

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation

NREL Hydrogen Technologies and Systems Center

Todd Ramsden, Kevin Harrison, Darlene Steward

November 16, 2009

NREL/PR-560-47432

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

NREL Wind2H2 RD&D Project

- The National Renewable Energy Laboratory in partnership with Xcel Energy and DOE has designed, operates, and continues to perform testing on the wind-to-hydrogen (Wind2H2) project at the National Wind Technology Center in Boulder
- The Wind2H2 project integrates wind turbines, PV arrays and electrolyzers to produce from renewable energy

Sustainable Paths to Hydrogen

Hydrogen Potential from Sustainable Resources

20% Wind Energy by 2030 Scenario

How Much Wind is Available in the U.S.?

National Renewable Energy Laboratory

Technology Challenges to Meet 20% Goal

- Massive growth in installations
 - 8 GW installed in 2008
 - ~29 GW total as of 2009
 - Over 300GW by 2030
- Widely distributed across the nation
 - Many high wind sites
 - Substantial installation in moderate resource areas
 - Some offshore is needed
- Performance is critical
 - Capital cost
 - Capacity Factor
 - O&M
- Every 1 ¢/kWh of cost reduction saves the nation over \$10 billion per year at 20% penetration

Wind2H2 Project – Overall Goal

 Provide RD&D to help DOE achieve it cost target for hydrogen production from wind-based water electrolysis of \$4.80/gge by 2012 and to <\$3.00/gge by 2017

Challenges

- Reduce capital costs of electrolysis system through improved designs and lower cost materials
- Develop low-cost hydrogen production from electrolysis through integration with renewable electricity sources
- Develop strategies for low cost hydrogen production from electrolysis through utility coordination

Wind2H2 Project – Main Objectives

- Research the cost and capability of "time shifting" wind and PV energy through utilityscale hydrogen-based energy storage
- Research optimal wind/hydrogen through systems engineering
- Characterize and control wind turbine/PV and H2-producing stack
- Evaluate synergies from co-production of electricity and hydrogen
- Compare response and performance of alkaline and PEM electrolyzer technologies
- Realize efficiency gains though simplified and integrated power controllers
- Working towards 'ideal' wind to hydrogen
 - Simplifying PE, common controls, closely coupling wind input to stack, electricity regulation

Wind2H2 System Operating Modes

PV Configuration Testing

Direct connect versus various input voltages (E_{in}) through power controller

PV Powered Electrolysis

- Onboard power electronics account for 15 to 30% of the overall electrolyzer system cost
- Minimize redundant components
- Test data illustrates improvement in energy capture to stack when using MPPT power electronics
- Testing showed a 10% 20% increase in energy capture

10kW Wind Turbine Powered Electrolysis

 Initial tests with third generation power electronics, wind speed measurement and control algorithm indicate further improved energy capture of wind electricity into hydrogen production

100kW Wind Turbine Powered Electrolysis

Instrumented power signal from 100 kW wind turbine to drive 33 kW alkaline stack current to follow power available from turbine

Time

10:43

10:43

260

240

220

200

180

160 140

120

100

80

60

40

20 0

Stack Current |

Electrolyzer System Efficiency

- Wind2H2 system used to assess electrolyzer performance
- Stack and system efficiency of alkaline (33 kW stack, 40 kW system) and PEM-based (6 kW stack, 7 kW system) measured

Efficiency	PEM Electrolyzer		Alkaline Electrolyzer	
	LHV	HHV	LHV	HHV
Stack Efficiency				
Low Current	80% (5A)	95% (5A)	78% (30A)	92% (30A)
Rated Current	63% (135A)	75% (135A)	59% (220A)	70% (220A)
System Efficiency				
Low Current	0% (15A)	0% (15A)	0% (35A)	0% (35A)
Rated Current	49% (135A) (57% (135A)) 35% (220A)	41% (220A)

