RESULTS OF THE 2004 KNOWLEDGE AND OPINIONS SURVEYS FOR THE BASELINE KNOWLEDGE ASSESSMENT OF THE U.S. DEPARTMENT OF ENERGY HYDROGEN PROGRAM

R. L. Schmoyer and Tykey Truett
Oak Ridge National Laboratory

Christy Cooper
U.S. Department of Energy

April 2006

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6073
Managed by
UT-BATTELLE, LLC
For the
U.S., DEPARTMENT OF ENERGY
Under contract No. DE-AC05-00OR22725

Prepared for the
U.S. DEPARTMENT OF ENERGY

Washington, D.C.

CONTENTS

Page
ACRONYMS vii
EXECUTIVE SUMMARY ix

1. INTRODUCTION 1
1.1 Background 1
1.2 Purpose 1
1.3 Timeline of Events 2
2. SURVEY APPROACH 5
2.1 Respondent Populations 5
2.2 Format and Design of the Questionnaires 5
2.3 Data Collection Methodology 6
2.4 Sample Selection 7
2.4.1 General Public 7
2.4.2 Students 8
2.4.3 State and Local Government Agencies 9
2.4.4 Large-scale End Users 9
2.5 Pretesting 11
2.6 Introductions and Protocol 11
3. DATA ANALYSIS METHODS 13
4. RESULTS: GENERAL PUBLIC SURVEY 15
4.1 Introduction 15
4.2 Summary Tables 16
4.3 Relationships 24
4.4 Outcome Rates 29
5. RESULTS: STUDENT SURVEY 31
5.1 Introduction 31
5.2 Summary Tables 32
5.3 Relationships 40
5.4 Outcome Rates 44
6. RESULTS: STATE AND LOCAL GOVERNMENT SURVEY 47
6.1 Introduction 47
6.2 Summary Tables 48
6.3 Relationships 58
6.4 Outcome Rates 65
7. RESULTS: LARGE-SCALE END USER SURVEY 67
7.1 Introduction 67
7.2 Summary Tables 68
7.3 Relationships 79
7.4 Outcome Rates 85
8. COMPARISON OF RESULTS FOR THE FOUR POPULATIONS 87
9. NON-SURVEY METRICS 97
10. SUMMARY AND CONCLUSIONS 99
10.1 Summary 99
10.2 Conclusions 99
REFERENCES 103
APPENDIX A. SURVEY INSTRUMENTS 105
A. 1 Hydrogen - General Public 106
A. 2 Hydrogen - Students 113
A. 3 Hydrogen - State and Local Government Agencies 122
A. 4 Hydrogen - Potential Large-scale End Users 129
APPENDIX B. FEDERAL REGISTER NOTICES 139
B. 1 Federal Register, August 20, 2003 140
B. 2 Federal Register, January 12, 2004 142
APPENDIX C. TOTAL COUNTS FOR EACH SURVEY QUESTION WITH WEIGHTS AND STANDARD ERRORS 145
C. 1 Summary of Results of the General Public Survey 146
C. 2 Summary of Results of the Student Survey 161
C. 3 Summary of Results of the State and Local Government Survey 179
C. 4 Summary of Results of the Large-Scale End User Survey 192
APPENDIX D. COPIES OF LETTERS PREPARED FOR STATE AND LOCAL AGENCIES AND LARGE-SCALE END USERS 209
APPENDIX E. SUBPOPULATIONS FOR THE LARGE-SCALE END USER SURVEY 213

LISTS OF TABLES AND FIGURES

Table Page
2.1 Populations and interview plans for the three sectors in the large-scale end user category 10
4.1 Weighted average preference ranks for the general public 17
4.2 Summary of results for the general public on the technical knowledge questions 19
4.3 Outcome frequencies for the General Public Survey 30
5.1 Summary of results for the students on the technical knowledge questions 34
5.2 Number of students receiving instruction in or participating in various science topics and activities, with an indication of the source of the learning activity 40
5.3 Outcome frequencies for the Student Survey 45
6.1 Summary of results for the state and local officials on the technical knowledge questions 50
6.2 Outcome frequencies for the State and Local Government Survey 65
7.1 Summary of results for the large-scale end users on the technical knowledge questions 72
7.2 Outcome frequencies for the Large-Scale End User Survey. 85
8.1 Percentages of respondents ranking the likelihood of widespread availability as "High" for specific applications 91
9.1 Number of articles appearing in each newspaper during 2003-2004 97
10.1 Number of responses and average score for each of the four survey populations 99
Figure Page
ES. 1 Correct technical responses by survey population xi
ES. 2 Perception of hydrogen safety by survey population xii
ES. 3 Hydrogen at gas stations: general public responses xiii
ES. 4 Mass-media use for energy information by survey population xiv
ES. 5 Value rankings by the general public. xv
ES. 6 Current use and future plans for hydrogen technology xvi
4.1 General public perception of the safety of hydrogen as a fuel 16
4.2 Value rankings by the general public 18
4.3 Technical knowledge scores for the general public 20
4.4 Distribution of technical question responses from the general public 21
4.5 General public perceptions of safety and availability of hydrogen applications 22
4.6 Comparison of energy information source use by the general public 23
4.7 Use of mass-media sources for energy information by the general public 24
4.8 General public responses to hydrogen economy question by gender 25
4.9 General public word associations with hydrogen by age group 26
4.10 General public preferences for safety or convenience by census region 27
4.11 General public response to hydrogen at gas stations by education 28
4.12 General public response to hydrogen at gas stations by technical knowledge score 29
5.1 Distribution of students by grade level 32
5.2 Student word associations with hydrogen 33
5.3 Student technical knowledge scores 35
5.4 Distribution of student responses to technical questions 36
5.5 Student perceptions of safety and availability of hydrogen applications 37
5.6 Use of mass-media sources for energy information by students 38
5.7 Student participation in educational fuel cell activities 39
5.8 Student response to hydrogen at gas stations by gender 41
5.9 Student use of television as an energy information source by census region 42
5.10 Student word associations with hydrogen by grade level 43
5.11 Student response to hydrogen at gas stations by technical score 44
6.1 Distribution of respondents by government function 48
6.2 Government respondent perception of availability of fuel cells for personal vehicles 49
6.3 Technical knowledge scores for government respondents 51
6.4 Distribution of technical question responses from government respondents 52
6.5 Government respondent perceptions of safety and availability of hydrogen applications 53
6.6 Comparison of energy information source use by government respondents 54
6.7 Use of mass-media sources for energy information by government respondents 55
6.8 Government respondent perception of hydrogen technology penetration 56
6.9 Time frame for hydrogen use as noted by government respondents 57
6.10 Hydrogen education event attendance by government respondents 58
6.11 Attendance at hydrogen education events by government function 59
6.12 Fuel cell knowledge by government function 60
6.13 Government respondent attendance at hydrogen training class by technical knowledge score 61
6.14 Government respondent use of internet for energy information by technical knowledge score 62
6.15 Government respondent perception of hydrogen availability by technical knowledge score 63
6.16 Government respondent knowledge of hydrogen use by census region 64
7.1 Distribution of large-scale end user respondents by business subcategory 69
7.2 Use of hydrogen by large-scale end users 70
7.3 Planned use of hydrogen by large-scale end users 71
7.4 Technical knowledge scores of large-scale end users 73
7.5 Distribution of technical question responses from large-scale end users. 74
7.6 Distribution of responses for large-scale end users with low technical knowledge scores 75
7.7 Large-scale end user perceptions of safety and availability of hydrogen applications 76
7.8 Comparison of energy information source use by large-scale end user 77
7.9 Use of mass-media sources for energy information by large-scale end users 78
7.10 Hydrogen education event attendance by large-scale end users 79
7.11 Large-scale end user perception of hydrogen safety for onsite power for the home by technical knowledge score 80
7.12 Large-scale end user perception of hydrogen safety for personal vehicles by technical knowledge score 81
7.13 Large-scale end user perception of availability of hydrogen power by
technical knowledge score 82
7.14 Business categories of large-scale end users by technical knowledge scores 83
7.15 Large-scale end user response to hydrogen at gas stations by technical knowledge scores 84
8.1 Correct technical responses by survey population 88
8.2 "Don't know" responses by survey population 89
8.3 Agreement with hydrogen technology assertions by survey population 90
8.4 Perception of future hydrogen technology availability by survey population 91
8.5 Perception of hydrogen technology safety by survey population 92
8.6 Mass-media use for energy information by survey population 93
8.7 Frequency of mass-media use for energy information by survey population 94
8.8 Perception of hydrogen safety by survey population 95
8.9 Attitudes on local hydrogen availability by survey population. 96
9.1 Newspaper articles related to hydrogen 98

ACRONYMS

AAPOR	American Association for Public Opinion Research
BTS	Bureau of Transportation Statistics
CASRO	Council of American Survey Research Organizations
CATI	Computer assisted telephone interview
D\&B	Dun \& Bradstreet
DEP	Department of Environmental Protection
DOE	Department of Energy
DOT	Department of Transportation
EERE	Energy Efficiency and Renewable Energy
EPSEM	Equal Probability of Selection Method
OMB	Office of Management and Budget
ORC	Opinion Research Corporation
ORNL	Oak Ridge National Laboratory
NAICS	North American Industry Classifications System
RDD	Random digit dialing
SAS	Statistical Analysis System
SEO	State Energy Office
SIC	Standard Industrial Classification
URL	Uniform Resource Locator

EXECUTIVE SUMMARY

When signing the Energy Policy Act of 2005, President Bush reiterated his commitment to the Hydrogen Fuel Initiative and development of hydrogen fuel cell technology that will make it possible for today's children to take their drivers' tests in a pollution-free car. In support of the President's Hydrogen Fuel Initiative, the U.S. Department of Energy (DOE) Hydrogen Program focuses on overcoming critical barriers to the widespread use of hydrogen fuel cell technology, supporting research and development to reduce the cost of hydrogen, reducing the cost and improving the durability of fuel cells, and improving hydrogen storage technology.

The transition to a new, hydrogen-based energy economy, however, also requires an educated human infrastructure - trained safety and code officials, an educated workforce, state and local government officials who understand the near-term realities and long-term potential of the technology, and a public that is familiar and comfortable with using a new fuel. With this in mind, the DOE Hydrogen Program established an education key activity to address the training and informational needs of target audiences that have a role in the near-term transition as well as the long-term development of a hydrogen economy

Designing and maintaining an effective education program entails measuring baseline awareness and periodically measuring what has been learned. This report documents the data and results of statistical surveys undertaken to measure and establish baselines for understanding and awareness about hydrogen, fuel cells, and a hydrogen economy. The baseline data will serve as a reference in designing an education program, and it will be used in comparisons with future survey results to measure changes in understanding and awareness. It is envisioned that the same statistical surveys will be fielded again in approximate three-year intervals (2008 and 2011).

Scientific sampling was used to survey four populations: (1) the general public, ages 18 and over; (2) students, ages 12-17; (3) state and local government officials from state departments of transportation and environmental protection, state energy offices, and functionally similar personnel from cities and counties; and (4) potential large-scale hydrogen users in three business categories: transportation, businesses requiring uninterrupted power supplies, and industries with large power requirements. It was decided that the survey design should include about 1,000 individuals in each of the general public and student categories, about 250 state and local officials, and almost 100 large-scale end users.

The survey questions were designed to accomplish specific objectives. Technical questions were posed to measure technical understanding and awareness of hydrogen technology. Opinion questions measured attitudes about safety, cost, the environment, and convenience. Questions were posed to assess visions about the likelihood of various future applications of hydrogen technology. For most of the questions, "I don't know" or "I have no opinion" were perfectly acceptable answers. Questions about information sources (teachers, friends, government, etc.) and media (radio, Internet, magazines, etc.) were posed to assess how energy technology information is received.

The survey questionnaires were reviewed by National Hydrogen Association and U.S. Fuel Cell Council personnel and by management at the DOE Hydrogen Program office at various stages of
development. Federal Register notices were published, and Office of Management and Budget approval to conduct the surveys was obtained, per the Paperwork Reduction Act of 1995. Official pretests of the General Public and Student Surveys were conducted by the contractor that administered the survey. (Because all four surveys were similar, with most of the questions common to all surveys, formal pretests were not conducted for the State and Local Government or Large-Scale User Surveys.)

The General Public and Student Survey samples were selected by random digit dialing. Potential large-scale end users were selected by random sampling. The State and Local Government Survey was of the entire targeted population of government officials (not a random sample). All four surveys were administered by computer-assisted telephone interviewing (CATI). The General Public and Student Surveys were administered in either English or Spanish, at the option of the respondents. For each population, the length of the survey was less than 15 minutes, including the introduction, screening process, and general information and demographic questions.

The data collected for the four component populations are intended (1) as a reference for designing a hydrogen education program, and (2) as a baseline for measuring changes in understanding and awareness over time. Design of an education program itself is beyond the scope of the report, however, and comparisons of the baseline data with future results will not be made until the survey is fielded again. Therefore, this report is essentially a data book, a digest of the survey data collected for the four survey populations. Many conclusions can be made from the survey data. However, the purpose here is not to draw the conclusions, but rather to summarize the data in a way that facilitates drawing them.

Nevertheless, a few observations about the data summaries are salient:

- For every population group, average scores on the technical knowledge questions were lower for the fuel cell questions than for the other technical questions. Figure ES. 1 compares the correct responses to technical questions and fuel cell questions for the general public, students, state and local government officials, and large-scale end users.

Correct Technical Responses by Survey Population

Figure ES.1. The distribution of the average percentage of correct responses to the eleven technical questions overall (all 11 questions) and, in particular, for the three questions about fuel cells for the four survey populations.

- State and local officials expressed more confidence in hydrogen safety than large-scale end users, and they were much more confident than either the general public or students, as can be seen from Figure ES.2. State and local officials also scored much higher on the technical questions. Even those government officials whose technical knowledge scores were below average (among government officials) felt that hydrogen and fuel cells were safe.

Perception of Hydrogen Safety by Survey Population

Figure ES.2. The distribution of responses to safety questions about the everyday use of hydrogen from all four survey populations.

- Technical understanding appears to influence opinions about safety. For the General Public, Student, and Large-Scale End User Surveys, respondents with above-average scores on the eleven technical questions were more likely to have an opinion about hydrogen technology safety, and for those respondents who expressed an opinion, their opinion was more likely to be positive. These differences were statistically significant. Figure ES. 3 shows the general public responses to "How would you feel if your local gas station also sold hydrogen" and illustrates the relationship between scores on the technical questions and opinions about safety.

Hydrogen at Gas Stations: General Public Response

Figure ES.3. The distribution of responses to the question "How would you feel if your local gas station also sold hydrogen" for general public respondents scoring above and below average on the eleven technical questions.

- Using criteria of "Sometimes" or "Frequently" to describe usage, respondents rated media sources for obtaining energy information, as shown in Figure ES.4. The general public and students responded that television is the primary media source of energy information. State and local officials and large-scale end users indicated that their primary media sources are newspapers, the Internet, and science and technology journals. Radio is used least for all groups except the general public.

Mass-Media Use for Energy Information by Survey Population

Figure ES.4. The distribution of respondents from all four survey populations indicating either "Sometimes" or "Frequently" for how often they use various information sources for energy information.

- In order of importance, the general public values (Figure ES.5) the following factors:

1. Safety,
2. Cost,
3. Environment,
4. Convenience.

Value Rankings by the General Public

Figure ES.5. Share of general public respondents ranking each factor as most important when all four factors were read.

- The Large-Scale End User Survey suggests, as shown in Figure ES.6, that there is presently little penetration of hydrogen technology; nor is there much planning for it.

Current Use and Future Plans for Hydrogen Technology

Figure ES.6. The distribution of responses by potential large-scale end users to questions about the organization's current use of and future plans for hydrogen technology.

1. INTRODUCTION

1.1 BACKGROUND

Under the President's Hydrogen Fuel Initiative, the U.S. Department of Energy (DOE) Hydrogen Program works with industry, academia, national laboratories, and other Federal and international agencies to overcome critical technology barriers, address safety issues and facilitate the development of model codes and standards, validate hydrogen fuel cell technologies in real world conditions, and educate key stakeholders that have a role in the transition to a hydrogen economy.

A hydrogen economy requires an educated human infrastructure - trained safety and code officials, an educated workforce, state and local government officials who understand the nearterm realities and long-term potential of the technology, and a public that is familiar and comfortable with using a new fuel. The DOE Hydrogen Program education key activity was developed to address the training and informational needs of these key target audiences that have a role in the near-term transition as well as the long-term development of a hydrogen economy.

The purpose of the Baseline Knowledge Assessment for the DOE Hydrogen Program was to measure the current level of awareness and understanding of hydrogen and fuel cell technologies and the hydrogen economy. The information collected will help guide DOE efforts to formulate an effective education campaign about hydrogen and also will provide a baseline for comparison of future evaluations of public awareness, knowledge, and opinion.

1.2 PURPOSE

For an education program to be effective, it must have a logical starting point or baseline. In 2003, DOE initiated an effort to ascertain the familiarity of the population of the United States with hydrogen and fuel cell concepts. DOE tasked the National Transportation Research Center at the Oak Ridge National Laboratory (ORNL) to identify and characterize previous or ongoing attempts to determine this knowledge level (Truett, 2003). The ORNL literature review revealed that very few scientific surveys had been conducted to evaluate public knowledge and familiarity with hydrogen and fuel cell technology, and no results of national scientific surveys conducted within the United States had been published at the time. DOE determined, therefore, that there was a need for a statistically-designed survey of knowledge and opinions about hydrogen, fuel cells, and the hydrogen economy in the United States.

