a group IV and a group V metal.                                                                                                           | Research complete, seeking to license.               |

| Patent<br>Number | Award<br>Date | Organization                      | Title                                                                                                                                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Status                                                        |
|------------------|---------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 8,153,554        | 04/10/12      | University of<br>South Carolina   | Reversible hydrogen storage<br>materials                                                                                               | Process for synthesis of a complex hydride material for<br>hydrogen storage and includes mixing a borohydride<br>with at least one additive agent and at least one catalyst<br>and heating the mixture at a temperature of less than<br>about 600°C. The hydride material comprises of an<br>alkali metal or group IIA metal, aluminum and boron.<br>The material is capable of cyclic dehydrogenation and<br>rehydrogenation and has a hydrogen capacity of at least<br>about 4 weight percent. | Research complete - licensed/<br>seeking to license.          |
| 8,153,020        | 04/10/12      | University of<br>South Florida    | Hydrogen-storing hydride complexes                                                                                                     | Hydrogen storage material comprising of a complex hydride using light-weight elements or compounds.                                                                                                                                                                                                                                                                                                                                                                                              | Research complete - licensed/<br>seeking to license.          |
| 8,147,796        | 04/03/12      | University of<br>Utah             | Hydrogen storage in a<br>combined M.sub.xAlH.<br>sub.6/M'.sub.y(NH.sub.2).<br>sub.z system and methods of<br>making and using the same | Reversible hydrogen storage compositions, methods for<br>reversibly storing hydrogen, and methods of making<br>reversible hydrogen storage compositions.                                                                                                                                                                                                                                                                                                                                         | Research complete; seeking to license.                        |
| 8,147,788        | 04/03/12      | SNL                               | Direct synthesis of<br>magnesium borohydride                                                                                           | Method of directly synthesizing an alkaline earth<br>metal borohydride compound and a method to directly<br>produce magnesium borohydride.                                                                                                                                                                                                                                                                                                                                                       | Still being used in ongoing research efforts.                 |
| 8,105,974        | 01/31/12      | SRNL                              | Destabilized and catalyzed<br>borohydride for reversible<br>hydrogen storage                                                           | Hydrogen storage materials, and with improved thermodynamic properties.                                                                                                                                                                                                                                                                                                                                                                                                                          | No longer being used in research/<br>no longer being pursued. |
| 8,101,786        | 01/24/12      | LANL                              | Energy efficient synthesis of boranes                                                                                                  | Borane material for hydrogen storage, and an energy<br>efficient synthesis of boranes (boron compounds having<br>at least one BH bond).                                                                                                                                                                                                                                                                                                                                                          | Still being used in ongoing research efforts.                 |
| 8,076,382        | 12/13/11      | ANL                               | Porous polymeric materials<br>for hydrogen storage                                                                                     | Porous polymers that have a higher hydrogen storage<br>capacity at ambient temperatures than benchmark<br>materials.                                                                                                                                                                                                                                                                                                                                                                             | Still being used in ongoing research efforts.                 |
| 8,003,073        | 08/23/11      | Air Products &<br>Chemicals, Inc. | Autothermal hydrogen<br>storage and delivery systems                                                                                   | Process of releasing the stored hydrogen from hydrogen<br>carrier compositions ("carrier") for use in a fuel cell or<br>internal combustion engine. The methods and apparatus<br>provide a thermally self-sustaining or autothermal<br>catalytic dehydrogenation of a carrier to supply<br>hydrogen wherein the necessary heat for this reaction<br>is derived, at least in part, from an accompanying<br>exothermic dehydrogenation of the carrier.                                             | Research complete; seeking to license.                        |

