Fuel Cell Power Model for CHHP System
Economics and Performance Analysis

Delivering Renewable Hydrogen Workshop – A Focus on Near-Term Applications
Darlene Steward
November 16, 2009
NREL/PR-560-47123

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview of the Tri-Generation Concept

- **Electricity**
- **Power**
- **Heat**

- Converted to hydrogen onsite via steam-methane reforming
Overview of the Tri-Generation Concept

Electricity

Power

Natural Gas

Heat

Natural Gas

or Biogas

Tri-Generation Fuel Cell

Natural Gas

Converted to hydrogen onsite via steam-methane reforming

Hydrogen
Built on the “H2A” platform

Need for “common ground” in economic analyses
- Consensus on reasonable financial assumptions
- Common economic analysis methodology
- Common cost assumptions (technology maturity, common reference year for costs, etc.)
 - Allowed hydrogen researchers to talk to each other about technology costs

H2A Power Model – Use the same consistent economic analysis basis for a new CHP/CHHP model:
- Building Managers (first-pass estimates of fuel cell CHP system cost)
- Utilities (impacts of distributed generation)
- DOE/ systems analysts (scenarios for future energy mix)
FCPower Model Objective

Develop a cost analysis tool that will be flexible and comprehensive enough to realistically analyze a wide variety of potential combined heat and power and hydrogen production scenarios

Approach:

Develop an hour-by-hour energy analysis module that models the response of a stationary fuel cell to electricity, heat, and hydrogen demand profile.

Integrate the results of the energy analysis into the H2A discounted cash flow methodology to develop a new stationary systems model.
FCPower Model Hourly Energy Analysis Module

- Feed and Utility Prices
- Financial Inputs
- Hourly Solar Wind Profiles
- New Hourly Energy Supply & Demand Analysis Module
- Yearly Cash Flow Analysis
- Energy analysis done for 8,760 h of one year

H2A model inputs
- H2A database
- User inputs

Cost of Energy Output
- Cost of Purchased Electricity & Heat
- Credit for “Avoided” Electricity & Heat Purchase
- Greenhouse Gas Emissions
Technology Selection for Hourly Energy Analysis

Inputs
- Fuel
- Fuel
- Water
- Grid
- Sun/Wind

Energy Conversions
- FC SYSTEM + H₂
- Electrolyzer
- Heat sink

Outputs
- Heat
- Electricity
- Hydrogen

- peak burner
- renewables
- H₂-FC
- H₂-storage

National Renewable Energy Laboratory
Innovation for Our Energy Future
Dispatch Sequence for Electricity Generation

INPUTS

- Fuel
- Water
- Grid
- Sun/Wind

ENERGY CONVERSIONS

1. **FC SYSTEM + H₂**
 - Use minimal fuel cell power
 - Use grid

2. **use additional fuel cell power**

3. **H₂-FC**
 - Use grid

OUTPUTS

- Electricity
- Heat
- Hydrogen

Energy Conversions

- **Fuel**
- **Water**
- **Grid**
- **Sun/Wind**

Energy Chain

- **peak burner**
- **heat sink**
- **electrolyzer**
- **H₂-storage**
Integration of Demand Profiles, Renewables Availability, & Grid Cost Structure

Enter Process Specifications (default values will be provided)
- Download or enter hourly demand profiles
- Download or enter hourly renewable energy profiles
- Enter grid electricity price profile (peaking price structure)
- Enter equipment capital costs
- Enter equipment capacity, operating parameters, and operating costs

HOURLY DEMANDS

PRICE SCHEDULES
- Grid electricity (hourly)
- Fuel prices
- Water price

ENERGY FLOWS ($)
- Delivered electricity
- Delivered heat
- Delivered hydrogen
- Used fuel
- Used grid electricity
- Sales to grid
Model Features

- Automated import of load profiles
 - Profiles from building models (e.g., EnergyPlus)
 - Metered prior-year data for the building(s)
 - Estimated profiles from utility bills and similar building types
- Solar and wind resource data can be imported
 - Model algorithm estimates electrical output based on resource data and user input
- Detailed grid power purchase structure
- Net metering
- GHG tables from GREET 1.8 (onsite and upstream GHG emissions calculations)
- Financial summary sheet
Comprehensive financial analysis for entire system life

- Analysis of economic incentives
- Separate depreciation schedules for each subsystem
- Debt and equity financing
- Construction period and startup analysis
- Detailed fixed-operating-cost calculations
 - Labor
 - Overhead
 - Property taxes and insurance
 - Rent
 - Permitting and licensing
 - Maintenance costs
- Detailed variable-cost calculations
 - Waste treatment and disposal costs
 - Production based tax incentives
 - Operator profit and royalties
Getting Started – PFD (Configuring the System)

1. Click Process Flow Diagram button

The model opens in the Title worksheet. Click the button to proceed to the Process Flow Diagram worksheet.