Four target populations were selected to be surveyed: (1) the general public, (2) students, (3) personnel in state and local governments, and (4) potential large-scale end users of hydrogen fuel and fuel cell technologies in business and industry. The goal of the 2004 hydrogen surveys was a statistically-valid, nationally-based measurement of awareness and understanding of hydrogen, fuel cells, and the hydrogen economy for each of these target populations. The results of the 2004 surveys will be the baseline assessment. The same processes for conducting the
survey in 2004 will be used in follow-on surveys in 2008 and 2011, and the same methods of data analysis will be used.

DOE will use these baseline results to design a hydrogen education program for the public, state and local governments, teachers and students, and the community of potential large-scale end users of hydrogen. Over time, when the surveys are periodically repeated, measures of changes in awareness and understanding will be taken, and this information will be used to modify the educational program as necessary.

1.3 TIMELINE OF EVENTS

Prior to development of the survey instruments, a literature review was conducted by Oak Ridge National Laboratory (ORNL) to ascertain the types of hydrogen and fuel cell surveys that had been conducted, where they had been conducted, and the relevant results (Truett, 2003). Although a few scientific surveys had been conducted in Europe, including some student surveys, no comprehensive, scientifically designed knowledge-based survey of the general public had been conducted in the United States. While some U.S. surveys on alternative fuels had contained attitude and opinion questions on hydrogen and some surveys had contained questions on specific aspects of fuel cells or the hydrogen economy, a new set of surveys that contained both knowledge and opinion questions was needed. This literature review was completed and published in October 2003.

Concurrent with the literature review, questions were being formulated and a basic format for the questionnaire was decided upon. These draft questionnaires were reviewed by the National Hydrogen Association, the U.S. Fuel Cell Council, and by personnel in the DOE Hydrogen Program office. The basic design of the questionnaires was completed in December 2003.

The Paperwork Reduction Act of 1995 required DOE to obtain Office of Management and Budget (OMB) approval prior to conducting the surveys. A 60-day Federal Register Notice was issued on August 20, 2003, requesting public input and comments to the proposed data collection. No comments were received. Formal application was made to OMB in January 2004 requesting approval to conduct the surveys. On January 12, 2004, a 30-day Federal Register Notice was issued, again requesting public input. No comments were received. Copies of the Federal Register Notices are provided in Appendix B. Approval of the OMB for the General Public Survey was received in March 2004. OMB approval for the Student Survey was received in May 2004. Approval for the State and Local Government Agencies Survey was received in July 2004, and approval for the Large-scale End User Survey was received in September 2004.

A contract was let with a public opinion research firm, Opinion Research Corporation (ORC), on May 11, 2004. The public and student surveys were initiated in June 2004. The government survey was initiated in August 2004, and the end user survey was initiated in September 2004.

A preliminary report with interim results was produced on September 30, 2004. The current document, Results of the 2004 Knowledge and Opinions Surveys for the Baseline Knowledge Assessment of the U.S. Department of Energy Hydrogen Program, includes the final results and
analyses of the four survey components. Results will also be published on the DOE Hydrogen Program website.

The same survey instruments and survey methodology will be used again in 2008 and 2011. At this time it is expected that an additional survey population, safety and code officials, will be added to the out-year collections (individuals representing this target audience are included in both the state and local government and potential large-scale end user surveys in the 2004 collection). The results of the repeated data collections will be compiled as for the 2004 data collection. In addition, the data in follow-on years will be compared with 2004 baseline data. The education program will be modified as needed, on the basis of this comparison.

2. SURVEY APPROACH

The following sections describe the four surveys, the rational for their design, and the survey methodology.

2.1 RESPONDENT POPULATIONS

There were four populations to be surveyed - the general public, students, state and local government agencies, and large-scale end users. The general scope and temper of the four collections were the same; however, the numbers of respondents differed for each of the populations.

The general public was surveyed first. Eligible respondents were adults 18 and older living in private households in the 50 states and the District of Columbia. A random (probability) sample of 1,000 completed interviews was the goal.

The second survey population consisted of a random sample of students between the ages of 12 and 17 living in private households in the 50 states and the District of Columbia. The goal was 1,000 completed surveys.

The third population included three state government agencies (State Energy Offices, Departments of Transportation, and Departments of Environmental Protection) in all 50 states, plus the twelve largest cities and the twelve largest counties in each of the four census regions. Completion of 246 total interviews was the goal, consisting of 150 interviews with state government agencies and 96 interviews with local government agencies.

The fourth population included a limited number (99) of large-scale energy users that were grouped into three categories: transportation, energy users who required an uninterrupted power supply, and industrial end users who had large power requirements.

2.2 FORMAT AND DESIGN OF THE QUESTIONNAIRES

To facilitate the data analysis, the survey questionnaires were prepared in a closed-end format. For every question, answer options were read to the interviewee, who was asked to choose one of the options. In every case, one of the options was "I don't know" or "I have no opinion." Prior to asking any questions, the respondent was assured that there were no trick questions and that an "I don't know" response was perfectly acceptable. Two sections, which were common to all questionnaires, contained knowledge-based questions. One of the knowledge-based sections was a true-false section; the other was a multiple choice section. Another section contained opinion questions ("How do you feel about ...?"). This section was also common to all of the surveys. In each survey, one section was specific to the population being surveyed. Copies of each of the survey instruments in their final survey format are found in Appendix A.

The questionnaire for the public and student surveys was translated into Spanish prior to the start of each survey period. The Spanish version was coded into the computer system of the opinion research firm conducting the interviews. Respondents to the General Public and Student Surveys had the option of completing the interview in either English or Spanish.

The content of the knowledge-based sections of the surveys included questions on hydrogen, fuel cells, and the hydrogen economy. Questions about the relative safety of hydrogen and fuel cell technologies were included in every section of the survey.

The length of the surveys was kept to under 15 minutes (averaging 10-15 minutes), including the introduction, screening process, and demographic questions (age, etc.).

2.3 DATA COLLECTION METHODOLOGY

Early in the design of the survey instruments and determination of the survey process, it was clearly established that the survey needed to be statistically defensible.

The computer-assisted telephone interviewing (CATI) methodology was selected for conducting the survey because the questions and potential responses could be programmed into the system, and for other reasons discussed below. The responses needed no interpretation by the interviewer and were automatically logged into a database. Because the CATI telephone interviewer reads the "script" from the computer monitor, there is less chance of skipping questions or making other similar errors.

Other methods of data collection were considered and rejected. Web survey responses are not statistically valid because the sample is self-selecting rather than random; in addition, the results could be "stacked" by a single individual who completed the survey multiple times. Surveys handed out at events (e.g., county fairs) are also not statistically valid for essentially the same reason; the population cannot be considered random or representative of the entire United States at a specific event or set of events. In addition, such surveys of the same population may not be repeatable in 2008 or 2011 . Written surveys were considered because they can be designed to be statistically valid. The use of written surveys was rejected, however, because of the timeframe involved, as well as cost. In a cost and time comparison, CATI surveys had an advantage over written responses.

All data collection efforts took place at the telephone facilities of ORC. All ORC interviewers complete intensive training. Interviewers are continuously supervised, monitored, and reviewed in order to maintain the highest quality interviewing standards. ORC's CATI system is state-of-the-art and offers full-screen control which allows multi-question screens, fully-programmable help and objection screens to aid interviewing, a flexible telephone number management system and powerful data checking facilities.

One of the greatest advantages of CATI systems is their ability to accurately and efficiently handle large numbers of scheduled appointments. Callbacks are queued by continuously comparing station sample activity and the index of definite callback records. When a definite
appointment time arrives, the system finds the next available station and delivers the record as the next call. The call history screen that accompanies each record informs the interviewer that the next call is a definite appointment and describes the circumstances of the original contact.

The following protocols were followed in an effort to maximize response rate for the general public and students (ORC 2004).

- A minimum of 15 attempts was used to reach an eligible household for each telephone number in the sample frame.
- Each call attempt was a minimum of five rings. The automated CATI software cycled the attempts weekday day, weekday evening, Saturday day, and Sunday evening shifts to maximize coverage of the residential population.
- Persistent "ring-no-answers" were attempted a minimum of four times at different times and days of the week. Each number was called a minimum of 15 times over 14 calling periods or until a completed interview was achieved.
- Lines that were busy were called back a minimum of five times at 10 -minute intervals. If the line was still busy after the fifth attempt, the number was attempted again on different calling occasions until the record was resolved. As with no-answers, if a shift closed before an automatically rescheduled busy was attempted, the number was cycled to the next available calling time.
- Callbacks to specific respondents were entered into the computer by interviewers and handled automatically by the CATI program. They were held out of the sample until the appointed hour, when they were sent to a station with an open slot for that call. These calls had a higher system priority than returning no-answer and busy records, but lower priority than definite callbacks.
- A non-response conversion staff attempted to call back all initial refusals, other than those households who expressly prohibited such an attempt - for example, "take me off your calling list."

The CATI process was also used for the calls to government agencies and large-scale end users, and similar procedures were used to maximize response rates. In addition, an advance letter was sent to a named representative of each government agency (Appendix D) to encourage response. The letter was sent less than two weeks prior to interviewing. A similar letter was prepared for the large-scale end users (Appendix D) but was not sent in advance. If the respondent requested verification of the legitimacy of the survey, the letter was emailed or faxed.

2.4 SAMPLE SELECTION

2.4.1 General Public

A national sample (50 states and the District of Columbia) of telephone numbers was randomly generated by ORC using GENESYS, a custom random digit dialing (RDD) sample generation system developed by Marketing Systems Group. GENESYS samples include both listed and unlisted residential telephone numbers. As noted by the contractor conducting the surveys (ORC, 2004), GENESYS samples include the following features:

- GENESYS RDD sampling (referred to as "list assisted") provides for a single stage, Equal Probability of Selection Method (EPSEM) sample of residential telephone numbers. The system gives any unlisted number the same chance of selection as a listed one. The system is updated twice a year.
- When a national probability sample is needed, a random selection is made from approximately 40,000 exchanges in two million working banks.
- In GENESYS sampling, telephone prefixes are implicitly stratified by Census Division and metropolitan area status. (This affects the data analysis-see Section 3. ${ }^{1}$)
- Each telephone number is transferred to a separate call record. The record shows the computer-generated telephone number to be called, as well as the county, state, and time zone into which the telephone number falls.

For the General Public Survey, replicates of approximately 250 records were created from this sample. ${ }^{2}$ Initially 26 replicates (6,500 records) were released for dialing. Subsequent releases were made on June 24 (10 replicates; 2,748 records) and July 15 (2 replicates; 498 records), for a total of 38 replicates and 9,746 records. As has become typical with an unscreened RDD residential sample, over half these records were determined to be disconnected or not in use, business numbers, or otherwise unusable.

RDD methodology was used to produce the sample. Random selection (most recent birthday) was used to select the respondent from each household.

2.4.2 Students

A national sample of telephone numbers was randomly generated as described in Section 2.4.1 for the General Public Survey. A much lower proportion of these numbers were eligible, however, because only students age 12-17 were interviewed.

Initially 28 replicates (7,000 records) were released for dialing. Subsequent releases were made on June 22 (10,943 records) and June 24 (17,023 records), for a total of 34,966 records. The results of the student pretest (see Section 2.5) were used in the final results.

For the main survey of students, replicates of approximately 250 records were created from the sample for the first three releases, with replicates of approximately 1,000 records for the fourth release. Initially 14 replicates (3,514 records) were released for dialing. Subsequent releases were made on July 15 (4,514 records), July 19 (42,026 records) and July 23 (36,179 records), for a total of 86,233 records.

[^0]
2.4.3 State and Local Government Agencies

The state agencies of interest were State Energy Offices (SEOs), Departments of Environmental Protection (DEPs), ${ }^{3}$ and Departments of Transportation (DOTs). Functionally similar personnel were sampled in cities and counties (local governments). Because small cities or counties were not expected to be actively planning for hydrogen and fuel cells applications now or in the near future, the target populations for cities were the twelve largest cities in each census region, and the target populations for counties were the twelve largest counties in each census region. ${ }^{4}$ For each census region, all twelve largest cities and all twelve largest counties were sampled. When county and city governments were combined into a single government entity, only one call was made to that office, and the next largest county in that census region was selected for interviewing.

The targeted sample size was 246 completed interviews. All offices in the component populations were sampled. As noted in Section 2.3, an advance letter was sent to a named person within each organization. Sampling was accomplished by calling the appropriate office and requesting the person to whom the advance letter had been addressed. The designated respondent could assign someone else in the office to represent the agency if need be.

2.4.4 Large-scale End Users

For the purpose of this survey, large-scale end users were defined as businesses and industries with potential large-scale commercial uses of hydrogen and/or fuel cells. Respondents to the Large-Scale End User Survey did not need to be using hydrogen or fuel cells at the time of the survey interview. Although respondents could have global corporate operations, it was required that they have facilities in the United States, and only personnel in the United States were interviewed. Potential persons to be interviewed included chief executive officers, chief financial officers, facility managers, energy managers, fleet managers, and information/security managers.

Respondent businesses, identified by North American Industry Classification System (NAICS) or Standard Industrial Classification (SIC) codes, were stratified into three sectors of hydrogen usage or potential hydrogen usage:

- Transportation: private and public fleets that use trucks, buses, or other ground-based vehicle types; these are the end users (not developers) of hydrogen-powered vehicles.
- Business types for which energy usage is primarily for facility heating/cooling and localized power requirements and for which on-site power generation is important because of the need for an uninterrupted power supply. These business types include large agricultural

[^1]productions; hospitals and other healthcare institutions; education institutions; and financial institutions.

- Industrial sectors that have large power requirements-examples include processing, manufacturing, and fabrication plants; mills and refineries; and industrial machinery and equipment plants.

Component population numbers for each of these three categories are shown in Table 2.1.

Table 2.1. Populations and Interview Plans for the Three Sectors in the Large-scale End User Category				
Hydrogen Usage Sector	Number in Component Population*	Number in Target Population**	Number of Completed Interviews	Number of Attempted Interviews
Transportation (i.e., end users)	282,866	849	33	66
Businesses needing uninterrupted power supplies	891,817	2,675	33	66
Industrial sectors with large power requirements	344,188	1,033	33	66
Total	1,518,871	4,587	99	198
*Based on the Census Bureau's 2002 Economic Census. **Sampling was restricted to the largest 0.3% of the component populations.				

Lists of businesses meeting the above criteria were purchased from Dun \& Bradstreet, (specifically the D\&B Market Place database). In addition to the NAICS (or SIC) code, the lists included the number of employees and revenues for each listed business. The contact lists were the most recently available for this type of data.

For each NAICS (or SIC) category, businesses in the compiled lists were ranked by either number of employees or revenue, depending on which was considered more appropriate for the category. For the transportation stratum and for the stratum of businesses needing uninterrupted power supplies, the number of employees was used primarily as the ranking criterion for NAICS (or SIC) categories (revenue was used for a few subcategories); for the stratum of industrial businesses with large power requirements, revenue was used for all categories. The largest 0.3% of businesses were then selected from each category and used to represent the subcategory in the strata. The largest businesses were selected because they represent the greatest potential for hydrogen usage. The choice of 0.3% as the cutoff was somewhat arbitrary but was made because the target population so defined is restricted to the largest businesses and yet still represents a large number (thousands) of businesses. For each strata, these largest businesses were then sampled randomly to obtain samples of 66, as indicated in Table 2.1. Appendix E lists the numbers of businesses in the various NAICS-coded (or SIC-coded) subpopulations.

There was one sample release, which consisted of 153 pieces within the transportation segment, 194 within the uninterrupted power supply segment, and 141 within the large power requirement segment.

2.5 PRETESTING

During the development of the survey, various drafts were tested in a limited environment. In addition, drafts were reviewed by National Hydrogen Association and U.S. Fuel Cell Council personnel as well as by management at the DOE Hydrogen Program office.

Finally, an official pretest of the public survey was conducted by the contractor selected to administer the survey. Fifty interviews were conducted. The results seemed to indicate that the knowledge questions were too simple. Knowledge-based questions were revised to increase the difficulty of the questions. The basic structure of the questionnaire was not changed. The pretest results were not used in the final survey. Sample replicates that had been dialed during the pretest were discarded.

A pretest of the Student Survey was also conducted by the contractor. Thirty-seven interviews were completed. The knowledge questions from the public questionnaire (the more difficult version) were used. For the student pretest, replicates of approximately 250 records (i.e., telephone numbers) were created from the sample. Unlike the General Public Survey pretest, no changes were made to questions on the Student Survey after the student pretest. Therefore the student pretest results were incorporated with the final results.

Because the questionnaires for the State and Local Government and Large Scale User Surveys were substantially similar to the questionnaires for General Public and Student Surveys, which were pretested, no pretesting was conducted for the State and Local Government or Large Scale User Surveys.

2.6 INTRODUCTIONS AND PROTOCOL

When a potential respondent answered the phone, there was an introduction and a screening protocol to ensure that the appropriate respondent would be selected. For each survey, the protocol was slightly different.

For the Student Survey, parental permission was acquired (per OMB specification) for each interview. When requesting this permission, it was realized (after pretesting) that selection of the teen based on gender (e.g., "the 16-year-old female") resulted in a high frequency of hang-ups. Therefore, the screening protocol was revised to request permission to speak with the teen with the most recent birthday, omitting any reference to age or gender. This change resulted in a higher rate of parental permissions, which resulted in a higher rate of completed interviews.