| Patent<br>Number | Award<br>Date | Organization                | Title                                                                                                      | Description                                                                                                                                                                                                                                                                                                                                               | Status                                                               |
|------------------|---------------|-----------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 7,963,116        | 06/21/11      | PNNL                        | Bulk-scaffolded hydrogen<br>storage and releasing<br>materials and methods for<br>preparing and using same | Materials and processes for storing hydrogen, and uses<br>bulk-scaffolded materials, compounds, materials, and<br>combinations that provide storage and release of bulk<br>quantities of hydrogen at lower release temperatures and<br>faster release rates for operation of hydrogen-fueled on-<br>board and off-board devices and applications.         | Still being used in ongoing research.                                |
| 7,951,749        | 05/31/11      | University of<br>Michigan   | Enhancing hydrogen spillover<br>and storage                                                                | Methods for enhancing hydrogen spillover and storage.<br>One method includes doping a hydrogen receptor with<br>metal particles, and exposing the hydrogen receptor<br>to ultrasonification as doping occurs while another<br>method dopes a hydrogen receptor with metal particles,<br>and exposes the doped hydrogen receptor to a plasma<br>treatment. | Research complete.                                                   |
| 7,927,507        | 04/19/11      | HRL<br>Laboratories,<br>LLC | Hydrogen storage<br>compositions                                                                           | Materials for reversible hydrogen storage that employ<br>an alloy exhibiting reversible formation/deformation of<br>$BH_4^-$ anions. The materials are prepared by combining<br>a metal hydride with a ternary alloy consisting of<br>magnesium, boron and another metal.                                                                                 | Being used in continuing research at the company.                    |
| 7,897,129        | 03/01/11      | PNNL                        | Process for synthesis of<br>ammonia borane for bulk<br>hydrogen storage                                    | The invention describes new methods for synthesizing<br>ammonia borane, which shows promise as a chemical<br>hydrogen storage material for fuel-cell-powered<br>applications.                                                                                                                                                                             | Being used in continuing research<br>at PNNL and seeking to license. |
| 7,846,410        | 12/07/10      | LANL                        | Regeneration of polyborazylene                                                                             | The invention provides methods for regenerating<br>ammonia borane, a hydrogen storage material, from<br>polyborazylene.                                                                                                                                                                                                                                   | Being used in continuing research at LANL.                           |
| 7,837,852        | 11/23/10      | LANL                        | Energy efficient synthesis of boranes                                                                      | An energy-efficient method for synthesizing boranes<br>that are used for storing hydrogen. The boranes are<br>prepared at close to ambient temperature without the<br>need for thermal quenching and rapid separation, and<br>without the energy cost of generating active metal<br>hydrides.                                                             | Being used in continuing research at LANL.                           |
| 7,790,133        | 09/07/10      | UOP, LLC                    | Multi-component hydrogen<br>storage material                                                               | A reversible hydrogen storage material that shows improved performance at low temperatures compared with binary systems such as $MgH_2$ -LiNH <sub>2</sub> .                                                                                                                                                                                              | Research complete; seeking to license.                               |

| Patent<br>Number | Award<br>Date | Organization                | Title                                                           | Description                                                                                                                                                                                                                                                                                                                  | Status                                                                    |
|------------------|---------------|-----------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 7,790,013        | 09/07/10      | Safe Hydrogen,<br>LLC       | Storing and transporting energy                                 | A method for safely storing and transporting energy in<br>the form of hydrogen. Hydrogen is released from water<br>by a process such as electrolysis. The released hydrogen<br>is then stored and transported in a metal hydride slurry,<br>which can be mixed with water to release the hydrogen<br>at an end-use location. | Part of an <u>emerging hydrogen</u><br><u>storage technology</u> project. |
| 7,781,109        | 08/24/10      | SNL                         | Hydrogen storage and<br>integrated fuel cell assembly           | A system in which housings for hydrogen storage<br>materials are located in close proximity to a fuel<br>cell stack. Heat generated from operation of the<br>fuel cell stack is used to help drive the endothermic<br>dehydrogenation reactions for releasing hydrogen from<br>the storage materials.                        | Being used in continuing research at SNL.                                 |
| 7,754,641        | 07/13/10      | General Electric<br>Company | Hydrogen storage material<br>and related processes              | A hydrogen storage material consisting of a complex<br>hydride and a borohydride catalyst. The catalyst<br>improves the hydrogenation/dehydrogenation kinetics of<br>the complex hydride.                                                                                                                                    | No longer being used.                                                     |
| 7,736,531        | 06/15/10      | LANL                        | Composition and method<br>for storing and releasing<br>hydrogen | A chemical hydrogen storage system that couples an<br>endothermic reaction (which releases hydrogen) to an<br>exothermic reaction to achieve overall thermodynamic<br>neutrality.                                                                                                                                            | Being used in continuing research at LANL.                                |
| 7,713,506        | 05/11/10      | LANL                        | Metal aminoboranes                                              | Metal aminoboranes of the formula $M(NH_2BH_3)_n$<br>have been synthesized. The aminoboranes can be<br>dehydrogenated to form hydrogen and a reaction<br>product. The reaction product can react with hydrogen<br>to form a hydrogen storage material.                                                                       | Being used in continuing research at LANL.                                |
| 7,678,362        | 03/16/10      | Ford Motor<br>Company       | High density hydrogen<br>storage material                       | A hydrogen storage material that is a combination of $LiBH_4$ with $MH_x$ , wherein greater than about 50% of M comprises Al.                                                                                                                                                                                                | Being used in ongoing research.                                           |