Cost Analysis

Capital Component (uninstalled)	Baseline System	Optimized System	
1.5 MW Wind Turbine			
Rotor	\$248,000	\$248,000	
Drive Train	\$1,280,000	\$1,180,000	
including power electronics	\$100,000	\$0	
Control System	\$10,000	\$10,000	
Tower	\$184,000	\$184,000	
Balance of Station	\$262,000	\$262,000	
2.33 MW Electrolyzer	\$1,570,000	\$1,350,000	•
including power electronics	\$220,000	\$0	
New Power Electronics Interface	\$0	\$70,000	
Resulting Hydrogen Cost (\$/kg)	\$6.25	\$5.83	
			ı

- Cost analysis performed based on NREL's power electronics optimization and testing and on our electrolyzer cost analysis study
- Large centralized system capable of 50,000 kg per day production
- Optimized power conversion
 system due to a closer
 coupling of the wind turbine to
 the electrolyzer stack can
 reduce the total cost of
 hydrogen by 7%.

350 bar Vehicle Fueling System

- Outdoor rated compressor
- 400 bar tank (18 kg)
- 350 bar non-communication fill dispenser
- 1.8 kg (110 mile range) Mercedes-Benz FC vehicle

Key Findings from Wind2H2 RD&D

System Efficiency (HHV): At rated stack current...

- The PEM electrolyzer system efficiency of 57%
- The alkaline system had a system efficiency of 41%
 - H₂ production about 20% lower than the manufacturer's rated flow rate
 - 50% system efficiency would be realized if rated flow were achieved

Cost Reductions from Power Electronics Optimization:

- Analysis showed a potential 7% reduction in cost per kg of hydrogen based on capital cost improvement
 - Projected cost of hydrogen falling to \$5.83/kg from a baseline of \$6.25/kg
- Energy Transfer Improvements: PV configuration testing compared direct-connection to the electrolyzer stack with a connection through power electronics
 - The MPPT power electronics system captured between 10% and 20% more energy than the direct-connect configuration

Hydrogen-Based Energy Storage Cost Analysis

Project Objective:

 Evaluate the economic viability of the use of hydrogen for medium- to large-scale energy storage applications in comparison with other electricity storage technologies

Project Background:

- FY2009 study builds upon and expands on an initial scoping study of hydrogen-based energy storage conducted in FY2008
- Benchmarking against competing technologies (batteries, pumped hydro, CAES)
- Expanded analysis of PEM fuel cells and hydrogen combustion turbine
- Analysis of production of excess hydrogen for vehicles
- Preliminary analysis of environmental impacts

Energy Storage Scenario

Nominal storage volume is 300 MWh (50 MW, 6 hours)

- Electricity is produced from the storage system during 6 peak hours (1 to 7 pm) on weekdays
- Electricity is purchased during off peak hours to charge the system

Electricity source: excess wind / off peak grid electricity

- Assumed steady and unlimited supply during off peak hours (18 hours on weekdays and 24 hours on weekends)
- Assumed fixed purchase price of 3.8¢/kWh with sensitivities run at 2.5¢/kWh and 6¢/kWh

Analysis Framework

Major Assumptions

- No taxes or transmission charges are included in the analysis
- The supply of off peak and/or renewable electricity is unlimited
- Costs are presented in \$2008

Timeframes

- High cost or "current" technology
- Mid range cost
 - Some installations exist
 - Some cost reductions for bulk manufacturing and system integration have been realized
 - Installations are assumed in the near future; 3 to 5 years.
- Low range cost
 - Estimates for fully mature technologies and facility experience
- Cost analysis performed using the HOMER model
 - Results are presented as levelized cost of energy; \$/kWh or \$/kg for hydrogen

Energy Storage Study Findings

Analysis Results - Hydrogen

Hydrogen fuel cell with geologic storage

Analysis Results - Hydrogen

Cost of Energy (\$/kWh)

Recent Publications

http://www.nrel.gov/hydrogen/proj_wind_hydrogen.html

Acknowledgments

Xcel Energy

- Frank Novachek
- Vicki McCarl
- Brad Hollenbaugh

DOE

- Roxanne Garland
- Richard Farmer
- Monterey Gardiner

Contractors

- John Cornish (EPC)
- Marc Mann (Spectrum)

NREL

- Kevin Harrison
- Greg Martin
- Keith Wipke
- George Sverdrup
- Robert Remick
- Genevieve Saur
- Bill Kramer
- Ben Kroposki
- Mike Stewart