One additional change was made to the original introduction of the general public and student surveys. The original introduction for the general public and student surveys contained the terms
"fuel cells" and "hydrogen economy." During administration of the Student Survey, the number of children initially being reported in households was substantially lower than expected from Census Bureau data for households with children in various age ranges. A plausible explanation was that the introduction was causing parents to exclude their children from taking the survey. That is, it appeared that parents were screening their children from technical questions, which the parents felt their children might not understand. Therefore, the introductory words on both the general public and the student surveys were changed to use the terms "energy" and "alternative fuels." (The student and public surveys were being conducted concurrently when the introductory words were revised.) This change affected essentially all of the Student Survey results, but only part of the General Public Survey results. ${ }^{5}$ So as not to introduce bias in estimates of changes, future versions of the General Public Survey will incorporate the same before/after mix of introductions that was used in the baseline version.

Survey interviewers always had certain information available to provide, upon request, to respondents: the OMB control number (1910-5124, per OMB specification) and a DOE website [Uniform Resource Locator (URL) = http://www.eere.energy.gov/hydrogenandfuelcells]. The interviewers were also instructed to tell respondents that their responses were completely voluntary but very important, that their responses would not be associated with their household or specific organization in any way, and, if asked, that there were no trick questions on the survey.

While the specific protocol for each of the surveys is shown in the questionnaires, which are in Appendix A, the most significant protocols are as follows:

- For the general public, the adult over 18 years of age with the most recent birthday was selected.
- For the students (after parental permission was obtained), the child age 12-17 with the most recent birthday was selected.
- For the state and local government agencies, a letter was sent to the head of a particular agency (e.g., Director State DOT; city mayor; county executive) requesting participation. A copy of this letter is contained in Appendix D. The designated interviewee could at his/her option assign a surrogate to take the survey.
- For the large-scale end users, the person most responsible for energy-related decisions was selected.

[^2]
3. DATA ANALYSIS METHODS

The General Public Survey and Student Survey are implicitly stratified RDD surveys with sampling weights calculated by post-stratification and iterative proportional fitting. The proper analysis of RDD surveys requires (1) proper use of sampling weights to adjust for both a priori differences in sample selection probabilities and a posteriori differences between known demographic characteristics of the population sampled and the selected sample itself, and (2) proper accounting for the survey design, including stratification and clustering. A priori differences in selection probabilities can be caused, for example, by differences in the number of telephones households have. A posteriori differences between the population and the sample can be caused, for example, by variations in nonresponse (e.g., females more likely to respond). Sampling weights, which can be calculated more than one way, affect both survey estimates, their standard error calculations, and, consequently, confidence levels for them or significance levels for tests about them. Stratification and clustering in the survey design also affect how standard errors should be calculated.

The proper analysis of RDD surveys is generally complicated and requires approximations, many of which are current research issues beyond the scope of this report. See, for example, Lu and Gelman (2003) for a general discussion and references. The analyses performed for this report (Sections 4-7) are adjusted for sampling weights computed (by iterative proportional fitting) by ORC to adjust for differences in household numbers of telephones and a posteriori differences in age, gender, race, and census region. Because the GENESYS RDD samples are implicitly stratified by Census Division and metropolitan area status, the General Public and Student survey data are handled in the analysis as stratified by Census Division and metropolitan area status. This is essentially the approach taken for the Bureau of Transportation Statistics (BTS) Omnibus Survey (BTS, 2002). ${ }^{6}$

The State and Local Government Survey is not an RDD survey, though it is stratified by Census Region and government function (largest cities and counties, and state departments of energy, environmental protection, and transportation). This survey was intended as a census (complete sample); there were, nevertheless, a few nonrespondents. In the analysis, the nonrespondents were treated as random, so that the responders composed a (nearly complete) random sample.

The Large-Scale End User Survey is not an RDD survey, but it is randomly sampled within three strata (transportation, businesses needing uninterrupted power supplies, industrial sectors with large power requirements). Thus, all four survey components are stratified or weighted or both. Whereas the general public and student populations are huge and treated as essentially infinite in the statistical analysis, the state and local government and large-scale end user populations are much smaller, and are treated as finite in the analysis. ${ }^{7}$

[^3]The Statistical Analysis System (SAS) Version 9.1 software (SAS, 2004) was used to perform the analysis of the infinite-population, stratified, and weighted General Public and Student Surveys, and the finite-population, stratified State and Local Government and Large-Scale End User Surveys. The SAS surveymeans procedure was used to compute means of (essentially) continuous response variables such as the collective percentage of correct answers to the technical questions, and the SAS surveyfreq procedure was used to compute frequency estimates for categorical responses (such as answers to "Which of the following would you MOST closely associate with the word 'hydrogen'?"). The surveyfreq procedure was also used to perform cross-tab analyses to explore relationships between responses and respondent characteristics such as sex, age, and educational degree. In addition to computing properly weighted estimates, the SAS procedures compute standard errors (and thus confidence levels and test significance levels), which account for both stratification and sampling weights, using a method based on Taylor series approximations (Woodruff, 1971; Fuller, 1975). Alternative methods for computing standard errors (e.g., balanced repeated replication or jackknife methods) are not considered here.

Other data analysis issues such as missing values (of which there are very few) and response rates are discussed in Sections 4-7 for the individual survey components. In Section 8, results are compared across survey components using essentially the same methodology discussed in this section. In three-year intervals (2008 and 2011), the surveys will be repeated, and subsequent results will be compared with the baseline results, again using the same methods. These comparisons will be fairly straightforward, because the surveys conducted at different times and the different survey components are all statistically independent.
needing uninterrupted power supplies, and industrial businesses with large power requirements. The largest 0.3% amounted to $849,2,675$, and 1,033 businesses in each of the respective business categories.

4. RESULTS: GENERAL PUBLIC SURVEY

4.1 INTRODUCTION

This section summarizes the results of the General Public Survey. A copy of the survey is provided in Appendix A.1. Please note that the question numbering is not always consecutive; however, the results displayed in this chapter correlate to the question numbers in the questionnaire given in Appendix A.1. A total of 889 interviews with the general public were completed. The average interview length was 12.3 minutes. The results of this survey are provided in Appendix C.1.

Appendix C. 1 and Section 4.2 contain tables and charts for "one-way" statistics; that is, categories for these summaries are defined in terms of one survey variable such as sex, region, or response to a specific question. Weighted frequencies and weighted means are used for the summaries, and standard deviations and confidence bounds (that account for the sampling weights) are also given to quantify the statistical variability of the frequencies and means.

Obviously there are also myriad relationships and interactions between the survey variables that could be investigated (for example, "Does the respondent's sex or geographic region affect his/her responses to Question 4d?'). Although no such interactions were of particular interest a priori, a few of the more pronounced response interactions are investigated in Section 4.3.

Section 4.4 is about outcome rates - particularly, response rates. Response rates are of interest in all sample surveys, because low response rates suggest the possibility of response bias. Response rates are also of interest in the sense that interest in and awareness of hydrogen can affect response rates in this and future hydrogen surveys.

For the sake of simplicity, several variables are reduced to a higher level form in some analyses, particularly in Section 4.3. The thirteen age categories are sometimes also considered in terms of just two categories: 18-44 and 45+. Urbanization is indicated with two classes, urban (city) and non-urban (suburban, metropolitan with no central city, and non-metropolitan areas). Degree is defined as associate degree or higher. A variable "Above Average?" indicates whether respondents scored above or below the mean for all respondents on the survey's eleven technical knowledge questions. See Appendix A. 1 for a copy of the questionnaire; the eleven knowledge questions are $1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{c}, 1 \mathrm{~d}, 1 \mathrm{e}, 1 \mathrm{~g}, 1 \mathrm{~h}$ (all true-false questions), and 3a, 3b, 3c, 3 f (all multiple choice questions).

In addition to the technical knowledge questions, other questions asked for opinions or reactions to certain statements. These questions included Question 2, which asked respondents to rank the importance of certain features, and Questions 3d, 3e, 4, 5, and 6. Questions 7 and 8 asked about sources of information. Questions 9-12 were demographic questions.

4.2. SUMMARY TABLES

The frequencies of the various responses (called response values) to the various questions in the General Public Survey are listed in Appendix C.1. Both weighted and unweighted frequencies are given. Unweighted frequencies are the raw counts. Weighted frequencies are adjusted to more accurately reflect actual U.S. demographic characteristics. A standard deviation of the weighted frequency measures the statistical variability of the frequency. (The range defined by taking plus or minus two standard deviations from the frequency is an approximate 95% confidence interval for the expected frequency.) The weighted frequencies are also expressed as percentages, with standard errors similarly reflecting statistical variability.

Figure 4.1 shows the responses graphically for the survey question about the safety of hydrogen relative to gasoline and diesel (survey Question 4d). The options that were provided to respondents were "Disagree," "Are neutral," "Agree," or "No opinion." As can be seen in Figure 4.1, most people agreed with the statement "Hydrogen is as safe as gasoline and diesel fuels." Many respondents, however, provided a "No opinion" response.

General Public Perception of the Safety of Hydrogen as a Fuel

Figure 4.1. Responses to Question 4d, "Hydrogen is as safe as gasoline and diesel fuels," General Public Survey.

The rank scores for the question asking respondents to rank the importance of safety, cost, environment, and convenience (Question 2) are summarized in Table 4.1 as the weighted averages of the ranks (1-4) assigned by each survey subject. In this ranking, " 1 " ranks as more important than " 2 ," etc. Therefore, the lower the weighted average rank, the more important is the "Value." On average, the rankings were in the order "Safety" is more important than "Cost" is more important than "Environment" is more important than "Convenience," though many individuals departed from that exact order. Figure 4.2 also illustrates this pattern. The last six "Value" entries in Appendix C. 1 are for pairwise comparisons based on the safety, cost, environment, and convenience preference rankings. Each possible pair (e.g., safety and cost) is considered separately.

Table 4.1. Weighted Average Preference Ranks for the General Public				
Question	Number of Responses*	Weighted Average Rank	Lower 95\% Confidence Bound	Upper 95\% Confidence Bound
Safety	874	1.9	1.9	2.0
Cost	874	2.2	2.1	2.2
Environment	874	2.4	2.4	2.5
Convenience	874	3.1	3.1	3.2
*15 respondents did not rank the alternatives. Note that the lower the rank, the greater the importance that was attributed to the value; for example, safety was ranked as more important than cost.				

The order in which the options - safety, cost, environment, or convenience - were presented to respondents taking the survey was variable. In other words, the four options were rotated by the CATI system to prevent the influence of order on the selection of a "first choice." Another way of looking at the ranking is to look at which factor was selected as most important (i.e., which option was selected first) out of all four options. ${ }^{8}$

[^4]Figure 4.2 shows the share of respondents selecting each factor as most important. As shown in Figure 4.2 , safety and low cost were chosen by respondents as most important 38.7% and 32.7% of the time, respectively; environmental protection was selected as most important by 18.7% of the respondents, and convenience was most important to 8.2% of the respondents. Almost 1.7% of the respondents had no opinion or were not able to name a first choice.

Value Rankings by the General Public

Figure 4.2. Share of respondents ranking each factor as most important when all four factors were read, Question 2, General Public Survey.

Results for technical knowledge questions (along with the other questions) can be summarized as in Appendix C.1. However, the technical questions can also be summarized in terms of whether they were answered correctly. In this summary, "Don't know" can be handled either as an incorrect response (i.e., a failure to give the correct response) or as a separate kind of response. Table 4.2 summarizes the technical questions in terms of whether they were answered correctly or incorrectly with "Don't know" treated as an incorrect response. (Table 4.2 is similar to Table 4.1, except that the average weighted percentages of correct responses are given rather than average weighted ranks.)

Table 4.2. Summary of Results for the General Public on the Technical Knowledge Questions (Correct/Incorrect)				
Question	Number of Responses	Weighted Percent Correct	Lower 95\% Confidence Bound	Upper 95\% Confidence Bound
1a. Hydrogen pipelines exist nationwide (false)	889	32.4	29.1	35.7
1b. In a hydrogen economy, hydrogen replaces fossil fuels as the dominant form of energy (true)	889	44.0	40.4	47.6
1c. Hydrogen gas is toxic (false)	889	37.1	33.6	40.6
1d. Fuel cells produce electricity through hydrogen combustion (false)	889	11.8	9.4	14.2
1e. Hydrogen is too dangerous for everyday use by the general public (false)	889	41.9	38.4	45.4
1g. Hydrogen is lighter than air (true)	889	57.3	53.8	60.9
1h. Hydrogen has a distinct odor (false)	889	47.0	43.4	50.6
3a. In which state or condition can hydrogen be stored? (chemical compound and liquid)	889	29.4	26.2	32.7
3b. When using pure hydrogen, fuel cell vehicles generate electricity, water, and what else? (heat)	889	18.5	15.8	21.2
3c. Hydrogen can be produced using which of the following sources of energy? (natural gas, sunlight, organic matter)	889	38.4	34.9	41.9
3f. Which of the following represents a type of fuel cell? (PEM)	889	3.4	2.1	4.7
Overall Average	$\mathbf{8 8 9}$	$\mathbf{3 2 . 8}$	$\mathbf{3 1 . 3}$	

The fewest number of correct responses was to Question 3f, which asked respondents about their knowledge of a specific type of fuel cell. Other questions with low percentages of correct responses were 1 d and 3 b , both concerning fuel cells. The greatest number of correct responses was to Question 1g, which was a question about hydrogen.

The correct/incorrect perspective used in Table 4.2 is conventional, since "Don't know" is generally considered an incorrect response. However, "Don't know" was a very common response to the survey technical questions. Figure 4.3 shows the responses broken down according to type: Correct, Incorrect, and "Don't know." On average, 32.8% of questions were answered correctly, 24.2% were answered incorrectly, and 43.0% were answered with "Don't know."

Technical Knowledge Scores for the General Public

Figure 4.3. Weighted percent correct, incorrect, and "Don't know" for the technical knowledge questions, General Public Survey.

Figure 4.4 shows the distribution of responses. The dispersion about the mean score (32.8%) is substantial, as might be expected, given the varied backgrounds of general public respondents. The distribution is skewed towards fewer correct answers, with 11.5% of respondents answering zero technical questions correctly and 0.3% of respondents answering all eleven technical questions correctly.

Distribution of Technical Question Responses from the General Public

Figure 4.4. The distribution of the number of correct answers to the eleven technical questions, General Public Survey.

Figure 4.5 shows responses to Questions 5 and 6. Question 5 asked respondents to rate the likelihood of widespread commercial availability for hydrogen and fuel cells in the next five years for six separate potential applications. Figure 4.5 shows the percentage of respondents rating the likelihood as "High." Question 6 asked about the safety of using hydrogen and fuel cells, in comparison with technology in use today, for the same applications. Figure 4.5 shows the percentage of respondents who ranked hydrogen and fuel cells as "Equally as safe" or "Safer."

General Public Perceptions of Safety and Availability of Hydrogen Applications

Figure 4.5. Weighted percent of responses to Questions 5 and 6 concerning widespread commercial availability within the next five years and perception of safety for specific applications, General Public Survey.

The general public considers buses and commercial vehicles and large power plants as being the most likely applications for widespread availability in the next five years. The general public also considers small portable devices as being the least likely application.

The adults responding to the General Public Survey were asked two questions about information sources. Question 7 asked about the frequency of use ("Never," "Sometimes," "Frequently") of information sources to make decisions about energy costs and safety. As shown in Figure 4.6, the source marked "Frequently" most often was utility companies or brokers such as gas or electricity providers (21.1% of respondents indicated frequent use of this source), followed by friends and family. These sources were also used "Sometimes" more often than the other sources. All other sources (teachers/schools, environmental groups, and the three government sources) received more "Never" responses than either "Sometimes" or "Frequently."

Comparison of Energy Information Source Use by the General Public

Figure 4.6. Weighted frequency of responses to Question 7 regarding the use of information for making decisions about energy costs and safety, General Public Survey.

Question 8 also asked about use of information sources but from a different perspective. Question 8 asked about the frequency of use of different types of mass media for obtaining energy information (Figure 4.7). As shown in the figure, the Internet and technical magazines are not generally used by the general public to obtain energy information. The general public indicated that television is the media source used most frequently for obtaining energy information.

Use of Mass-Media Sources for Energy Information by the General Public

Figure 4.7. Weighted frequency of responses to Question 8, "How often do you get ENERGY information from different types of mass media," General Public Survey.

4.3. RELATIONSHIPS

The summary statistics in Section 4.2 are "one-way" statistics in the sense that the response categories are defined in terms of one variable such as sex, region, or response to an opinion question (e.g., Question 4d, "Hydrogen is as safe as gasoline and diesel fuels"). However, relationships in the responses determined by two or more variables may also be of interest. Although no relationships were of particular interest a priori, in this section a few of the more statistically significant ones are illustrated. Interactions that are considered are with the survey variables and sex, age ($18-44$, and $45+$), region, urban/non-urban, degree (no degree/associate or above), and the score "Above Average." The statistical significance is the significance level (p) of a chi-square test that accounts for the sampling weights. ${ }^{9}$

[^5]For example, the most statistically significant response difference between the sexes was for True-false Question 1b (Figure 4.8), "In a hydrogen economy, hydrogen replaces fossil fuels as the dominant form of energy." Males tended to answer "True" for this question much more frequently than females, and females indicated "Don't know" much more often ($\mathrm{p}<.0001$).