| Patent<br>Number | Award<br>Date | Organization          | Title                                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Status                                                              |
|------------------|---------------|-----------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 7,666,807        | 02/23/10      | SRNL                  | Hollow porous-wall glass<br>microspheres for hydrogen<br>storage | Coated hollow glass microspheres are used as part of a<br>hydrogen storage system. The hollow glass microsphere<br>wall defines a series of pores. The pores facilitate the<br>placement of a hydrogen storage material within the<br>interior of the hollow glass microsphere. The porosity<br>of the hollow glass microspheres can be modified by<br>either altering or reducing the overall pore size or by<br>coating the individual hollow glass microspheres. The<br>hydrogen storage material is sealed within the interior<br>of the hollow glass microspheres. The coating and/or<br>the controlled pore size enables the selective absorption<br>of hydrogen gas through the walls of the hollow glass<br>microsphere while isolating the hydrogen storage<br>material encapsulated therein from other external gases<br>and fluids. | No longer being used in research/<br>no longer being pursued.       |
| 7,645,902        | 01/12/10      | LANL                  | Acid-catalyzed<br>dehydrogenation of amine-<br>boranes           | A method of dehydrogenating an amine-borane using<br>an acid-catalyzed reaction. The method may be used to<br>generate hydrogen for portable power sources such as<br>fuel cells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Being used in continuing research at LANL.                          |
| 7,625,547        | 12/01/09      | Ford Motor<br>Company | High density hydrogen<br>storage material                        | A hydrogen storage material that is a combination of $LiBH_4$ with $MH_x$ , wherein greater than about 50% of M comprises Ti, V, Cr, Sc, Fe, or combinations thereof.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Being used in ongoing research.                                     |
| 7,608,233        | 10/27/09      | SNL                   | Direct synthesis of calcium<br>borohydride                       | A method for directly preparing an alkaline earth metal borohydride, i.e. $Ca(BH_4)_2$ , from the alkaline earth metal hydride and the alkaline earth metal boride. The calcium borohydride product can be used to reversibly store and release hydrogen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Being used in continuing research at SNL.                           |
| 7,544,837        | 06/09/09      | LANL                  | Base metal dehydrogenation<br>of amine-boranes                   | A method of dehydrogenating an amine-borane using<br>a base metal catalyst. The method may be used to<br>generate hydrogen for portable power sources such as<br>fuel cells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Being used in continuing research at LANL.                          |
| 7,521,037        | 04/21/09      | BNL                   | Regeneration of aluminum<br>hydride                              | The invention provides methods and materials for the formation of hydrogen storage alanes, $AlH_x$ , where x is greater than 0 and less than or equal to 6 at reduced $H_2$ pressures and temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Being used in continuing research<br>at BNL and seeking to license. |

