Development of a Renewable Hydrogen Energy Station

Edward C. Heydorn – Air Products and Chemicals, Inc.
“Delivering Renewable Hydrogen – A Focus on Near-Term Applications”
Palm Springs, CA
16 November 2009
Presentation Outline

• Hydrogen Energy Station Technology Overview
• Process Description
• Performance and Economic Parameters
• Proposed Demonstration on Renewable Feedstock
• Status of Shop Validation Test
• Conclusion
Objectives

- Determine the economic and technical viability of a hydrogen energy station designed to co-produce power and hydrogen

Utilize technology development roadmap to provide deliverables and go/no-go decision points
Hydrogen Energy Station Concept

Potential Co-Production Efficiency (LHV): 55 - 60%
Approach

- Air Products Cooperative Agreement with U.S. DOE (30 September 2001) defined 4 phases:
 - Phase 1 – Feasibility: Evaluate PEM and HTFC
 • Completed FY04
 - Phase 2 – Preliminary System Design
 • Completed FY06
 - Phase 3 – Detailed Design and Construction
 • Completed March 2009
 - Phase 4 – Operation, Testing, Data Collection
 • Ongoing
Hydrogen Energy Station

\[\text{Anode} \]
\[\text{Electrolyte} \]
\[\text{Cathode} \]

\[\text{Fuel} \]
\[\text{Exhaust} \]
\[\text{Electricity} \]
\[\text{Hydrogen} \]

\[\text{Gas Cleanup} \]

\[\text{CH}_4 + H_2O \rightarrow 4H_2 + CO_2 \]
\[H_2 + CO_3^{=} \rightarrow H_2O + CO_2 + 2e^- \]

\[\frac{1}{2} O_2 + CO_2 + 2e^- \rightarrow CO_3^{=} \]

\[\text{Air} \]

\[\text{Compressor} \]
\[\text{H}_2 \text{ Purification} \]

\[\text{After-Gas Shift} \]

\[\text{Heat Exchangers} \]
Hydrogen Energy Station
Projected Performance by Phase

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Efficiency</td>
<td>LHV</td>
<td>60%</td>
<td>66%</td>
<td>66%</td>
</tr>
<tr>
<td>(Net Power + H2 Product) / (Fuel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Efficiency</td>
<td>LHV</td>
<td>49%</td>
<td>49%</td>
<td>50%</td>
</tr>
<tr>
<td>Net Power / (Total Fuel – H2 Product)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Efficiency</td>
<td>LHV</td>
<td>68%</td>
<td>68%</td>
<td>77%</td>
</tr>
<tr>
<td>(H2 Product – Purification Power) / H2 Product</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Product</td>
<td>Kg/day</td>
<td>~ 88</td>
<td>~ 175</td>
<td>~ 175</td>
</tr>
<tr>
<td>Net Power w/o & w/ Hydrogen</td>
<td>kW</td>
<td>~ 247 / 207</td>
<td>~ 300 / 243</td>
<td>~ 300 / 250</td>
</tr>
<tr>
<td>Natural Gas Flow</td>
<td>Nm3/hr</td>
<td>~ 55</td>
<td>~ 74</td>
<td>~ 74</td>
</tr>
</tbody>
</table>
Process Improvements during Design Phase

• Improvement in hydrogen purification cycle:
 – Phase 1: 300 psig inlet, 75% H2 recovery
 – Phase 3: 150 psig inlet, > 85% H2 recovery

• Patent application filed

US20080223213A1
Emissions Performance of DFC® Molten Carbonate Fuel Cell

<table>
<thead>
<tr>
<th></th>
<th>NO$_x$ (lb/MWh)</th>
<th>SO$_x$ (lb/MWh)</th>
<th>CO$_2$ (lb/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average US Fossil Fuel Plant</td>
<td>4.200</td>
<td>9.21</td>
<td>2,017</td>
</tr>
<tr>
<td>Microturbine (60 kW)</td>
<td>0.490</td>
<td>0</td>
<td>1,862</td>
</tr>
<tr>
<td>Small Gas Turbine (250 kW)</td>
<td>0.467</td>
<td>0</td>
<td>1,244</td>
</tr>
<tr>
<td>DFC Fuel Cell 47% efficiency</td>
<td>0.016</td>
<td>0</td>
<td>967</td>
</tr>
<tr>
<td>DFC Fuel Cell – CHP 80% efficiency</td>
<td>0.016</td>
<td>0</td>
<td>545</td>
</tr>
</tbody>
</table>