General Public Responses to Hydrogen Economy Question by Gender

Figure 4.8. Responses to Question 1b, "In a hydrogen economy, hydrogen replaces fossil fuels as the dominant form of energy," General Public Survey.

The most statistically significant interaction with respect to age (18-44 and 45+) was in the responses to Question 3d ($\mathrm{p}<.0001$), "Which of the following would you MOST closely associate with the word 'hydrogen'?" Younger respondents answered "Chemistry class" more often, whereas older respondents answered "The H-bomb" (and "The Hindenburg") more often (Figure 4.9). For both age groups, the least frequent association (other than the "Don't know" response) was "Fuel."

General Public Word Associations with Hydrogen by Age Group

Figure 4.9. Responses by age to Question 3d, "Which of the following would you MOST closely associate with the word 'hydrogen'," General Public Survey.

It is also interesting to note (Figure 4.9) that although the 18-44 group scored slightly better on the technical questions, the difference between the two age groups was not statistically significant ($\mathrm{p}=.15$; the overall technical score average was 34.1 ± 1.2 (one standard error) for the 18-44 group, and 31.7 ± 1.0 for $45+$ group).

There were statistically significant regional differences, one of which was in the preference of safety over convenience. Respondents from the Northeast and South showed a stronger relative preference for Safety than respondents from the Midwest and West ($p=.006$), as illustrated in Figure 4.10.

General Public Preferences for Safety or Convenience by Census Region

Figure 4.10. Preferences of safety or convenience, by Census Region, General Public Survey.

The most significant difference between respondents with a college degree (associate, bachelors, post-graduate) and those having no college degree was in responses to Question 3e, "How would you feel if your local gas station also sold hydrogen?" As seen in Figure 4.11, respondents with a college degree were much more comfortable with the idea of a local hydrogen filling station ($\mathrm{p}<$ $.0001)$ than respondents with no degree.

General Public Response to Hydrogen at Gas Stations by Education

Figure 4.11. Responses by college degree/no-degree to Question 3e, "How would you feel if your local gas station also sold hydrogen," General Public Survey.

In addition (Figure 4.11), persons without a college degree were more likely to indicate that they would feel frightened or uneasy with a locally available hydrogen refueling station. They also responded with a "Don't know" or "No opinion" response more often.

The most significant associations with the below/above-average score differences (on the technical questions) were with answers to individual technical questions. This is not surprising, because the average score is functionally dependent on scores to individual questions. The most significant association of below/above-average score differences with a response other than to a technical question was again with Question 3e, "How would you feel if your local gas station also sold hydrogen?" As with more educated respondents, respondents who did better on the technical questions were much more likely ($\mathrm{p}<.0001$) to say they would be comfortable with a local hydrogen filling station (Figure 4.12).

General Public Response to Hydrogen at Gas Stations by Technical Knowledge Score

Figure 4.12. Responses by technical score above/below average to Question 3e, "How would you feel if your local gas station also sold hydrogen," General Public Survey.

4.4. OUTCOME RATES

Various outcome rates are of interest in characterizing survey data results. The response rate is the proportion of sampled eligible subjects for whom complete survey interview information was obtained. The refusal rate is the proportion of sampled eligible subjects who refused to be interviewed or who terminated their interviews before completion. The contact rate is the proportion of sampled eligible subjects that were contacted at all. In general the number of eligible subjects must be estimated, and there are various ways to estimate this number and to define, in turn, estimates of the rates. The American Association for Public Opinion Research (AAPOR) gives various definitions (AAPOR, 2004) for the rates and provides a spreadsheet calculator for computing them.

Estimates of the rates are computed from outcome frequencies, as shown in the following table for the General Public Survey.

Outcome Type	Frequency
Complete interviews (I)	889
Partial interviews (P)	61
Refusals and break offs (R)	1,047
Non-contacts (NC)	17
Other eligible, non-interviews (O)*	856
Known eligible	2,870
Unknown households (UH)	491
Unknown others (UO)	1,451
Eligibility unknown	1,942
Known ineligible	4,934
Total phone numbers used	9,746
*This category is a catchall for various kinds of eligible non-interviews. See AAPOR (2004, page 39) for a complete listing of outcome categories.	

The eligibility rate can be estimated as
e = Known eligible / (Known eligible + Known ineligible).

The eligibility rate estimate e can be applied to cases of unknown eligibility to estimate the number of those cases that were actually eligible. The response rate can then be estimated (there are other ways) as

$$
\text { Response rate }=\mathbf{I} /(\mathbf{I}+\mathbf{P}+\mathbf{R}+\mathbf{N C}+\mathbf{O}+\mathbf{e} \times(\mathbf{U H}+\mathbf{U O})) .
$$

For the General Public Survey

$$
e=2,870 /(2,870+4,934)=.3678
$$

and the response rate estimate is
Response rate estimate $=889 /(889+61+1,047+17+856+.3678 \times(491+1,451))=.2480$.
In comparing survey results over time or across survey components, it is important to consider the response rates and other outcome rates. Contact rates may decline, for example, as cell phone use increases and land line use decreases. From the perspective of hydrogen technology awareness, the rates are of independent interest. For example, it is likely that the response rate would increase and the refusal rate would decrease, for a population that becomes more enthusiastic about hydrogen technology. However, subjects might self-select for the very reason that they are knowledgeable about hydrogen, and a low response rate might upwardly bias estimates of awareness.

5. RESULTS: STUDENT SURVEY

5.1 INTRODUCTION

This section summarizes the results of the Student Survey. A copy of the survey is provided in Appendix A.2. Please note that the question numbering is not always consecutive; however, the results displayed in this chapter correlate to the question numbers in the questionnaire given in Appendix A.2. A total of 1,000 interviews were completed (37 in the pilot and 963 in the full survey). The average interview length was 14.1 minutes, which included the protocol for getting parental permission to interview the student. The results of this survey are provided in Appendix C.2.

Appendix C. 2 and Section 5.2 contain tables and charts for "one-way" statistics; that is, categories for these summaries are defined in terms of one survey variable such as sex, region, or response to a specific question. Weighted frequencies and weighted means are used for the summaries, and standard deviations and confidence bounds (that account for the sampling weights) are also given to quantify the statistical variability of the frequencies and means.

Obviously there are also myriad relationships and interactions between the survey variables that could be investigated. (For example, "Does the respondent's sex or geographic region affect his/her responses to Question 3d?") Although none of the interactions were of particular interest a priori, a few of the more pronounced response interactions are investigated in Section 5.3.

Section 5.4 is about outcome rates - particularly, response rates. Response rates are of interest in all sample surveys, because low response rates suggest the possibility of response bias.
Response rates are also of interest in the sense that interest in and awareness of hydrogen can affect response rates in this and future hydrogen surveys.

For the sake of simplicity, several variables are reduced to a higher level form in some analyses, particularly in Section 5.3. Grade in school, which ranged from fourth up, was reduced to just two categories: $8^{\text {th }}$ and below and $9^{\text {th }}$ and above. (Two home-schooled individuals and five "refused" were excluded in the reduced classification.) Urbanization is indicated with two classes, urban (city) and non-urban (suburban, metropolitan with no central city, and nonmetropolitan areas). A variable "Above Average?" indicates whether respondents scored above or below the mean for all respondents on the survey's eleven technical questions. See Appendix A. 2 for a copy of the questionnaire; the eleven knowledge questions are $1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{c}, 1 \mathrm{~d}, 1 \mathrm{e}, 1 \mathrm{~g}, 1 \mathrm{~h}$ (all true-false questions), and 3a, 3b, 3c, 3f (all multiple choice questions).

In addition to the technical knowledge questions, other questions requested opinions or reactions to certain statements. These questions included $3 \mathrm{~d}, 3 \mathrm{e}, 4,5$, and 6 . Questions 7 and 8 asked about sources of information. Questions 9-11 were questions related to science topics and the educational experience, and Questions 12-14 were demographic questions.

5.2. SUMMARY TABLES

The frequencies of the various responses (called response values) to the various questions in the Student Survey are listed in Appendix C.2. Both weighted and unweighted frequencies are given. Unweighted frequencies are the raw counts. Weighted frequencies are adjusted to more accurately reflect actual U.S. demographic characteristics. A standard deviation of the weighted frequency measures the statistical variability of the frequency. (The range defined by taking plus or minus two standard deviations from the frequency is an approximate 95% confidence interval for the expected frequency.) The weighted frequencies are also expressed as percentages, with standard errors similarly reflecting statistical variability. Figure 5.1 shows the distribution of student grades (answers to Question 12, "What was the last grade of school you completed?").

Distribution of Students by Grade Level

Figure 5.1. Responses of students to Question 12, "What was the last grade of school you completed," Student Survey.

Figure 5.2 shows the responses to Question 3d, "Which of the following would you MOST closely associate with the word 'hydrogen'?"

Student Word Associations with Hydrogen

Figure 5.2. Responses of students to Question 3, "Which of the following would you MOST closely associate with the word 'hydrogen'," Student Survey.

It is interesting to compare the responses of students to this question with those of the general public. Adults, ages 18-44, have a similar pattern to their responses - that is, they associate the word "hydrogen" with chemistry class more often that with any of the other terms. Adults over 45 , however, were more likely to respond with an association of "the H-bomb" or "the Hindenburg."

Results for technical knowledge questions (along with the other questions) can be summarized as in Appendix C.2. However, the technical questions can also be summarized in terms of whether they were answered correctly. In this summary, "Don't know" can be handled either as an incorrect response (i.e., a failure to give the correct response) or as a separate kind of response. Table 5.1 summarizes the technical knowledge questions in terms of whether they were answered correctly or incorrectly with "Don't know" treated as an incorrect response.

Table 5.1. Summary of Results for the Students on the Technical Knowledge Questions (Correct/Incorrect)				
Question	Number of Responses	Weighted Percent Correct	Lower 95\% Confidence Bound	Upper 95\% Confidence Bound
1a. Hydrogen pipelines exist nationwide (false)	1,000	25.3	22.5	28.0
1b. In a hydrogen economy, hydrogen replaces fossil fuels as the dominant form of energy (true)	1,000	43.2	40.0	46.3
1c. Hydrogen gas is toxic (false)	1,000	37.9	34.8	41.1
1d. Fuel cells produce electricity through hydrogen combustion (false)	1,000	13.4	11.2	15.7
1e. Hydrogen is too dangerous for everyday use by the general public (false)	1,000	44.8	41.6	48.0
1g. Hydrogen is lighter than air (true)	1,000	52.1	48.9	55.3
1h. Hydrogen has a distinct odor (false)	1,000	46.7	43.5	49.9
3a. In which state or condition can hydrogen be stored? (chemical compound and liquid)	1,000	35.4	32.4	38.5
3b. When using pure hydrogen, fuel cell vehicles generate electricity, water, and what else? (heat)	1,000	16.7	14.3	19.1
3c. Hydrogen can be produced using which of the following sources of energy? (natural gas, sunlight, organic matter)	1,000	35.4	32.4	38.5
3f. Which of the following represents a type of fuel cell? (PEM)	1,000	2.7	1.6	3.7
Overall Average	$\mathbf{1 , 0 0 0}$	$\mathbf{3 2 . 2}$	$\mathbf{3 1 . 0}$	

As with the general public, the fewest correct responses were for Questions 3f, 1d, and 3b, all on the subject of fuel cells.

The correct/incorrect perspective is conventional, since "Don't know" is generally considered an incorrect response. However, "Don't know" was a very common response to the survey technical questions. Figure 5.3 shows the responses broken down according to type: Correct, Incorrect, and "Don't know." On average, 32.2% of the questions were answered correctly, 36.2% were answered incorrectly, and 31.6% were answered with "Don't know."

Student Technical Knowledge Scores

Question

1a. Hydrogen pipelines exist...
1b. In a hydrogen economy...
1c. Hydrogen gas is toxic.
1d. Fuel cells produce...
1e. Hydrogen is so dangerous...
1 g . Hydrogen is lighter than...
1h. Hydrogen has a distinct...
3a. In which state or...
3b. When using pure hydrogen...
3c. Hydrogen can be produced...
3f. Which of the following...
Overall Average

Correct
KXXX Incorrect \quad Don't know

Figure 5.3. Weighted percent correct, incorrect, and "Don't know" for the technical questions, Student Survey.

Figure 5.4 shows the distribution of scores for the Student Survey. The dispersion about the mean score (32.2% correct) is substantial, but tighter than for the general public (Figure 4.4), which is more heterogeneous in age than is that of the students. About 5.1% of the students answered no technical questions correctly, and no students were able to answer more than nine questions correctly.

Distribution of Student Responses to Technical Questions

Figure 5.4. The distribution of the number of correct answers to the eleven technical questions, Student Survey.

Figure 5.5 shows responses to Questions 5 and 6. Question 5 asked students to rate the likelihood of widespread commercial availability for hydrogen and fuel cells in the next five years for six separate potential applications. Figure 5.5 shows the percentage of respondents rating the likelihood as "High." Question 6 asked about the safety of using hydrogen and fuel cells, in comparison with technology in use today, for the same applications. Figure 5.5 shows the percentage of students who ranked hydrogen and fuel cells as "Equally as safe" or "Safer."

Student Perceptions of Safety and Availability of Hydrogen Applications

Figure 5.5. Weighted percent of responses to Questions 5 and 6 concerning widespread commercial availability within the next five years and perception of safety for specific applications, Student Survey.

The students were asked about their information sources, using a scale of "Never," "Sometimes," and "Frequently" to indicate usage. Students most often obtain energy information from the classroom; 33.5% of the student responses were "Frequently" and 46.0% of the responses were "Sometimes" for this source. A fifth of the students, however (20.5\%), indicated that they "Never" obtain energy information in the classroom. Students rarely obtain energy information from family and friends; over half (50.3%) of the responses were "Never" for this source.

Question 8 asked about the frequency of use of different types of mass media for obtaining energy information (Figure 5.6).

Use of Mass-Media Sources for Energy Information by Students

Figure 5.6. Weighted frequency of responses to Question 8, "How often do you get ENERGY information from different types of mass media," Student Survey.

As shown in Figure 5.6, the source indicated most often by students as being used "Frequently" is science and technology magazines, followed closely by television. When considering responses of both "Frequently" and "Sometimes," the most often used source is television (78.0% of the student responses), followed by technical magazines (62.4%) and newspapers (62.1%). The radio is the mass media source used least to obtain energy information (53.3% of the students responded that they "Never" use this source).

Figure 5.7 shows the percentages of students responding "Yes" to various questions concerning their participation in specific hydrogen education or science activities (Questions 9a-g). Many more students have learned about energy and fuels, including hydrogen, and had experience with these topics than have learned about or had experiences with fuel cells.

Student Participation in Educational Fuel Cell Activities

Figure 5.7. Percentages of students responding "Yes" to the various "Have you ever..." science activity Questions 9a-g, Student Survey.

If the students responded positively about their participation in a particular science activity, then they were asked where the learning took place. Most educational experiences took place at school. The next most common response was that the learning took place at home. It should be noted that students that were home schooled were instructed to consider their home schooling experiences as school, not home. The question concerning where students had seen or used a hydrogen fuel cell model car showed the greatest variety concerning where the experience took place. Only 57.3% indicated that this experience took place at school; 13.0% responded that the experience took place at home; 4.6% responded with the Internet; and 19.8% indicated that there was some other provider of the experience. Table 5.2 provides the counts for all students who responded "Yes" to the experience questions.

Question: Have you ...	$\begin{gathered} \text { Number } \\ \text { Responding } \\ \text { "Yes" } a \end{gathered}$	Where Learning Took Place (\% of total number responding "Yes," if that value is over 4.5\%)						
		School	Home	Relig. org.	Scouts	Internet	Other	$\begin{gathered} \text { Un- } \\ \text { known } \end{gathered}$
Received instruction on or otherwise learned about energy use, fuels, and emissions	641	$\begin{gathered} 589 \\ (91.9 \%) \end{gathered}$	24	0	2	6	15	6
Received instruction on or otherwise learned about hydrogen and fuel cells	567	$\begin{gathered} 524 \\ (92.4 \%) \end{gathered}$	22	1	0	6	13	1
Ever used a demonstration kit to produce hydrogen	120	$\begin{gathered} 111 \\ (92.5 \%) \end{gathered}$	3	0	2	0	0	3
Ever used a model fuel cell science kit	100	$\begin{gathered} 88 \\ (88.0 \%) \end{gathered}$	$\begin{gathered} 8 \\ (8.0 \%) \end{gathered}$	0	1	1	1	1
Ever seen or used a hydrogen fuel cell model car	131	$\begin{gathered} 75 \\ (57.3 \%) \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ (13.0 \%) \\ \hline \end{gathered}$	1	2	$\begin{gathered} 6 \\ (4.6 \%) \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ (19.8 \%) \\ \hline \end{gathered}$	5
Participated in a fuel cell vehicle design competition	29	$\begin{gathered} 22 \\ (75.9 \%) \end{gathered}$	2	0	0	0	1	3
Participated in a science bowl or other science competition	387	$\begin{gathered} 377 \\ (97.4 \%) \end{gathered}$	1	1	1	0	7	1
Note: Results are the weighted frequency and have been rounded to the nearest whole number. See also Appendix C.2. ${ }^{a}$ Because of rounding, the sums may not add up to the numbers in this column.								