| Patent<br>Number | Award<br>Date | Organization | Title                                                                                                                                                                         | Description                                                                                                                                                                                                                                                                                                                                                                                        | Status                                                                                                                           |
|------------------|---------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 7,402,234        | 07/22/08      | INL          | Polymeric hydrogen diffusion<br>barrier, high-pressure storage<br>tank so equipped, method<br>of fabricating a storage tank<br>and method of preventing<br>hydrogen diffusion | An electrochemically active hydrogen diffusion barrier<br>which comprises an anode layer, a cathode layer, and<br>an intermediate electrolyte layer, which is conductive to<br>protons and substantially impermeable to hydrogen.                                                                                                                                                                  | No licenses issued and no internal<br>research being done with this<br>patent.                                                   |
| 7,384,574        | 06/10/08      | SRNL         | Hydrogen storage material<br>and process using graphite<br>additive with metal-doped<br>complex hydrides                                                                      | A hydrogen storage material having improved hydrogen<br>absorption and desorption kinetics is provided by adding<br>graphite to a complex hydride such as a metal-doped<br>alanate. The incorporation of graphite into the complex<br>hydride significantly enhances the rate of hydrogen<br>absorption and desorption and lowers the desorption<br>temperature needed to release stored hydrogen. | Research complete; seeking to license.                                                                                           |
| 7,306,780        | 12/11/07      | SNL          | Method of generating<br>hydrogen gas from sodium<br>borohydride                                                                                                               | Contacts water with micro-disperse particles of sodium<br>borohydride in the presence of a metal catalyst, thus<br>generating hydrogen gas.                                                                                                                                                                                                                                                        | Licensed to Nanodetex but license was terminated.                                                                                |
| 7,303,736        | 12/04/07      | LLNL         | Nanostructured materials for<br>hydrogen storage                                                                                                                              | A system for hydrogen storage comprising a porous<br>nano-structured material with hydrogen absorbed on<br>the surfaces of the porous nano-structured material.<br>The system of hydrogen storage comprises absorbing<br>hydrogen on the surfaces of a porous nano-structured<br>semiconductor material.                                                                                           | Research complete; seeking to license.                                                                                           |
| 7,191,602        | 03/20/07      | LLNL         | Storage of $H_2$ by absorption<br>and/or mixture within a fluid<br>medium                                                                                                     | Provides a container comprising a fixed volume<br>remaining constant to within about 5% due to changes in<br>pressure and temperature with a fluid mixture comprised<br>of a high density of hydrogen molecules. Container will<br>increase the density of the fluid mixture so the mixture<br>can be withdrawn from the container and used as fuel.                                               | Part of an <u>emerging hydrogen</u><br>storage technology project.                                                               |
| 7,160,530        | 01/09/07      | NREL         | Metal-doped single-walled<br>carbon nanotubes and<br>production thereof                                                                                                       | A method for the production of single-walled carbon<br>nanotubes that can be used for reversibly storing<br>hydrogen at ambient conditions with low energy input<br>requirements.                                                                                                                                                                                                                  | Being used in research at NREL<br>but no licensees.                                                                              |
| 7,094,387        | 08/22/06      | SRNL         | Complex hydrides for<br>hydrogen storage                                                                                                                                      | Melt a mixture of sodium aluminum hydride mixed with<br>titanium under a combination of heat and pressure to<br>provide a fused hydrogen storage material.                                                                                                                                                                                                                                         | Being used in research at SRNL<br>but no licensees. Part of an<br><u>emerging hydrogen storage</u><br><u>technology</u> project. |