NO$_x$ and SO$_x$ are negligible compared to conventional technologies.
Hydrogen Energy Station Economics

Power Price
- $0.06/kWh
- $0.10/kWh
- $0.06/kWh
- $0.10/kWh

Fuel Cost, $/MMBTU

Hydrogen Price, $/kg

FuelCell Energy
Hydrogen Energy Station Vision

Feedstock Source
- Natural Gas
- Digester Gas
- Landfill Gas
- Agricultural Wastes
- Pyrolysis Products
- Bio-Syngas / Syngas
- Vegetable Oils / Oils
- Other Methane Sources

Renewable hydrogen – for onsite requirements or regional distribution

FuelCell Energy
Demonstration of Hydrogen Energy Station Vision

- DOE Program – Natural Gas Feed
- Potential Host Site Identified - OCSD
 - Orange County Sanitation District, Fountain Valley, CA
 - Municipal Wastewater Treatment
 - Existing CNG Refueling Station
 - Ability to Achieve Production of both Renewable Hydrogen and Electricity
 - Renewable Hydrogen Available for Use
Proposal to California Air Resources Board (June 2008)

Fountain Valley Station

- 100 kg/day capacity, renewable hydrogen supply
- 350 and 700 bar fueling capability
- Host site: Orange County Sanitation District
- Anaerobic digestion of municipal wastewater
- Hydrogen production using Hydrogen Energy Station
Hydrogen Energy Station Shop Validation Test – DFC® System

All DFC®-H₂-PSA Equipment Installed and Commissioned

- Verified operability of hydrogen-ready DFC®300
- Developed procedures for start-up, shut-down and off-normal events
- Achieved stable operation at various loads up to 200 kW-net AC
- Fuel cell with water-gas shift in operation > 6,000 hours

Hydrogen Ready Fuel Cell Module

Mechanical Balance of Plant (MBOP)
Fountain Valley Renewable Hydrogen Station

Tri-Generation Results

- Produced 5 to 10 lb/hr hydrogen with > 200 kW electricity
- Estimated hydrogen recovery at 80 to 85%
- Product purity <0.2 ppm CO; <2 ppm CO2
- Operation with simulated digester gas feed
- PSA operating map developed (cycle time vs. feed rate)
- Implemented automated integration/deintegration

FuelCell Energy
Future Work

• Operation of Hydrogen Energy Station – Lessons learned from shop test, field trial
• Validation of process economics
• Following DOE Program:
 – Product development activities – Process improvements for second generation system
 – Scale-up based on existing fuel cell products –
 • DFC®-1500 – 400 to 500 kg/day hydrogen plus 1.0 to 1.2 MW
 • DFC®-3000 – 800 to 1,000 kg/day hydrogen plus 2.0 to 2.4 MW
Summary

• Determine the economic and technical viability of a hydrogen energy station designed to co-produce power and hydrogen
 – Concept defined – FuelCell Energy’s molten carbonate fuel cell plus Air Products’ hydrogen purification system
 – Design and fabrication of demonstration unit completed
 – Shop test at FuelCell Energy’s facilities in Danbury, CT
 – Plans for demonstration operation on renewable feedstock at Orange Co. Sanitation District, Fountain Valley, CA
 • Hydrogen refueling station under DOE’s California Hydrogen Infrastructure Project
 • Other funding: California Air Resources Board, South Coast Air Quality Management District
 – Validate process economics based on system performance
Acknowledgement & Disclaimers

This material is based upon work supported by the Department of Energy (Energy Efficiency and Renewable Energy) under Award Number DE-FC36-01GO11087. This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Thank you
tell me more
www.airproducts.com