5.3. RELATIONSHIPS

The summary statistics in Section 5.2 are "one-way" statistics in the sense that the response categories are defined in terms of one variable such as sex, region, or response to Question 3d. However, relationships in the responses determined by two or more variables may also be of interest. Although no relationships were of particular interest a priori, in this section a few of the more statistically significant interactions are illustrated. Interactions that are considered are with the survey variables and sex, region, grade ($8^{\text {th }}$ and below, $9^{\text {th }}$ and above), urban/non-urban, and the score "Above Average?" The statistical significance is the significance level (p) of a chisquare test that accounts for the sampling weights. ${ }^{10}$

For example, the most statistically significant response difference between the sexes was for Question 3b, "When using pure hydrogen, fuel cell vehicles generate electricity, water, and what else?" Girls were far more likely than boys to answer either "Don't know" or "All of these" to this question. The second most significant response difference between the sexes was for Question 3e, "How would you feel if your local gas station also sold hydrogen?" Responses are

[^6]summarized in Figure 5.8. Girls were much more likely to be either uncertain or uneasy about the premise of the question ($\mathrm{p}<.0001$).

Student Response to Hydrogen at Gas Stations by Gender

Figure 5.8. Differences between male and female students in response to Question 3e, "How would you feel if your local gas station also sold hydrogen," Student Survey.

There were statistically significant differences with respect to region, one of which was in the responses to how often ENERGY information is obtained from television (Question 8a).
Figure 5.9 shows the difference. Students in the South and West were more likely than students in the Northeast and Midwest to indicate they got energy information from television ($\mathrm{p}=.002$).

Student Use of Television as an Energy Information Source by Census Region

Figure 5.9. Regional differences in responses to Question 8a, "How often do you get ENERGY information from television," Student Survey.

The most statistically significant difference with respect to grade ($8^{\text {th }}$ and below, $9^{\text {th }}$ and above) was in the responses to Question 3d, "Which of the following would you MOST closely associate with the word 'hydrogen'?" Younger students were far less likely to associate hydrogen with chemistry class ($\mathrm{p}<.0001$). This is no doubt because younger students have not yet taken chemistry in school (Figure 5.10).

Student Word Associations with Hydrogen by Grade Level

Figure 5.10. Differences between grade levels ($8^{\text {th }}$ and below, $9^{\text {th }}$ and above) in responses to Question 3d, "Which of the following would you MOST closely associate with the word 'hydrogen'," Student Survey.

The most statistically significant difference between students scoring above average and below average on the technical questions (other than on any of the technical questions themselves) is in the responses to Question 3e, "How would you feel if your local gas station also sold hydrogen?" Students who demonstrated more technical understanding were much more likely both to have an opinion and to be pleased or at ease with the premise of the question ($\mathrm{p}<.0001$). This is illustrated in Figure 5.11.

Student Response to Hydrogen at Gas Stations by Technical Score

Figure 5.11. Differences between students scoring above and below average in responses to Question 3e, "How would you feel if your local gas station also sold hydrogen," Student Survey.

5.4. OUTCOME RATES

Various outcome rates are of interest in characterizing survey data results. The response rate is the proportion of sampled eligible subjects for whom complete survey interview information was obtained. The refusal rate is the proportion of sampled eligible subjects who refused to be interviewed or who terminated their interviews before completion. The contact rate is the proportion of sampled eligible subjects that were contacted at all. In general the number of eligible subjects must be estimated, and there are various ways to estimate this number and to define, in turn, estimates of the rates. The AAPOR gives various definitions (AAPOR, 2004) for the rates and provides a spreadsheet calculator for computing them.

Estimates of the rates are computed from outcome frequencies, as shown in the following table for the student survey:

Table 5.3. Outcome Frequencies for the Student Survey	
Outcome Type	Frequency
Complete interviews (I)	1,000
Partial interviews (P)	28
Refusals and break offs (R)	493
Non-contacts (NC)	463
Other eligible, non-interviews (O)*	0
Known eligible	1,984
Unknown households (UH)	48,284
Unknown others (UO)	6,700
Eligibility unknown	54,984
Known ineligible	64,231
Total phone numbers used	121,199
*This category is a catchall for various kinds of eligible non-interviews. See AAPOR (2004, page 39) for a complete listing of outcome categories.	

The eligibility rate can be estimated as

$$
\mathrm{e}=\text { Known eligible } /(\text { Known eligible + Known ineligible }) .
$$

The eligibility rate estimate e can be applied to cases of unknown eligibility to estimate the number of those cases that were actually eligible. The response rate can then be estimated (there are other ways) as

$$
\text { Response rate }=\mathbf{I} /(\mathbf{I}+\mathbf{P}+\mathbf{R}+\mathbf{N C}+\mathbf{O}+\mathbf{e} \times(\mathbf{U H}+\mathbf{U O})) .
$$

For the student survey

$$
\mathrm{e}=1,984 /(1,984+64,231)=.02996
$$

and the response rate estimate is

$$
\text { Response rate estimate }=1,000 /(1,000+28+493+463+0+.02996 \times(48,284+6,700))=.2754 .
$$

In comparing survey results over time or across survey components, it is important to consider the response rates and other outcome rates. Contact rates may decline, for example, as cell phone use increases and land line use decreases. From the perspective of hydrogen technology awareness, the rates are of independent interest. For example, it is likely that the response rate would increase and the refusal rate would decrease, for a population that becomes more
enthusiastic about hydrogen technology. However, subjects might self-select for the very reason that they are knowledgeable about hydrogen, and a low response rate might upwardly bias estimates of awareness.

6. RESULTS: STATE AND LOCAL GOVERNMENT SURVEY

6.1 INTRODUCTION

This section summarizes the results of the State and Local Government Survey. A copy of the survey is provided in Appendix A.3. Please note that the question numbering is not always consecutive; however, the results displayed in this chapter correlate to the question numbers in the questionnaire given in Appendix A.3. A total of 236 interviews were completed. The average interview time was 10.0 minutes. The results of this survey are provided in Appendix C.3.

As noted in Section 2.4.3, there were three state and two local sub-groups selected for this population. These included State Energy Offices (SEOs), Departments of Environmental Protection (DEPs), ${ }^{11}$ and Departments of Transportation (DOTs). Local government agencies included the twelve largest cities and twelve largest counties in each of the four census regions (see Section 2.4.3). When the city and county governments were combined into a single entity, only one call was made to that office, and the next largest city or county was contacted.

Appendix C. 3 and Section 6.2 contain tables and charts for "one-way" statistics; that is, categories for these summaries are defined in terms of one survey variable such as census region, government function (city, county, state DOT, etc.) or response to a specific question. Standard deviations and confidence bounds that account for the survey stratification by census region and government function are given to quantify the statistical variability of the frequencies and means.

There are also many relationships and interactions between the survey variables that could be investigated. (For example, "Does the respondent's government function affect his/her responses to Question 3d?") Although no relationships were of particular interest a priori, a few of the more pronounced response interactions are investigated in Section 6.3.

Section 6.4 is about outcome rates - particularly, response rates. Response rates are of interest in all sample surveys, because low response rates suggest the possibility of response bias. Response rates are also of interest in the sense that interest and awareness in hydrogen can affect response rates in this and future hydrogen surveys.

A new variable "Above Average?" was created for the State and Local Government Survey to indicate whether respondents scored above or below the mean for all respondents on the survey's eleven technical questions. The eleven technical questions are $1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{c}, 1 \mathrm{~d}, 1 \mathrm{e}, 1 \mathrm{~g}, 1 \mathrm{~h}$ (all truefalse questions), and 3a, 3b, 3c, 3 f (all multiple choice questions). See Appendix A. 3 for a copy of the questionnaire. The mean percentage of correct answers was 65.8%.

In addition to the technical knowledge questions, other questions asked for opinions or reactions to certain statements. These questions included $3 \mathrm{~d}, 3 \mathrm{e}, 4,5$, and 6 . Questions 7 and 8 asked about sources of information. Questions $9-17$ were about hydrogen and fuel cell activities in the

[^7]respondents' respective geographic jurisdictions. Question 18 was about a possible DOEsponsored hydrogen class or workshop.

6.2. SUMMARY TABLES

The frequencies of the various responses (called response values) to the various questions in the State and Local Government Survey are listed in Appendix C.3. All frequencies in this survey are raw counts, because there is no probability weighting (i.e., all weights are 1). The standard deviation of the frequency measures its statistical variability. (The range defined by taking plus or minus two standard deviations from the frequency is an approximate 95% confidence interval for the expected frequency.) The frequencies are also expressed as percentages, with standard errors similarly reflecting statistical variability.

Figure 6.1 shows the distribution of respondents by government function. The response frequencies are nearly uniform across the functional types.

Distribution of Respondents by Government Function

Figure 6.1. Numbers of respondents to the State and Local Government Survey by government function.

Figure 6.2 shows the distribution of responses to Question 5a about the likelihood of widespread commercial availability in the next five years of hydrogen and fuel cells for use in personal cars and trucks. Evidently, respondents are skeptical about this likelihood.

Government Respondent Perception of Availability of Fuel Cells for Personal Vehicles

Figure 6.2. The distribution of responses to Question 5a about the likelihood of widespread commercial availability in the next five years of hydrogen and fuel cells for use in personal cars and trucks, State and Local Government Survey.

Results for the technical knowledge questions (along with the other questions) can be summarized as in Appendix C.3. However, the technical questions can also be summarized in terms of whether they were answered correctly. In this summary, "Don't know" can be handled either as an incorrect response (i.e., a failure to give the correct response) or as a separate kind of response. Table 6.1 summarizes the technical knowledge questions in terms of whether they were answered correctly or incorrectly with "Don't know" treated as an incorrect response. On average, 65.8% of the technical questions were answered correctly. This is much higher than the percentage of correct answers for either the general public (32.8%), students (32.2%), or end users (44.4%). Still, about a third of the time the state and local government respondents did not give the correct answer.

Table 6.1. Summary of Results for the State and Local Officials on the Technical Knowledge Questions (Correct/Incorrect)

Question	Number of Responses	Percent Correct	Lower 95\% Confidence Bound	Upper Confidence Bound
1a. Hydrogen pipelines exist nationwide (false)	236	72.0	70.9	73.2
1b. In a hydrogen economy, hydrogen replaces fossil fuels as the dominant form of energy (true)	236	68.6	67.6	69.7
1c. Hydrogen gas is toxic (false)	236	72.0	71.0	73.1
1d. Fuel cells produce electricity through hydrogen combustion (false)	236	37.3	36.2	38.4
1e. Hydrogen is too dangerous for everyday use by the general public (false)	236	78.4	77.5	79.3
1g. Hydrogen is lighter than air (true)	236	79.2	78.4	80.1
1h. Hydrogen has a distinct odor (false)	236	81.4	80.4	82.3
3a. In which state or condition can hydrogen be stored? (chemical compound and liquid)	236	64.8	63.8	65.9
3b. When using pure hydrogen, fuel cell vehicles generate electricity, water, and what else? (heat)	236	52.5	51.4	53.7
3c. Hydrogen can be produced using which of the following sources of energy? (natural gas, sunlight, organic matter)	236	67.0	65.8	68.0
3f. Which of the following represents a type of fuel cell? (PEM)	236	50.8	49.7	52.0
Overall Average	$\mathbf{2 3 6}$	$\mathbf{6 5 . 8}$	$\mathbf{6 5 . 4}$	$\mathbf{6 6 . 2}$

The fewest correct responses (37.3%) were for Question 1D. The other fuel cell questions, 3 f and $3 b$, received the next fewest correct responses.

While Table 6.1 presents correct versus incorrect responses (where incorrect responses include the "Don't know" response), Figure 6.3 shows the responses broken down according to type: Correct, Incorrect, and "Don't know." On average, 65.8% of the questions were answered correctly, 15.9% were answered incorrectly, and 18.3% of the responses were answered with "Don't know."

Technical Knowledge Scores for Government Respondents

Figure 6.3. Weighted percent correct, incorrect, and "Don't know" for the technical knowledge questions, State and Local Government Survey.

Figure 6.4 shows the distribution of scores for the State and Local Government Survey. Although some respondents responded with fewer than six correct answers, more than 80% had six or more correct answers, and there is less dispersion about the mean score (65.8%) than for the general public (Figure 4.4), which is more heterogeneous than the state and local officials.

Distribution of Technical Question Responses from Government Respondents

Figure 6.4. The distribution of the number of correct answers to the eleven technical questions, State and Local Government Survey.

Figure 6.5 shows responses to Questions 5 and 6. Question 5 asked government agency respondents to rate the widespread commercial availability for hydrogen and fuel cells in the next five years for six separate potential applications. Question 6 asked about the safety of using hydrogen and fuel cells, in comparison with technology in use today, for the same applications. Figure 6.5 shows the percentages who responded to each of these questions. The huge discrepancy between a perception of safety of hydrogen and the belief that hydrogen application will not be widespread in the near future is interesting and very different from the other surveys.

Government Respondent Perceptions of Safety and Availability of Hydrogen Applications

Figure 6.5. Weighted percent of responses to Questions 5 and 6 concerning widespread commercial availability within the next five years and perception of safety for specific applications, State and Local Government Survey.

Government officials were asked two questions about information sources. Question 7 (see Appendix A.3) asked about the use of information sources (based on a scale of "Never," "Sometimes," and "Frequently") to help make decisions about energy costs and safety. The most common source of information used by government agencies to make energy-related decisions (i.e., the source most often chosen as "Frequently" used) was the Federal government. The next most frequently used source was the state government. Local government sources were used the least as an information source for making decisions about energy costs and safety. Figure 6.6 shows the responses of government officials for the frequency of their use for selected sources.

Comparison of Energy Information Source Use by Government Respondents

Figure 6.6. Weighted frequency of responses to Question 7 regarding the use of information for making decisions about energy costs and safety, State and Local Government Survey.

Question 8 also asked about the use of information sources but from a different perspective. Question 8 asked about the frequency of use of different types of mass media to get energy information. Almost $60 \%(57.6 \%)$ of government officials indicated that they use the Internet to obtain energy information on a frequent basis. The next source that government officials indicated they use frequently is technology magazines and journals, with 47.5% of respondents indicating that they use this source on a frequent basis. Figure 6.7 shows the responses to this question.

Use of Mass-Media Sources for Energy Information by Government Respondents

Figure 6.7. Weighted frequency of responses to Question 8 regarding the frequency of obtaining ENERGY information from different types of mass media, State and Local Government Survey.

Questions 9-13 were about respondents' awareness of hydrogen and fuel cell technology penetration. Figure 6.8 shows the percentages of state and local officials responding "Yes" to Questions 9-13. Only a few respondents indicated that their own agencies are using hydrogen vehicles (5.1\%) or stationary fuel cells (8.5%). A greater number of respondents knew of other agencies in their geographic jurisdiction that are using hydrogen-powered vehicles $(22.9 \%$) or stationary fuel cells (30.1\%).

Government Respondent Perception of Hydrogen Technology Penetration

Figure 6.8. Percentages of state and local officials who responded "Yes" to Questions 9-13 about hydrogen and fuel cell technology penetration, State and Local Government Survey.

Officials were asked if their agencies had plans to use hydrogen and/or fuel cells in the future. Those responding "Yes" were then asked the time frame for implementation. As can be seen in Figure 6.9, about half of the respondents indicated that their agencies had no plans to use hydrogen or fuel cells in the near future. An additional 19.5% of the agency officials did not know what their agency's plans were for hydrogen and fuel cells. About 30.1% of the agency officials indicated plans to use hydrogen and/or fuel cells. Of those agencies with plans for the future use of hydrogen and fuel cells, most agencies plan to implement within the 1-5 years time frame.

Time Frame for Hydrogen Use as Noted by Government Respondents

Figure 6.9. Responses to Questions 13 and 14, "Does your agency have plans to use hydrogen or fuel cells in the future," and "What is the time frame for plans to use hydrogen or fuel cells," State and Local Government Survey.

Questions 16-18 asked agency officials about receipt of information on hydrogen and fuel cells at the workplace (Figure 6.10), including attendance at specific events. Eighty-six percent responded that they thought a DOE-sponsored class, conference, or workshop on hydrogen and fuel cells would be of value.

Hydrogen Education Event Attendance by Government Respondents

Figure 6.10. Responses to Questions 16-17 concerning receiving information about hydrogen and/or fuel cells at the workplace and attendance at a training class, press conference, or workshop and Question 18 about the potential value of a DOE-sponsored class, State and Local Government Survey.

6.3. RELATIONSHIPS

The summary statistics in Section 6.2 are "one-way" statistics in the sense that the response categories are defined in terms of one variable (for example, responses to Question 5a). However, relationships in the responses determined by two or more variables may also be of interest. Although no such relationship was of particular interest a priori, in this section a few of the more statistically significant ones are illustrated. Interactions that are considered are with the survey variables and Census Region, government function, and the "Above Average?" score indicator. The statistical significance is the significance level (p) of a chi-square test that accounts for the stratification in the survey design.

Fewer significant ($\mathrm{p}<.01$) relations were discovered among the results for the State and Local Government Survey than for the Student or General Public Surveys, possibly because the Student and General Public Surveys both had bigger sample sizes. Also, scores on the technical questions for state and local officials are generally higher than for the other populations (see Sections $4,5,7$), and state and local responses to the safety questions were also generally
positive and did not vary as much between groups scoring above and below average on the technical questions. Nevertheless, a number of significant ($\mathrm{p}<.01$) differences were found.

As illustrated in Figure 6.11, responses to Question 17c indicate that state energy office personnel were significantly ($\mathrm{p}<.0001$) more likely to have attended a hydrogen workshop than personnel in the other government functions. The same pattern can also be seen in the responses to question 17a, "Have you attended a training class on hydrogen or fuel cells?" ($\mathrm{p}=.0007$).