| Patent<br>Number | Award<br>Date | Organization                          | Title                                                                                                                                                                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Status                                                                         |
|------------------|---------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 7,052,671        | 05/30/06      | Safe Hydrogen,<br>LLC                 | Storage, generation, and use of hydrogen                                                                                                                                      | Operation of a hydrogen generator with a composition<br>of a carrier liquid, a dispersant, and chemical hydride. A<br>regenerator recovers elemental metal from byproducts<br>of the hydrogen generation process.                                                                                                                                                                                                                                                                           | Part of an <u>emerging hydrogen</u><br>storage technology project.             |
| 6,918,382        | 07/19/05      | Energy<br>Conversion<br>Devices, Inc. | Hydrogen powered scooter                                                                                                                                                      | A scooter powered by a hydrogen fueled internal<br>combustion engine utilizes an on-board metal-hydride<br>hydrogen storage unit and the storage unit may be<br>heated with an exhaust stream from the engine to help<br>liberate the embedded hydrogen.                                                                                                                                                                                                                                    | No licenses issued and no internal<br>research being done with this<br>patent. |
| 6,793,909        | 09/21/04      | SNL                                   | Direct synthesis of catalyzed<br>hydride compounds                                                                                                                            | Method of producing complex hydride compounds<br>comprising mechanically milling powders of a simple<br>alkali metal hydride material with a metal and a<br>titanium catalyst compound followed by high pressure<br>hydrogenation.                                                                                                                                                                                                                                                          | Being used in research at SNL but no licensees.                                |
| 6,787,007        | 09/07/04      | INL                                   | Polymeric hydrogen diffusion<br>barrier, high-pressure storage<br>tank so equipped, method<br>of fabricating a storage tank<br>and method of preventing<br>hydrogen diffusion | Electrochemically active hydrogen diffusion barrier<br>made of an anode layer and a cathode layer, each<br>including a polymer material conductive to protons and<br>substantially impermeable to hydrogen. There will also<br>be a voltage source operably coupled to the anode layer<br>and the cathode layer and a catalytic material proximate<br>an interface between at least one of the anode layer<br>and the electrolyte layer and the cathode layer and the<br>electrolyte layer. | Not licensed and no research being done at INL with this patent.               |
| 6,746,496        | 06/08/04      | SNL                                   | Compact solid source of hydrogen gas                                                                                                                                          | A compact solid source of hydrogen gas, where the gas<br>is generated by contacting water with micro-disperse<br>particles of sodium borohydride in the presence of a<br>catalyst, such as cobalt or ruthenium.                                                                                                                                                                                                                                                                             | Licensed to Nanodetex but license was terminated.                              |
| 6,708,502        | 03/23/04      | LLNL                                  | Lightweight cryogenic-<br>compatible pressure vessels<br>for vehicular fuel storage                                                                                           | A lightweight, cryogenic-compatible pressure vessel for<br>flexibly storing cryogenic liquid fuels or compressed gas<br>fuels at cryogenic or ambient temperatures.                                                                                                                                                                                                                                                                                                                         | Part of an <u>emerging hydrogen</u><br><u>storage technology</u> project.      |
| 6,616,891        | 09/09/03      | Energy<br>Conversion<br>Devices, Inc. | High capacity transition<br>metal based hydrogen storage<br>materials for the reversible<br>storage of hydrogen                                                               | A reversible transition metal-based (including titanium, vanadium, chromium, and manganese) hydrogen storage material is capable of storing up to 4 wt.% hydrogen and reversible delivering up to 2.8 wt.% hydrogen at temperatures up to 150°C.                                                                                                                                                                                                                                            | Being used in ongoing research at<br>Vodik Labs LLC.                           |

