Nov 16, 2009
Delivering Renewable Hydrogen Workshop

Praveen Kedar
Global Program Manager, Fuel Cell Propulsion System
The Power of “AND” vs. “OR”

- **The Challenge**
 - Petroleum AND GHG Reduction

- **Role of Hydrogen**
 - Transportation AND (Renewable) Energy

- **Advanced Propulsion Portfolio**

- **Key Takeaways / “AND” Question**
The Challenge

- Global energy demand exceeds our current glide path for supply
- There are several risks that can disrupt the existing supply
 - Above ground infrastructure
 - Natural disasters
 - Wars
 - Hostile regimes
- Growing concern about global warming due to CO₂
- Potential for regulations that exceed both technical capability and business feasibility

Global increase 2% / year, 71% increase over 2003

Source: DOE Energy Information Agency

MBDOE: Millions of barrels per day oil equivalent
United States Light Duty Vehicle Transportation
2050 Greenhouse Gas Reduction Goal

U.S. goal is 80% reduction from 1990 levels by 2050

- Assuming light duty transportation must reduce its GHG footprint in equal proportion to other contributing sectors of economy:

1990 fuel use ➞ 1990 GHG
105 billion gallons
1,220 million tons CO₂ equivalent

80% reduction

2050 GHG goal
244 million tons CO₂ equivalent (or less)

LDV 2050 GHG Goal is 244 million tons CO₂ equivalent
DOE EIA 2030 Outlook – Reference Case

- Continued steady growth in Vehicle Miles Traveled (VMT)
- Upward fuel price trend (highly uncertain)
- Fuel economy improvements offset growth in VMT
- Fuel use remains relatively flat (this is a break from past 40 year trend)
Base Case – Petroleum World (2010-2050)

Petroleum Consumption

- EIA Annual Energy Outlook 2009 data
 - Includes aggressive fuel economy improvements
 - Includes assumption that higher energy prices drive mix shift from trucks to cars
 - Fuel economy improvement & vehicle-miles-traveled growth rates @ 1.5% / year
 - Petroleum consumption & GHG emissions stay flat 2010 - 2050

GHG Emissions

- Technology improvement & more efficient market mix hold petroleum consumption & GHG levels constant, but no progress toward goal
Cellulosic biomass ramps to high volume; BEVs / EREVs make 40% of VMT electric; FCEVs penetrate to 40% of parc by 2050
- Petroleum out of picture by 2032
- LDV parc mostly transitioned to electric drive and ZEV solutions
- US grid GHG modeled at 80% lower than 2008 levels
- Hydrogen from cellulosic biomass or clean electricity

Start soon with early options; finish with strongest long-term portfolio
Energy & Technology Options

Energy Resource
- Oil (Conventional)
- Oil (Non-Conventional)
- Biomass
- Natural Gas
- Coal
- Renewables (Solar, Wind, Hydro)
- Nuclear

Conversion
- Petroleum Fuels
- 1st & 2nd Gen Biofuels
- Synthetic Fuels (XTL)
- Syngas CO, H₂

Energy Carrier
- Liquid Fuels
- Electricity
- Hydrogen

Propulsion System
- Conventional ICE: Gasoline / Diesel
- ICE Hybrid
- Plug-In Hybrid ICE
- Range-Extended EV: IC Engine / Fuel-Cell
- Battery Electric
- Fuel-Cell Electric

Despite Variety of Resources, 3 Predominant Energy Carriers

Critical Dependency on Battery Technology
Energy Carrier Properties: Onboard Storage
Why is petroleum the dominant transportation fuel?

Weight & Volume of Energy Storage System for 300 mile Range

Diesel
- System Fuel
 - 43 kg
 - 46 L

Compressed Hydrogen 700 bar
- 6 kg \(\text{H}_2 = 200 \text{kWh} \) chemical energy
- System Fuel
 - 125 kg
 - 260 L

Lithium Ion Battery
- 100 kWh electrical energy
- System Cell
 - 830 kg
 - 670 L

The challenge is to balance electric drive efficiency and energy cost advantages vs. energy system storage mass, volume & refuel time penalties.
- Renewable energy sources fluctuate dramatically
- Although solar is more predictable, its $/kWh is 5X more than wind
- Placing significant wind energy on line necessitates an energy buffering strategy

1) DEWI-Report, 30.6.2008
2) Bundesverband Windenergie e.V., 20.11.2008
Germany - Case Study
Wind Energy and the Electric Grid

- German Wind Energy Example
- Quantity: 19,868 turbines
- Capacity: 23,044 MW\(^1\)
- Electricity production 2007: 39.6 TWh\(^2\)
 (7.2% of annual consumption)

E.ON control area:
40% of installed wind energy in Germany

1) DEWI-Report, 30.6.2008
2) Bundesverband Windenergie e.V., 20.11.2008
Germany - Case Study
Sustainables & Fluctuating Energy Availability

E.ON Control Area Wind Energy Feed-in October 2008

(MW)
This much could be fed into a large pump storage:

8,480 MWh

= 1M Chevy Volt vehicles

Buffer capacity for some minutes / hours
Store Fluctuating Wind Energy: Storage of Compressed Air in Salt Caverns

This much could be fed into an underground compressed air storage (2 Mio m³ salt cavern):

4,000 MWh

 Buffer capacity for some minutes / hours

Source: KBB underground
This much could be fed into an underground hydrogen reservoir (2 Mio m3 salt cavern):

600,000 MWh
(equals 3.6 Mio tank fills)

Only hydrogen offers storage capacity for several days.
The Power of “AND” - Advanced Propulsion Portfolio

GM’s Advanced Propulsion Strategy comprehends the Power of “AND”
Application Map

There is no single silver bullet technology
GM’s Hydrogen Fuel Cell Technology
Zero Emissions, Zero Petroleum, 2X Efficiency

FUEL CELL TECHNOLOGY
- Zero emissions & zero petroleum
- Compared to internal combustion engine:
 - More than twice as efficient
 - Comparable precious metal content
 - Comparable durability, range (300 miles), & performance
 - Fast refueling – within 3 minutes
 - 60% fewer part numbers
 - 90% fewer moving parts
- Cold & hot operation capability
- Family sized vehicles
- Synergy with renewable energy sources
Project Driveway – World’s Largest Fuel Cell Vehicle Fleet

REAL WORLD DATA
- Over 80,000 customers applied
- 116 vehicles in four countries
- 80 customer drivers
- Over 10,000 people total have driven the vehicles
- 13,000 fills/30,000 kg of H₂ = 60,000 gal of gasoline saved
- Performed through 2 winters
- Vehicles with over 25,000 miles

Over 1 MILLION miles and Counting
Takeaways

• Meeting customer requirements AND GHG reduction goals AND reducing petroleum use requires a Portfolio of propulsion technologies
• Energy diversity key for BOTH energy AND transportation - - Hydrogen plays a key role
• Stable government policy is key to infrastructure & vehicle programs

Key AND Question:
“How can we work together with a collective will to enable all promising technology solutions to quickly and efficiently reach market “tipping points” and deliver their optimal interdependent value to consumers and the world?”

Larry Burns, retired GM VP, GM R&D & Planning