Attendance at Hydrogen Education Events by Government Function

Figure 6.11. Government functional differences in response to Question 17c, "Have you attended a conference or workshop that included a session on hydrogen or fuel cells," State and Local Government Survey.

Statistically significant ($\mathrm{p}<.0001$) differences across functional areas were also found in the responses to Question 1d, "Fuel cells produce electricity through hydrogen combustion." These responses are shown in Figure 6.12.

Fuel Cell Knowledge by Government Function

Figure 6.12. Government functional differences in the pattern of responses to true/false Question 1d, "Fuel cells produce electricity through hydrogen combustion," State and Local Government Survey.

Figures 6.13-6.15 show response differences between respondents scoring above and below average on the eleven technical questions. Not surprisingly, responses to Question 17a, "Have you attended a training class on hydrogen or fuel cells?" and Question 8c, "How often do you get ENERGY information from the Internet?" both differed significantly between those scoring above and below average on the technical questions ($\mathrm{p}<.0001$ in either case). Above average scorers are more likely to have had training (Figure 6.13) and to use the Internet as a source of energy information (Figure 6.14).

Government Respondent Attendance at Hydrogen Training Class by Technical Knowledge Score

Figure 6.13. Differences between respondents scoring above and below average on the technical questions in responses (Yes/No) to Question 17a, "Have you attended a training class on hydrogen or fuel cells," State and Local Government Survey.

Government Respondent Use of Internet for Energy Information by Technical Knowledge Score

Figure 6.14. Differences between respondents scoring above and below average on the technical questions in response to Question 8c, "How often do you get energy information from the Internet," State and Local Government Survey.

Responses to Question 5c about the likelihood of widespread commercial availability of large hydrogen power plants in the next five years also showed significantly differences ($\mathrm{p}<.0001$) between those scoring above and below average on the technical questions. Far fewer responders with above-average scores indicated that large hydrogen power plants were likely (Figure 6.15).

Government Respondent Perception of Hydrogen Availability by Technical Knowledge Score

Figure 6.15. Differences between respondents scoring above and below average on the technical questions in response to Question 5c about the likelihood of widespread commercial availability of large hydrogen power plants in the next five years, State and Local Government Survey.

Finally, Figure 6.16 shows statistically significant ($\mathrm{p}=.004$) regional differences in responses to Question 10, "Do you know of any other organization that operates hydrogen-powered buses or other fleet vehicles in the area covered by your geographic jurisdiction?" Relatively more respondents in the Western Census Region answered "Yes" to this question.

Government Respondent Knowledge of Hydrogen Use By Census Region

Figure 6.16. Regional differences in patterns of responses to Question 10, "Do you know of any other organization that operates hydrogen-powered buses or other fleet vehicles in the area covered by your geographic jurisdiction," State and Local Government Survey.

6.4. OUTCOME RATES

The State and Local Government Survey differs from the other survey components in that attempts were made to sample the entire target population. That is, an attempt was made to contact fifty SEOs, fifty state DOTs, fifty state DEPs, and the twelve largest cities and twelve largest counties in each of the four Census Regions. As Table 6.2 shows, that attempt nearly succeeded.

Table 6.2. Outcome Frequencies for the State and Local Government Survey			
Government Function	Number Targeted	Number Sampled	Response Rate (\%)
Cities	48	44	91.6
Counties	48	46	95.8
DEP	50	49	98.0
DOT	50	50	100.0
SEO	50	47	94.0
Total	$\mathbf{2 4 6}$	$\mathbf{2 3 6}$	$\mathbf{9 5 . 9}$

Had the entire target population been sampled (100% response), there would be no statistical error (at least no sampling error) in the survey estimates. As the survey stands, its estimation standard errors are very small. The near- 100% response rate is accounted for in the statistical computations by applying finite population correction factors (Cochran, 1977, p 24), which are applied in the SAS surveymeans and surveyfreq procedures (SAS, 2004, p 165).

7. RESULTS: LARGE-SCALE END USER SURVEY

7.1 INTRODUCTION

This section summarizes the results of the Large-Scale End User Survey. A copy of the survey is provided in Appendix A.4. Please note that the question numbering is not always consecutive; however, the results displayed in this chapter correlate to the question numbers in the questionnaire given in Appendix A.4. Although questions common to all four surveys had the same numbering in the General Public, Student, and State and Local Government Survey components, these questions are numbered differently in the Large-Scale End User Survey. A total of 99 interviews were completed. The average interview time was 12.5 minutes. The results of this survey are provided in Appendix C.4.

The Large-Scale End User Survey had three sampling strata: transportation (i.e., end users), businesses needing uninterrupted power supplies, and industrial sectors with large power requirements. Various NAICS- or SIC-coded subpopulations were identified for each of these strata, and the largest 0.3% from each subpopulation represented the subpopulation in the strata, where, depending on the subpopulation, size was measured in terms of either revenue or number of employees (see Section 2.4.4 and Appendix E, Table E.1).

Appendix C. 4 and Section 7.2 contain tables and charts for "one-way" statistics; that is, categories for these summaries are defined in terms of one survey variable such as census region or response to a specific question. Standard deviations and confidence bounds that account for the survey stratification by census region and government function are given to quantify the statistical variability of the frequencies and means. There are also many relationships and interactions between the survey variables that could be investigated, although no relationships were of particular interest a priori.

Unlike the State and Local Government Survey, the Large-Scale User Survey is of only a small proportion of its target population. Further, the sample size for the Large-Scale User Survey is much smaller than the General Public or Student Survey sample sizes. Therefore, there are fewer statistically significant relationships for the Large-Scale User Survey than for the other survey components. Nevertheless, a few of these relationships are illustrated in Section 7.3.

As with the other survey components, a new variable "Above Average?" was created for the Large-Scale End User Survey to indicate whether respondents scored above or below the mean for all respondents on the survey's eleven technical questions. (The eleven technical questions are the true-false questions, $12 \mathrm{a}, 12 \mathrm{~b}, 12 \mathrm{c}, 12 \mathrm{~d}, 12 \mathrm{e}, 12 \mathrm{~g}, 12 \mathrm{~h}$, and the multiple choice questions, 13a, 13b, 13c, 13f.) The mean percentage of correct answers was 44.4%, though a bimodal score distribution complicates the interpretation of the scores. Unlike the score distributions for the other survey components, the distribution for the large-scale users has a spike at the low end. This distribution is illustrated in Section 7.2 and discussed further in Section 7.3.

In addition to the technical questions, questions were also posed to learn interviewee opinions about the likelihood of hydrogen technology applications in the future, about safety, about power usage of his/her business, etc. (See Appendix A. 4 for a copy of the questionnaire.)

7.2. SUMMARY TABLES

The frequencies of the various responses (called response values) to the various questions in the Large-Scale End User Survey are listed in Appendix C.4. All frequencies in this survey are raw counts, because there is no probability weighting. The standard deviation of the frequency measures its statistical variability. (The range defined by taking plus or minus two standard deviations from the frequency is an approximate 95% confidence interval for the expected frequency.) The frequencies are also expressed as percentages, with standard errors similarly reflecting statistical variability.

Thirty-three potential end users were surveyed in each of three strata - transportation, businesses needing an uninterrupted power supply, and industrial sectors with large power requirements. The segments within these strata were defined by NAICS or SIC codes and are described more fully as follows:

1. Transportation:

- Trucking (250 or more employees),
- Transit (500 or more employees),
- Postal service (employee/revenue totals not available), ${ }^{12}$
- Couriers and messengers (1,000 or more employees),
- Automotive rental/leasing (revenue over $\$ 20$ million),
- Police (250 or more employees),
- Fire (1,000 or more employees),
- Private fleets (250 or more employees),
- Airports (250 or more employees);

2. Businesses needing an uninterrupted power supply:

- Farms (sales over $\$ 250,000$),
- Financial institutions excluding insurance (500 or more employees),
- Educational services (1,000 or more employees),
- Hospitals/residential care (1,000 or more employees),
- Wired communications (250 or more employees),
- National security (500 or more employees),
- Utilities (500 or more employees),
- Government services (1,000 or more employees); and

3. Industry (industries with revenue over $\$ 1$ billion).

There were no additional segments within the industrial stratum. Additional information on these strata and sectors is provided in Appendix E.

[^8]One-third of the respondents were from each of the three strata - transportation, businesses needing an uninterrupted power supply, and industrial sectors with large power requirements. Figure 7.1 shows the distribution of survey respondents by strata subcategory.

Distribution of Large-Scale End User Respondents by Business Subcategory

Figure 7.1. Numbers of respondents to the Large-Scale End User Survey by business subcategories.

Figure 7.2 shows the distribution of responses to Question 5, "Does your organization use hydrogen and/or fuel cells for any purpose?" Very few respondents answered "Yes" to Question 5. Consequently, very few interviewees responded at all to Question 6, "What is the PRIMARY function of the hydrogen and/or fuel cells used by your organization?"

Use of Hydrogen by Large-Scale End Users

Figure 7.2. Responses to Question 5, "Does your organization use hydrogen and/or fuel cells for any purpose," Large-Scale End User Survey.

Figure 7.3 shows the distribution of responses to Question 7, "Does your organization have plans to use hydrogen or fuel cells in the future?" Most of the businesses do not have plans to use hydrogen or fuel cells. Should hydrogen technology become widespread, however, future responses to Questions 5-7 will likely depart greatly from these baselines.

Planned Use of Hydrogen by Large-Scale End Users

Figure 7.3. Responses to Question 7, "Does your organization have plans to use hydrogen or fuel cells in the future," Large-Scale End User Survey.

On first glance, the responses to these two questions may seem contradictory; that is, if there are nine respondents (Figure 7.2) who indicated that they currently use hydrogen or fuel cells, how can there be only seven respondents (Figure 7.3) who have future plans for hydrogen or fuel cells. Although there is no clear-cut explanation, it is possible that respondents answered the questions based on knowledge of current technologies (the respondent knows what currently exists) and a lack of knowledge about the future (there are no plans for additional usage). There were only three "Don't know" responses to Question 5 (current usage), but there were 26 "Don't know" responses to Question 7 (future plans).

Results for the technical knowledge questions (along with the other questions) can be summarized as in Appendix C.4. However, the technical questions can also be summarized in terms of whether they were answered correctly. In this summary, "Don't know" can be handled either as an incorrect response (i.e., a failure to give the correct response) or as a separate kind of response. Table 7.1 summarizes the technical knowledge questions in terms of whether they were answered correctly or incorrectly with "Don't know" treated as an incorrect response. On average, 44.4% of the technical questions were answered correctly. This is higher than the percentage of correct answers for either the general public (32.8\%) or students (32.2\%) and lower than the percentage of correct answers for the state and local government agencies (65.8\%).

Table 7.1. Summary of Results for the Large-Scale End Users on the Technical Knowledge Questions (Correct/Incorrect)				
Question	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Responses } \end{gathered}$	Percent Correct	Lower 95\% Confidence Bound	$\begin{gathered} \text { Upper } \\ \text { 95\% } \\ \text { Confidence } \\ \text { Bound } \end{gathered}$
12a. Hydrogen pipelines exist nationwide (false)	99	48.5	38.6	58.4
12b. In a hydrogen economy, hydrogen replaces fossil fuels as the dominant form of energy (true)	99	50.5	41.3	59.7
12c. Hydrogen gas is toxic (false)	99	54.6	44.9	64.2
12d. Fuel cells produce electricity through hydrogen combustion (false)	99	17.2	9.6	24.7
12e. Hydrogen is too dangerous for everyday use by the general public (false)	99	60.6	51.3	69.9
12g. Hydrogen is lighter than air (true)	99	62.6	53.2	72.0
12h. Hydrogen has a distinct odor (false)	99	59.6	50.4	68.8
13a. In which state or condition can hydrogen be stored? (chemical compound and liquid)	99	46.5	36.9	56.0
13b. When using pure hydrogen, fuel cell vehicles generate electricity, water, and what else? (heat)	99	29.3	20.2	38.4
13c. Hydrogen can be produced using which of the following sources of energy? (natural gas, sunlight, and organic matter)	99	40.4	30.8	50.0
13f. Which of the following represents a type of fuel cell? (PEM)	99	19.2	11.4	27.0
Overall Average	99	44.4	38.9	50.0

The fewest number of correct answers (17.2%) were for Question 12d, concerning fuel cells. The other fuel cells questions (13 f and 13 b) received the next fewest correct responses.

While Table 7.1 presents correct versus incorrect responses (where incorrect responses include the "Don't know" response), Figure 7.4 shows the responses broken down according to type: Correct, Incorrect, and "Don't know." On average, 44.4% of the technical questions were answered correctly, 13.4% were answered incorrectly, and 42.2% were answered with "Don't know."

Technical Knowledge Scores of Large-Scale End Users

Figure 7.4. Weighted percent correct, incorrect, and "Don't know" for the technical knowledge questions, Large-Scale End User Survey.

Figure 7.5 shows the distribution of scores for the Large-Scale End User Survey. Unlike the score distributions for the other survey components, the distribution for the large-scale end users is bimodal. Most of these respondents (69 of $99 ; 69.7 \%$) correctly answered three or more of the eleven technical questions, but a substantial proportion (30 of $99 ; 30.3 \%$) correctly answered fewer than three, and the most frequent score, the score for 16.2% of the respondents, was zero. The high proportion of zeros may reflect indifference or reticence or impatience among some of the end user respondents in dealing with the technical questions.

Distribution of Technical Question Responses from Large-Scale End Users

Figure 7.5. The bimodal distribution of the number of correct answers to the eleven technical questions for the Large-Scale End User Survey.

Figure 7.6, which contrasts the correct, incorrect, and "Don't know" response frequencies for those respondents who correctly answered fewer than three technical questions, is analogous to Figure 7.4 for all of the end-user respondents. The high proportions of "Don't know" responses even among respondents who answered fewer than three technical questions correctly - suggest that these respondents may have been dismissive with the technical questions, for whatever reason, not even wanting to bother with them. Because these respondents represent a substantial (30.3%) and clearly separate subpopulation of the large-scale end users, an education program might be designed to treat them separately. Differences between this subpopulation and the higher scorers are explored further in Section 7.3.

Distribution of Responses for Large-Scale End Users with Low Technical Knowledge Scores

Figure 7.6. Percentages of correct, incorrect, and "Don't know" answers to the technical knowledge questions, for large-scale end-users with fewer than three correct answers to the eleven technical questions, Large-Scale End User Survey. The high proportions of "Don't knows" may reflect reticence or impatience of these respondents.

Respondents were asked (Question 5) whether their organizations currently used hydrogen and/or fuel cells for any purpose. Only nine respondents (9.1\%) indicated that they did. Of these respondents, about a third indicated that the primary function of the hydrogen or fuel cell usage was to power vehicles.

When asked whether their organizations plan to use hydrogen or fuel cells in the future, 57 respondents (57.6%) responded that they did not have plans. Another 26 respondents indicated that they did not know, and only about seven respondents indicated that they did have future
plans for the use of hydrogen or fuel cells. Of these respondents most indicated that their implementation plans were for the next five years. (See Appendix C. 4 for specific information.)

Figure 7.7 shows responses to Questions 15 and 16. Question 15 asked respondents to rate the widespread commercial availability for hydrogen and fuel cells in the next five years for six separate potential applications. Question 16 asked about the safety of using hydrogen and fuel cells, in comparison with technology in use today, for the same applications. Figure 7.7 shows the percentages who responded to each of these questions. These respondents generally did not believe that small portable devices are safe; nor do they believe that small devices will be widely available in five years.

Large-Scale End User Perceptions of Safety and Availability of Hydrogen Applications

Figure 7.7. Weighted percent of responses to Questions 15 and 16 concerning widespread commercial availability within the next five years and perception of safety for specific applications, Large-Scale End User Survey.

Two questions were asked about information sources. Question 17 (see Appendix A.4) asked about the use of information sources (based on a scale of "Never," "Sometimes," and "Frequently") to help make decisions about energy costs and safety. As shown in Figure 7.8, the most common source of information used by potential large-scale end users of hydrogen and fuel cells to make energy-related decisions (i.e., the source most often chosen as "Frequently" used) was utility companies or brokers. The next most frequently used source was the Federal government. Sources not used, as indicated by a response of "Never," included friends and family members, local government, and trade shows.

Comparison of Energy Information Source Use by Large-Scale End User

Figure 7.8. Weighted frequency of responses to Question 17 regarding the use of information for making decisions about energy costs and safety, Large-Scale End-User Survey.

Question 18 also asked about the use of information sources but from a different perspective. Question 18 (see Appendix A.4) asked how often respondents get energy information from different types of mass media. The media source that potential large-scale end users cited most often (i.e., the source most often chosen as "Frequently") was the Internet, followed closely by business or trade magazines (Figure 7.9).

Use of Mass-Media Sources for Energy Information by Large-Scale End Users

Figure 7.9. Weighted frequency of responses to Question 18 regarding the frequency of obtaining ENERGY information from different types of mass media, Large-Scale End User Survey.

Questions 9-11 asked large-scale end user executives about receipt of information on hydrogen and fuel cells at the workplace (Figure 7.10), including attendance at specific events. While only six respondents (6.1% of the total respondents) indicated that they had attended a training class on hydrogen or fuel cells, 70 respondents (70.1%) indicated that a DOE-sponsored class, conference, or workshop on hydrogen and fuel cells would be of value.