• Select Subsystems by clicking checkboxes on the “PFD” tab
• Select H₂ Storage if modeling a tri-generation system
• Note: Fuel Cell System is always selected.

2. • Configure system
• Click Input Sheet button
FCPower Model Input Sheet – Central Location for Data Input and Navigation

Buttons that control import and export of data and calculations
- Use the “Toolkit” button to import hourly load profiles

Links to capital cost and equipment specification sheets

Incentives, depreciation, and fixed operating costs

Variable operating costs including link to grid electricity price structure
Methane Sources in the Sacramento Area

- About 5.5 MW of electricity could be generated from digester methane
Economic Evaluation of Fuel Cell Installation at a Dairy

Hypothetical facility profile:
1,000 cows housed in a free-stall barn

Biogas system:
- Manure collection
- Plug-flow anaerobic digester
- Biogas collection and purification
- Digester waste press separator
 - Windrow composting of solids
 - Field application of water
- Molten carbonate fuel cell for electricity and heat production
 - Electricity not used onsite is fed to the grid
<table>
<thead>
<tr>
<th>Energy & Material Values</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane production</td>
<td>Btu CH4/day/ cow (kWh CH4/day/cow)</td>
<td>45,218 (13.25)</td>
</tr>
<tr>
<td>Electricity production</td>
<td>kWh/day/cow</td>
<td>~6</td>
</tr>
<tr>
<td>(assuming 45% average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>electrical efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for fuel cell)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usable heat production</td>
<td>kWh/day/cow</td>
<td>~4</td>
</tr>
<tr>
<td>(assuming 75% total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>efficiency for fuel cell)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finished compost</td>
<td>Cubic yards/year/ cow</td>
<td>3.32</td>
</tr>
<tr>
<td>Electricity required for</td>
<td>kWh/cow/day</td>
<td>~1</td>
</tr>
<tr>
<td>digester operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat required for</td>
<td>kWh/cow/day</td>
<td>~1*</td>
</tr>
<tr>
<td>operation of chillers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(for milk) and heating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of the digester</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*0.014 tons chilling per cow per day per hour of milking

Cost Values

<table>
<thead>
<tr>
<th>Cost Item</th>
<th>Units</th>
<th>Value for 1,000 cow farm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digester system installed cost</td>
<td>$K = [563*(number of cows) + 678,064]/10^3</td>
<td>1,170</td>
</tr>
<tr>
<td>Post-digestion solids separation system</td>
<td>% of total project capital cost ($K)</td>
<td>6.9 (98)</td>
</tr>
<tr>
<td>Hydrogen sulfide removal</td>
<td>% of total project capital cost ($K)</td>
<td>4.5* (64)</td>
</tr>
<tr>
<td>Utility hookup</td>
<td>% of total project capital cost ($K)</td>
<td>7.9 (112)</td>
</tr>
<tr>
<td>MCFC uninstalled cost</td>
<td>$/kW ($K), 300 kW system**</td>
<td>2,500 (750)</td>
</tr>
<tr>
<td>Federal tax incentive</td>
<td>$K</td>
<td>324</td>
</tr>
<tr>
<td>CA SGIP using renewable fuel</td>
<td>$K, $4.50/W for FC > 30kW using renewable fuel</td>
<td>1,350</td>
</tr>
</tbody>
</table>

*High end of cost range assumed for fuel cell purity requirements

** 250 kW system would be required for 6kWh/day/cow average production.

Analysis Results for 1,000 Cow Dairy

<table>
<thead>
<tr>
<th>1,000 cow dairy</th>
<th>Electricity (kWh/y)</th>
<th>Heat (kWh/y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used onsite</td>
<td>367,920</td>
<td>367,920</td>
</tr>
<tr>
<td>Sold</td>
<td>1,810,190</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2,178,110</td>
<td>367,920</td>
</tr>
</tbody>
</table>

Overall system efficiency is 54% based on heat used. Utilization of available heat is only 26%.
CHHP System Annualized Costs

Annualized costs

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital costs</td>
<td>$55,461</td>
</tr>
<tr>
<td>Decommissioning costs</td>
<td>$3,227</td>
</tr>
<tr>
<td>Fixed O&M</td>
<td>$26,371</td>
</tr>
<tr>
<td>Feedstock costs</td>
<td>$0</td>
</tr>
<tr>
<td>Other raw material costs</td>
<td>$0</td>
</tr>
<tr>
<td>Byproduct credits</td>
<td>-$49,090</td>
</tr>
<tr>
<td>Other variable costs (including utilities)</td>
<td>$9</td>
</tr>
<tr>
<td>Total</td>
<td>$35,978</td>
</tr>
</tbody>
</table>

For comparison, purchase of natural gas for chillers would be $13,444/year.
Thank You

Contact Information:
Darlene.steward@nrel.gov