| Patent<br>Number | Award<br>Date | Organization                          | Title                                                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                         | Status                                                                         |
|------------------|---------------|---------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 6,593,017        | 09/09/03      | Energy<br>Conversion<br>Devices, Inc. | High capacity calcium<br>lithium based hydrogen<br>storage material and method<br>of making the same | Nonreversible metal hydrides can be used to store and<br>release hydrogen. A nano-crystalline, calcium lithium<br>based hydride is capable of storing up to 5% hydrogen<br>by weight and can be easily ground to a fine power to<br>facilitate hydrogen transportation and storage.                                                                                                                                 | No licenses issued and no internal<br>research being done with this<br>patent. |
| 6,471,935        | 10/29/02      | U. of Hawaii                          | Hydrogen storage materials<br>and method of making by dry<br>homogenation                            | A method of making such reversible hydrogen storage<br>materials by dry doping is also provided and comprises<br>the steps of dry homogenizing metal hydrides by<br>mechanical mixing, such as be crushing or ball milling<br>a powder, of a metal aluminum hydride with a transition<br>metal catalyst.                                                                                                            | Part of a research project for<br>hydrogen storage technology.                 |
| 6,418,962        | 07/16/02      | John Hopkins<br>University            | Low cost compressed gas fuel storage system                                                          | A compressed gas vehicle fuel storage system comprised<br>of a plurality of compressed gas pressure cells supported<br>by shock-absorbing bumpers positioned within a low<br>cost, shape-conforming container.                                                                                                                                                                                                      | No longer being used.                                                          |
| 6,321,775        | 11/27/01      | Johns Hopkins<br>University           | Compressed gas manifold                                                                              | A compressed gas storage cell interconnecting manifold<br>including a thermally activated pressure relief device, a<br>manual safety shut-off valve, and a port for connecting<br>the compressed gas storage cells to a motor vehicle<br>power source and to a refueling adapter.                                                                                                                                   | No longer being used.                                                          |
| 6,262,328        | 07/17/01      | SRNL                                  | Container and method for<br>absorbing and reducing<br>hydrogen concentration                         | A method for absorbing hydrogen from an enclosed environment.                                                                                                                                                                                                                                                                                                                                                       | Being used in research at SRNL but no licensees.                               |
| 6,257,360        | 07/10/01      | Johns Hopkins<br>University           | Compressed gas fuel storage system                                                                   | A compressed gas vehicle fuel storage system comprised<br>of a plurality of compressed gas pressure cells supported<br>by shock-absorbing foam positioned within a shape-<br>conforming container.                                                                                                                                                                                                                  | No longer being used.                                                          |
| 6,017,600        | 01/25/00      | LLNL                                  | Method for forming a bladder<br>for fluid storage vessels                                            | Lightweight, low permeability liner for graphite epoxy<br>composite compressed gas storage vessels. The liner is<br>composed of polymers that may or may not be coated<br>with a thin layer of a low permeability material, such as<br>silver, gold, or aluminum, deposited on a thin polymeric<br>layer or substrate, which is formed into a closed bladder<br>using torispherical or near torispherical end caps. | No licenses issued and no internal<br>research being done with this<br>patent. |
| 5,965,482        | 10/12/99      | SRNL                                  | Composition for absorbing<br>hydrogen from gas mixtures                                              | A hydrogen storage composition that defines a physical<br>sol-gel matrix having an average pore size of less than<br>3.5 angstroms, which effectively excludes gaseous metal<br>hydride poisons while permitting hydrogen gas to enter.                                                                                                                                                                             | Being used in research at SRNL<br>but no licensees.                            |

| Patent<br>Number | Award<br>Date | Organization | Title                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Status                                                                                                                 |
|------------------|---------------|--------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 5,798,156        | 08/25/98      | LLNL         | Lightweight bladder lined<br>pressure vessels        | A lightweight, low permeability liner for graphite epoxy<br>composite compressed gas storage vessels. The liner<br>may be used in most types of gas storage system and is<br>particularly applicable for hydrogen, gas mixtures, and<br>oxygen used for vehicles, fuel cells or regenerative fuel<br>cell applications, high altitude solar powered aircraft,<br>hybrid energy storage/propulsion systems, lunar/Mars<br>space applications, and other applications requiring high<br>cycle life. | No licenses issued and no internal<br>research being done with this<br>patent.                                         |
| 5,411,928        | 05/02/95      | SRNL         | Composition for absorbing<br>hydrogen                | The composition comprises a porous glass matrix, made<br>by a sol-gel process, having a hydrogen-absorbing<br>material dispersed throughout the matrix. The glass<br>matrix has pores large enough to allow gases having<br>hydrogen to pass through the matrix, yet small enough<br>to hold the particles dispersed within the matrix so that<br>the hydrogen-absorbing particles are not released during<br>repeated hydrogen absorption/desorption cycles.                                     | Being used in research at SRNL<br>but no licensees.                                                                    |
| 5,296,438        | 03/22/94      | SRNL         | Dimensionally stable metallic<br>hydride composition | The invention relates to a metallic hydride composition<br>that can undergo repeated hydrogen absorption/<br>desorption cycles without disintegrating, and a process<br>for making such a composition.                                                                                                                                                                                                                                                                                            | Research complete; seeking to<br>license. Part of an <u>emerging</u><br><u>hydrogen storage technology</u><br>project. |

# **Appendix C:** Commercially Available Technology Descriptions

Detailed descriptions to be posted online in 2014

# **Appendix D:** Emerging Technology Descriptions

Detailed descriptions to be posted online in 2014

# **Appendix E:** Directory of Technology Developers

Detailed descriptions to be posted online in 2014

Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Fuel Cell Technologies Office

PNNL-22832 | September 2013



**EERE Information Center** 1-877-EERE-INF (1-877-337-3463) www.eere.energy.gov/informationcenter