Hydrogen Education Event Attendance by Large-Scale End Users

Figure 7.10. Responses to Questions 9-11 concerning receiving information at the workplace and attendance at a training class, press conference, or workshop and Question 18 about the potential value of a DOE-sponsored session, Large-Scale End User Survey.

7.3. RELATIONSHIPS

The summary statistics in Section 7.2 are "one-way" statistics in the sense that the response categories are defined in terms of one question (such as responses to Question 5). However, relationships in the responses determined by two or more variables may also be of interest. Although no such relationship was of particular interest a priori, in this section a few statistically significant ones are illustrated. Interactions that are considered are with the survey variables and Census Region, business strata, urban/non-urban status, and the "Above Average?" score indicator. The statistical significance is the significance level (p) of a chi-square test that accounts for the stratification in the survey design. Relatively few of these interactions are statistically significant ($\mathrm{p}<.01$), however, because of the relatively small number of responses to the Large-Scale End User Survey, though quite a few significant interactions occurred for the above-average-score indicator.

Responses to each of the Questions 16a-f about safety depended significantly on whether the respondent's technical score was above or below average ($\mathrm{p}<.0001$ in each case), with lowerscoring respondents much more likely to have no opinion, and above-average scorers more likely
to believe that hydrogen power is as safe as or safer than technology in use today. Examples of this relationship are shown in Figures 7.11-7.13.

Figure 7.11 shows that respondents with above average technical scores were much more comfortable with the idea of onsite hydrogen power for the home (Question 16e, $\mathrm{p}<.0001$).

Large-Scale End User Perception of Hydrogen Safety for Onsite Power for the Home by Technical Knowledge Score

Figure 7.11. For respondents with above and below average scores on the technical questions, responses to Question 16e, "In comparison with technology in use today...is it not as safe, equally as safe or safer to use hydrogen and fuel cells for onsite power for the home," Large Scale End-User Survey.

Figure 7.12 shows that respondents with above average technical scores were much more comfortable with the idea of hydrogen-powered cars and trucks (Question 16a, p $<.0001$).

Large-Scale End User Perception of Hydrogen Safety for Personal Vehicles by Technical Knowledge Score

Figure 7.12. For respondents with above and below average scores on the technical questions, responses to Question 16a, "In comparison with technology in use today...is it not as safe, equally as safe or safer to use hydrogen and fuel cells for personal cars and trucks," Large-Scale End User Survey.

Figure 7.13 shows that respondents with above average technical scores were much more skeptical of the likelihood that hydrogen fuel cell technology would be commercially available to meet large power requirements in the next five years (Question 15 c ; $\mathrm{p}<.0001$).

Large-Scale End User Perception of Availability of Hydrogen Power by Technical Knowledge Score

Figure 7.13. For respondents with above and below average scores on the technical questions, responses to Question 15c, "Please rate the likelihood of widespread commercial availability in the next five years...of large [hydrogen-fueled] power plants," Large-Scale End User Survey.

The discussion in Section 7.2 (including Figure 7.5) suggests that large-scale end users with fewer than three correct answers seem to represent a natural subpopulation, on which designers of an education program might focus separately. Thus, in this bimodal case, classifying respondents according to whether they correctly answered fewer than three of the eleven technical questions would also be useful, perhaps more so than classifying them according to whether they scored above or below average.

Figure 7.14 shows the frequencies of business categories (transportation, uninterrupted supply users, large power users) for respondents with fewer than three and at with three or more correct answers to the technical questions. Respondents in the higher scoring group were much more likely to be large power users, whereas lower scorers were more likely to be from the uninterrupted supply user category. Twenty (29.0%) of the 69 higher scorers were large power users, whereas only five (16.7%) of the 30 lower scorers were large power users. Fifteen (50.0\%) of the lower scorers were from the uninterrupted supply category, whereas only eighteen (26.1\%) of the higher scorers were from that category. ${ }^{13}$

Business Categories of Large-Scale End Users by Technical Knowledge Scores

Figure 7.14. Business categories of the large-scale end user respondents who correctly answered fewer than three and at least three of the eleven technical questions, Large-Scale End User Survey.

Figure 7.15 shows responses to "How would you feel if your local gas station also sold hydrogen?" for respondents with fewer than three or at least three correct answers to the technical questions. Of the 30 respondents with fewer than three correct answers, only four (13.3%) said they would be "at ease." Among the 69 respondents with at least three correct answers, 36 (52.2%) said they would be at ease.

[^9]
Large-Scale End User Response to Hydrogen at Gas Stations by Technical Knowledge Scores

Figure 7.15. Responses to "How would you feel if your local gas station also sold hydrogen?" by whether or not respondents correctly answered at least three of the eleven technical questions, Large-Scale End User Survey.

Many of the other survey questions also reveal differences between the 69 respondents who correctly answered at least three technical questions and the 30 who did not. Among the 69 higher scorers 25 (36.2%) said yes to "Have you received information at your workplace concerning hydrogen and/or fuel cells?" Among the 30 lower scores, only three (10.0\%) said yes. To the question inquiring about the value of training at a conference or workshop sponsored by the U.S. Department of Energy on hydrogen and fuel cells, 16 (53.3%) of the lower scorers responded "Yes," while 54 (78.3\%) of the higher scores responded "Yes."

Among the lower scorers, "H-Bomb" was the most frequent (30.0\%) response to "Which of the following would you MOST closely associate with the word 'hydrogen'?" "Chemistry Class" was the most frequent response among the 69 higher scorers, with only $10(14.5 \%)$ of the higher scorers answering "H-bomb." Only three (10.0%) of the lower scorers agreed with the statement "Hydrogen is as safe as gasoline and diesel fuels" whereas 49 (71.0\%) of higher scorers agreed. Only eight (26.7%) of the lower scorers said they frequently get energy information from the internet, whereas 38 (55.1%) of the higher scorers said they do.

The subpopulation of lower-scoring large-scale end users seems well-defined, both in its statistical distribution and in the mindset of its membership. Although lower scoring individuals
are an obvious target for any education program, the lower-scoring large-scale end users seem especially appropriate.

7.4. OUTCOME RATES

Various outcome rates are of interest in characterizing survey data results. The response rate is the proportion of sampled eligible subjects for whom complete survey interview information is obtained. The refusal rate is the proportion of sampled eligible subjects who refuse to be interviewed or who terminated their interviews before completion. The contact rate is the proportion of sampled eligible subjects that were contacted at all. In general the number of eligible subjects must be estimated, and there are various ways to estimate this number and to define, in turn, estimates of the rates. AAPOR gives various definitions (AAPOR, 2004) for the rates and provides a spreadsheet calculator for computing them.

Estimates of the rates are computed from outcome frequencies, as shown in the following table for the Large-Scale End User Survey.

Table 7.2. Outcome Frequencies for the Large-Scale End User Survey	
Outcome Type	Frequency
Complete interviews (I)	99
Partial interviews (P)	1
Refusals and break offs (R)	10
Non-contacts (NC)	0
Other eligible, non-interviews (O)*	0
Known eligible	110
No Answer (UB)	80
Other non-contact (UO)	250
Eligibility unknown (non-contact)	330
Quota Filled (QF)**	45
Other known ineligible (UO)	3
Known ineligible	48
Total phone numbers used	488
*This category is a catchall for various kinds of eligible non-interviews. See AAPOR (2004, page 39) for a complete listing of outcome categories. ** After 33 respondents were obtained for any strata, further potential respondents in that strata were regarded as ineligible.	

The eligibility rate can be estimated as

$$
\mathrm{e}=\text { Known eligible } /(\text { Known eligible }+ \text { Known ineligible }) .
$$

The eligibility rate estimate e can be applied to cases of unknown eligibility to estimate the number of those cases that were actually eligible. The response rate can then be estimated (there are other ways) as

$$
\text { Response rate }=\mathbf{I} /(\mathbf{I}+\mathbf{P}+\mathbf{R}+\mathbf{N C}+\mathbf{O}+\mathbf{e} \times(\mathbf{U B}+\mathbf{U O})) .
$$

For the Large-Scale End User Survey

$$
\mathrm{e}=110 /(110+48)=.6962
$$

and the response rate estimate is

$$
\text { Response rate estimate }=99 /(99+1+10+0+0+.6962 \times(80+250))=.2914
$$

In comparing survey results over time or across survey components, it is important to consider the response rates and other outcome rates. Contact rates may decline, for example, as cell phone use increases and land line use decreases. From the perspective of hydrogen technology awareness, the rates are of independent interest. For example, it is likely that the response rate would increase and the refusal rate would decrease, for a population that becomes more enthusiastic about hydrogen technology. However, subjects might self-select for the very reason that they are knowledgeable about hydrogen, and a low response rate might upwardly bias estimates of awareness.

8. COMPARISON OF RESULTS FOR THE FOUR POPULATIONS

Sections 4-7 summarize the results for the General Public, Student, State and Local Government, and Large-Scale End User Surveys, respectively. In these summaries, very few comparisons are made among these four survey component populations. The results of the surveys of the four different populations are compared in the paragraphs below. It must be stressed that a comparison of the results is NOT the primary purpose of these surveys. Each of the populations is very different, and each population will require a different approach for the education program. Therefore, the primary impact of the information gained in the hydrogen surveys is in the results from each individual survey.

The comparisons are of interest, however, and may be used to point out the differences in the four populations. One of the most interesting comparisons is that of the average scores for the eleven technical knowledge questions. It was noted in Sections 4-7 that the state and local officials are more likely to know the answers to the technical questions than the other populations.

Overall, the technical questions were answered correctly about one-third of the time by either the general public or students, and about two-thirds of the time by the state and local officials. Thus, the state and local officials answered the questions correctly about twice as often as the general public or students. Large-scale end user respondents answered the technical questions correctly 44.4% of the time, although their distribution of responses was bimodal (Figure 7.5) and different from the distributions for the other survey components. ${ }^{14}$

Figure 8.1 illustrates the differences in correct technical responses among the four populations. The figure also shows differences between the percentage of correct scores for fuel cell questions and for hydrogen technical questions. The three questions about fuel cells were Question 1d ("Fuel cells produce electricity through hydrogen combustion"), 3b ("When using pure hydrogen, fuel cell vehicles generate electricity, water, and what else"), and 3 f ("Which of the following represents a type of fuel cell"), based on numbering on the General Public Survey (see Appendix A for copies of the complete questionnaires). ${ }^{15}$

The fuel cell questions were answered correctly by only 11.2% of the general public and 10.9% of the students. These groups were over three times more likely to respond correctly to a hydrogen-related technical question than a fuel cell question. Large-scale end users were about twice as likely to respond correctly to a hydrogen-related technical question as to a fuel cell question. The state and local officials correctly answered the hydrogen technical questions about 40.4% more often than the fuel cell questions. Thus, it might be assumed that either

[^10](1) knowledge about fuel cells is not as prevalent as technical knowledge about hydrogen and the hydrogen economy, particularly so for the general public and students, or (2) the fuel cell questions were more difficult questions (see Figure 8.1).

Correct Technical Responses by Survey Population

Figure 8.1. The distribution of the average percentage of correct responses to the eleven technical questions, for hydrogen (eight questions) and fuel cells (three questions), General Public Survey, Student Survey, State and Local Government Survey, Large-Scale End User Survey.

Another way of looking at responses to the technical knowledge questions is to look at the number of "Don't know" responses. Figure 8.2 shows the percentage of respondents in each category that responded "Don't know" to the eleven technical questions. The population with the highest percentage of "Don't know" responses was the general public, followed closely by the large-scale end users. The large-scale end users group had a higher overall average number of correct answers (44.4) than the general public (32.8), but the percentage of "Don't know" responses was very similar for the two groups.

"Don't Know" Responses by Survey Population

Figure 8.2. Percentage of respondents in each population who answered "Don't know" to the eleven technical questions assessing knowledge of hydrogen and fuel cells, General Public Survey, Student Survey, State and Local Government Survey, Large-Scale End User Survey.

Figure 8.3 contrasts the responses to the opinion assertions "Using hydrogen will reduce U.S. dependence on foreign oil," "Using hydrogen will reduce emissions and improve air quality," and "Hydrogen is as safe as gasoline and diesel fuels." These are Questions $4 \mathrm{a}, 4 \mathrm{~b}$, and 4 d on the General Public Survey questionnaire (Appendix A.1). ${ }^{16}$ From the figure, the state and local officials are apparently more optimistic than either the general public or students about the benefits of hydrogen technology. The large-scale end user respondents are between the government and general public or students. The figure represents the percentage of respondents in each population saying they agree with the assertions. Similar figures (with generally higher chart bars) result if respondents who said they are neutral are combined with those saying they agree with the assertions.

Agreement with Hydrogen Technology Assertions by Survey Population

Figure 8.3. Distribution of respondents agreeing with the hydrogen technology assertions, General Public Survey, Student Survey, State and Local Government Survey, Large-Scale End User Survey.

[^11]Figure 8.4 contrasts the survey components in the respondent ratings of the likelihood of widespread commercial availability in the next five years of various hydrogen technologies (Question 5). ${ }^{17}$ State and local officials and large-scale end user respondents are less optimistic than either students or the general public, perhaps because they have a more realistic understanding of technical barriers.

Perception of Future Hydrogen Technology Availability by Survey Population

Figure 8.4. Distribution of respondents rating the likelihood as either "medium" or "high" for widespread commercial availability in the next five years for various hydrogen technologies, General Public Survey, Student Survey, State and Local Government Survey, Large-Scale End User Survey.

Responses of "Medium" and "High" are combined in Figure 8.4, but a similar conclusion can be inferred from a chart based only on the "High" responses. (See, for example, Figures 4.5, 5.5, 6.5, and 7.6.) Table 8.1 shows the percentages of respondents in each population group that rank the likelihood of widespread availability as "High" for each specific application.

[^12]| Table 8.1. Percentages of Respondents Ranking the Likelihood of Widespread | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Availability as "High" for Specific Applications | | | | | | | |

For these same technologies, Figure 8.5 contrasts safety ratings relative to the corresponding current technologies (Question 6). ${ }^{18}$ The state and local officials tended more often than the other groups to rate the hydrogen technology as at least as safe as the current technology.

Perception of Hydrogen Technology Safety by Survey Population

Figure 8.5. The distribution of respondents who rated the safety of hydrogen for various technologies as at least as safe as the corresponding current technology, General Public Survey, Student Survey, State and Local Government Survey, Large-Scale End User Survey.

[^13]Figure 8.6 shows differences in the use of mass media sources by the respondents for obtaining energy information (Question 8). ${ }^{19}$ Figure 8.6 is based on total responses of both "Sometimes" and "Frequently." Not surprisingly state and local officials and large-scale end users indicated that they get energy information more often from newspapers, the Internet, and science and technology journals. Large-scale end users also indicated that they use business and trade magazines to obtain energy information. Television is a media source used by all populations to obtain energy information.

Mass-Media Use for Energy Information by Survey Population

Figure 8.6. The distribution of respondents indicating either "Sometimes" or "Frequently" for how often they use various information sources for energy information, General Public Survey, Student Survey, State and Local Government Survey, Large-Scale End User Survey.

[^14]Figure 8.7 is a slightly different view of the data shown in Figure 8.6. The percentages of the responses ("Frequently," "Sometimes," or "Never") by media source for each of the populations are shown in Figure 8.7 for the frequency of use of each source for obtaining energy information. When considering a combination of both "Frequently" and "Sometimes" responses, all four populations use television as a major source. At least 70% of respondents in the general public, government, and end user groups indicated that newspapers are used "Frequently" or "Sometimes." The radio is used less than the other media sources by all of the populations surveyed for obtaining energy information (i.e., there was a greater percentage of "Never" responses).

Frequency of Mass-Media Use for Energy Information by Survey Population

Figure 8.7. The frequency by which each media source is used by each of the survey populations, General Public Survey, Student Survey, State and Local Government Survey, Large-Scale End User Survey. (Note: GP = general public; Gvmt = government; and LSEU = large-scale end users.)

Figure 8.8 contrasts responses to survey Questions 1e and $4 \mathrm{~d} .{ }^{20}$ Question (or proposition) 4d is "Hydrogen is too dangerous for everyday use by the general public." Question 4e is "Hydrogen is as safe as gasoline and diesel fuels." In addition to measuring opinions about safety, these two questions also measure consistency of the respondents with survey components. The figure shows the percentage of respondents that (1) disagreed with the statement "Hydrogen is too dangerous for everyday use by the general public" and, thus, felt that hydrogen is NOT too dangerous to use and (2) agreed with the statement "Hydrogen is as safe as gasoline and diesel fuels." The figure shows that state and local officials are more confident about safety than either students or the public in general, and that, again, large-scale end users fall between the state and local officials and either the students or the general public. The figure also shows that the responses to these two questions are consistent within the survey components.

Perception of Hydrogen Safety by Survey Population

Figure 8.8. Distribution of responses to safety questions about everyday use of hydrogen, General Public Survey, Student Survey, State and Local Government Survey, Large-Scale End User Survey.

A similar conclusion follows when the number of respondents saying they are "neutral" is included.

[^15]One specific question was posed to assess the "not in my backyard" attitude toward hydrogen. Question 3e in the public survey asked, "How would you feel if your local gas station also sold hydrogen?" Figure 8.9 shows the distribution of responses for each population surveyed.

Attitudes on Local Hydrogen Availability by Survey Population

Figure 8.9. Responses to Question 3e on attitudes about a near-by hydrogen refueling station, General Public Survey, Student Survey, State and Local Government Survey, Large-Scale End User Survey.

9. NON-SURVEY METRICS

During 2003 and 2004, five large, geographically dispersed United States newspapers (New York Times, Chicago Tribune, Dallas Morning News, Denver Post, and Los Angeles Times) were searched regularly for articles about hydrogen. In 2004, another newspaper, the Washington Post, was added. These newspapers were available on the web and had search engines available. Four hydrogen-related keywords (fuel cell, hydrogen economy, hydrogen infrastructure, and hydrogen storage) were used as search criteria.

The number of articles that appeared in each newspaper was counted. No distinction was made for the length of the article, whether it had a positive or negative connotation, its position in the paper (i.e., front page or back page), or the day of the week (i.e., weekday or weekend); the measure was strictly a count. Each article in each paper was counted even if it was essentially the same article that was in one of the other papers. Articles were not double counted over time in the same paper.

The count of the number of feature articles by newspaper is given in Table 9.1. As can be seen in the table, the number of articles for four of the five newspapers that were searched both years dropped. The only newspaper with more hydrogen-related articles in 2004 than in 2003 was the Denver Post, which had no articles in 2003.

Table 9.1. Number of Articles Appearing in each Newspaper during 2003-2004		
Newspaper	January-December 2003	January-September 2004
New York Times	27	8
Chicago Tribune	31	10
Dallas Morning News	10	6
Denver Post	0	6
Los Angeles Times	21	17
Washington Post	Not searched	9
Totals (excluding Washington Post)	89 (72, Jan-Sept; 17, Oct-Dec)	47

The number of articles by keyword is given in Figure 9.1. There were almost three times the number of articles on fuel cells as there were on hydrogen (i.e., articles on the hydrogen economy, hydrogen infrastructure, and hydrogen storage).

Newspaper Articles Related to Hydrogen

Figure 9.1. Number of articles found by count of specific hydrogen-related keyword.

10. SUMMARY AND CONCLUSIONS

10.1 SUMMARY

Four scientifically designed surveys were conducted during 2004 to assess the current knowledge and opinions of certain populations concerning hydrogen and fuel cells and the hydrogen economy. This report documents the data and results of these surveys. DOE will use the baseline data as a reference in designing an education program and will compare it with future survey results to measure changes in understanding and awareness. It is envisioned that the same statistical surveys will be fielded again in three years.

Scientific sampling was used to survey four populations: (1) the general public, ages 18 and over; (2) students, ages 12-17; (3) state and local government officials from state departments of transportation and environmental protection, state energy offices, and functionally similar personnel from cities and counties; and (4) potential large-scale hydrogen end users in three business categories: transportation, businesses requiring uninterrupted power supplies, and industries with large power requirements.

The surveys were conducted using CATI technology; closed-end questions were used. There were both technical knowledge and opinion questions. The total number of responses for each population and the average score on the eleven technical questions are shown in Table 10.1.

Table 10.1. Number of Responses and Average Score for Each of the Four Survey Populations Population Total Completed Interviews Average Percent Correct on Technical Questions		
General public	889	32.8
Students	1,000	32.2
State and local government officials	236	65.8
Large-scale end users	99	44.4

10.2 CONCLUSIONS

The data collected for the four component populations are intended (1) as a reference for designing the DOE Hydrogen Program education key activity, and (2) as a baseline for measuring changes in understanding and awareness over time. Design of an education program itself is beyond the scope of this report and comparisons of the baseline data with future results will not be made until the survey is fielded again. The report, therefore, is essentially a data book - a digest of the survey data collected for the four survey populations. Many conclusions can be made from the survey data, however. The purpose here is not to draw the conclusions, but rather to summarize the data in a way that facilitates drawing them.

A few observations about the data summaries are salient:

- Technical understanding appears to influence opinions about safety. For the General Public, Student, and Large-Scale End User Surveys, respondents with above-average scores on the eleven technical questions were more likely to have an opinion about hydrogen technology safety, and for those respondents who expressed an opinion, their opinion was more likely to be positive. These differences were statistically significant.
- On the technical knowledge questions, over 40% of the general public (43.0\%) and largescale end user (42.2%) responses were "Don't know." These responses were not unexpected for the baseline survey. It is expected that there will be fewer "Don't know" responses when the survey is repeated in 2008 and 2011.
- State and local officials expressed more confidence about hydrogen safety than largescale end users, and they were much more confident than either the general public or students. State and local officials also scored much higher on the technical questions. Even those government officials whose technical knowledge scores were below average (among government officials) felt that hydrogen and fuel cells were safe.
- The general public ranks safety first in importance, then cost, then the environment, and, last, convenience.
- For every population group, average scores on the technical knowledge questions were lower for the fuel cell questions than for the other technical questions.
- The Large-Scale End User Survey suggests that there is presently little penetration of hydrogen technology; nor is there much planning for it.
- Buses and commercial vehicles are considered the most likely area for the application of hydrogen and fuel cell technology in the next five years by government officials and large-scale end users. Students consider large power plants as the most likely application. The general public considers both large power plants and buses and commercial vehicles as equally likely.
- At least for the general public, perceptions about hydrogen technology can vary with age, education level, geographic region, urban/non-urban status, and sex.
- All populations except students were asked about sources of information used to make decisions about energy costs and safety. Using the criteria of "Never," "Sometimes," and "Frequently," the general public and large-scale end users responded "Frequently" most often for the category of utilities as a source of information; state and local officials responded "Frequently" most often for the Federal government.
- Students obtain energy information most often from classroom situations.
- Using criteria of "Sometimes" or "Frequently" to describe usage, respondents rated mass media sources for obtaining energy information. The general public and students responded that television is the primary media source of energy information. State and local officials and large-scale end users indicated that their primary media sources are newspapers, the Internet, and science and technology journals. Radio is used least by all groups except the general public.
- In addition to the formal survey documented in this report, non-survey metrics were collected using the Internet. A search was conducted for articles about fuel cells and/or hydrogen appearing in five major newspapers in the United States during 2003 and 2004. The number of articles decreased between 2003 and 2004, and more articles were about fuel cells than about hydrogen topics.

REFERENCES

AAPOR (2004). Standard Definitions: Final Dispositions of Case Codes and Outcome Rates for Surveys. The American Association for Public Opinion Research, Lenexa, Kansas. Available at http://www.aapor.org/pdfs/standarddefs2004.pdf .
BTS (2002). "General Methodology of the Omnibus Survey: July 2001 to Present," Bureau of Transportation Statistics, http://www.bts.gov/omnibus surveys/household survey/2002/april/entire.pdf .
CISER (Cornell Institute for Social and Economic Research), "Public Opinion Surveys," http://www.ciser.cornell.edu/info/polls.shtml .
Cochran, William G. (1977). Sampling Techniques, Third Edition, New York: John Wiley \& Sons, Inc.
Fuller, W. (1975). "Regression Analysis for Sample Surveys," Sankhya C, 37, 117-32.
Marketing Systems Group. "GENESYS Methodologies," http://www.m-sg.com/reference/genmeth.htm .

National Energy Policy (May 2001). Washington, D.C. http://www.whitehouse.gov/energy/National-Energy-Policy.pdf .
ORC (2004). Methodological Report, Hydrogen - GP, ORC\#34556, and Methodological Report, Hydrogen - Student, ORC\#34557, Opinion Research Corporation, August 2004.
Lu, H., and Gelman, A. (2003). "A Method for Estimating Design-Based Sampling Variances for Surveys with Weighting, Poststratification, and Ranking," Journal of Official Statistics, 19, 131-51.
SAS (2004). SAS/STAT 9.1 User's Guide, SAS Institute, Inc., Cary, North Carolina.
Truett, Tykey (2003). Literature Review for the Baseline Knowledge Assessment of the Hydrogen, Fuel Cells, and Infrastructure Technologies Program, ORNL-TM-2003/258, http://www.ornl.gov/~webworks/cppr/y2001/rpt/118840.pdf.
U.S. Census Bureau. "Census Regions and Divisions of the United States," http://www.census.gov/geo/www/us regdiv.pdf.
U.S. Department of Energy (2002A). National Hydrogen Energy Roadmap [Based on the results of the National Hydrogen Energy Roadmap Workshop]. http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/national_h2_roadmap.pdf .
U.S. Department of Energy (2002B). Hydrogen, Fuel Cells, and Infrastructure Technologies Program Education Plan Workshop Proceedings. http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/education_workshop 2002.pdf , Arlington, Virginia.
Woodruff, R. (1971). "A Simple Method for Approximating the Variance of a Complicated Estimate," Journal of the American Statistical Association, 66, 411-14.

APPENDIX A SURVEY INSTRUMENTS

APPENDIX A.1: HYDROGEN - GENERAL PUBLIC
APPENDIX A.2: HYDROGEN - STUDENTS
APPENDIX A.3: HYDROGEN - STATE AND LOCAL GOVERNMENT AGENCIES APPENDIX A.4: HYDROGEN - LARGE-SCALE END USER

APPENDIX A.1: HYDROGEN - GENERAL PUBLIC

OPINION RESEARCH CORPORATION
JUNE-JULY 2004
HYDROGEN-GENERAL PUBLIC
ORC \# 34556
BALLOT \#
TELEPHONE \#
SURVEY \#
CALL

QUOTA CELLS/TARGETS

1,000 total respondents

TELEPHONE NUMBER: \qquad TIME ENDED: \qquad
TIME STARTED: \qquad
LENGTH: \qquad (MINUTES)

DATE: \qquad
INTERVIEWER: \qquad
I.D.: \qquad

```
INTERVIEWERS: MAKE SURE YOU HAVE THE FOLLOWING TO GIVE TO RESPONDENTS AS NEEDED OR IF REQUESTED:
- OMB CONTROL NUMBER: 1910-5124
- HFCIT WEBSITE URL: www.eere.energy.gov/hydrogenandfuelcells
- IF ASKED AT ANY POINT DURING THE SURVEY, THE INTERVIEWER SHOULD
TELL THE RESPONDENT THAT THERE ARE NO TRICK QUESTIONS
```

Hello, I'm \qquad calling from Opinion Research Corporation on behalf of the US Department of Energy. Your household has been randomly selected for an important national research survey about new energy sources. I want to assure you we are not selling any products or services.

S1 This survey is to be conducted with one adult, 18 years of age or older, who lives in this household. If there is more than one, may I please speak to the adult in this household who had the most recent birthday?

YES, SPEAKING
YES, SOMEONE ELSE
NO, NOT AVAILABLE NOW
NO, NOT AVAILABLE UNTIL AFTER FIELD (INSERT LAST DATE OF FIELD) BUSINESS -->THANK AND RECORD AS UNUSABLE; BUSINESS
GROUP QUARTERS --> THANK AND RECORD AS UNUSABLE; GROUP QUARTERS
OTHER NON-HOUSEHOLD - > THANK AND RECORD AS UNUSABLE; OTHER NON-HOUSEHOLD
REFUSED---> THANK, RECORD AS REFUSED AFTER INTRO/HH

IF S1(01), CONTINUE TO S2
 IF S1 (02), CONTINUE

IF S1 (03), SET CALL BACK, RECORD FIRST NAME FOR REFERENCE IF S1(04), THANK AND RECORD AS UNAVAILABLE TILL AFTER FIELD

WHEN RESPONDENT ON THE PHONE/ON CALLBACK : [READ AS NEEDED]
Hello, I'm \qquad calling from Opinion Research Corporation. We're conducting a research survey on behalf of the U.S. Department of Energy about your knowledge and opinions about hydrogen, fuel cells, and the hydrogen economy. The survey takes about 12 minutes to complete.

S2 While your responses are voluntary, every response is extremely important because the results to this survey will be used to help design the hydrogen education program for the U.S. Department of Energy. Your responses are confidential and will not be associated with your household in any way.

01 OK TO CONTINUE
02 NOT CONVENIENT, SET CALL BACK APPOINTMENT
99 REFUSED --> RECORD AS REFUSED AFTER INTRO/RESP IDENTIFIED

```
RECORD GENDER
MALE
FEMALE
```

Before we get started, I want to mention that there are both technical and opinion questions in the survey. Tell me what you think or believe, but keep in mind that "no opinion" or "don't know" are perfectly acceptable responses.

First of all . . .
Q1 I am going to read several statements. After each one, please tell me if you believe the statement is true, if it is false, or if you don't know. [READ AND ROTATE STATEMENTS]

01 True
02 False
99 Don't Know
A. Hydrogen pipelines exist nationwide
B. In a hydrogen economy, hydrogen replaces fossil fuels as the dominant form of energy
C. Hydrogen gas is toxic
D. Fuel cells produce electricity through hydrogen combustion
E. Hydrogen is too dangerous for everyday use by the general public
F. OMITTED
G. Hydrogen is lighter than air
H. Hydrogen has a distinct odor

Q2A For the next question, I will ask you to rank four items. It may be easier if you write them down. Do you need a moment to get something to write with?

The factors are: [READ AND ROTATE FACTORS]. Now, please tell me which factor is MOST important to you, personally, when selecting a fuel or power supply? [RE-READ ENTIRE LIST AS NEEDED. IF RESPONDENT CAN'T SELECT ONE ANSWER, ACCEPT MULTIPLE RESPONSES]

01 Safety
02 Low cost
03 Environmental protection
04 Convenience
99 DON'T KNOW/REFUSED/NO RESPONSE
[IF 2 OR 3 ITEMS REMAIN FROM Q2A, ASK FOR EACH NOT MENTIONED]
Q2B Now, from the remaining factors, which one of the following is MOST IMPORTANT to you when selecting a fuel or power supply? [READ AND ROTATE LIST. IF RESPONDENT CAN'T SELECT ONE ANSWER, ACCEPT MULTIPLE RESPONSES]

01 Safety
02 Low cost
03 Environmental protection
04 Convenience
99 DON'T KNOW/REFUSED/NO RESPONSE
[IF 2 ITEMS REMAIN FROM Q2A AND Q2B, ASK FOR EACH NOT MENTIONED]
Q2C Finally, which of the following factors is MORE IMPORTANT to you when selecting a fuel or power supply? [READ AND ROTATE LIST. IF RESPONDENT CAN'T SELECT ONE ANSWER, ACCEPT MULTIPLE RESPONSES]

01 Safety
02 Low cost
03 Environmental protection
04 Convenience
99 DON'T KNOW/REFUSED/NO RESPONSE
In the next few questions please choose the ONE answer you believe is correct. Keep in mind that you can answer "I don't know" or "I have no opinion."

Q3A In which state or condition can hydrogen be stored? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER. ROTATE 01-02]

01 Chemical compound
02 Liquid
03 Both of these
04 Or, neither of these
99 Don't know/No opinion
Q3B When using pure hydrogen, fuel cell vehicles generate electricity, water, and what else? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER. ROTATE 01-03]

01 Carbon dioxide
02 Nitrous oxides
03 Heat
04 Or, all of these
99 Don't know/No opinion
Q3C Hydrogen can be produced using which of the following sources of energy? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER. ROTATE 01-03]

01 Natural gas
02 Sunlight
03 Organic matter
04 Or, all of these
99 Don't know/No opinion
Q3D Which of the following would you MOST closely associate with the word "hydrogen"? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER.]

01 The H-bomb
02 Chemistry class
03 Fuel
04 Or, the Hindenburg
99 Don't know/No opinion

Q3E How would you feel if your local gas station also sold hydrogen? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER.]

01 Frightened
02 Uneasy
03 At ease
04 Or, pleased
99 Don't know/No opinion

Q3F Which of the following represents a type of fuel cell? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER. ROTATE 01-03]

01 PDQ
02 PEM
03 CFC
04 Or, none of these
99 Don't know/No opinion

Q4 Next, I am going to read several statements about potential benefits of using hydrogen as a VEHICLE FUEL. For each, tell me if you disagree, are neutral, agree or if you have no opinion? [READ AND ROTATE STATEMENTS]

01 Disagree

02 Are neutral
03 Agree
99 No opinion
A. Using hydrogen will reduce U.S. dependence on foreign oil
B. Using hydrogen will reduce emissions and improve air quality
C. OMITTED
D. Hydrogen is as safe as gasoline and diesel fuels

Q5 Next, I am going to read several potential applications for hydrogen and fuel cells. Please rate the likelihood of widespread commercial availability in the next five years for each of the following applications. The scale to use is low, medium, high or no opinion for each one I mention.
[READ AND ROTATE STATEMENTS]
01 Low
02 Medium
03 High
99 No opinion
A. Personal cars and trucks
B. Buses and commercial vehicles
C. Large power plants
D. Small portable devices such as laptop computers or cell phones
E. Onsite power for the home
F. Onsite power for buildings such as hospitals and schools

Q6 Now, for those same applications, please rate the safety of using hydrogen and fuel cells, in comparison with technology in use today.

Is it not as safe, equally as safe or safer to use hydrogen and fuel cells for...? [READ AND ROTATE EACH STATEMENT]

01 Not as safe
02 Equally as safe
03 Safer
99 No opinion
A. Personal cars and trucks
B. Buses and commercial vehicles
C. Large power plants
D. Small portable devices such as laptop computers or cell phones
E. Onsite power for the home
F. Onsite power for buildings such as hospitals and schools

Q7 The next question is about your use of information sources that can help you make decisions about energy costs and safety. How often do you use each of the following sources to get energy information. Would you say never, sometimes, or frequently? [READ STATEMENTS]

01 Never
02 Sometimes
03 Frequently
99 DON'T KNOW
A. Teachers and schools
B. Friends and family members
C. Environmental and conservation groups
D. Utility companies or brokers, for example, gas or electricity providers
E. Federal government
F. State government
G. Local government

Q8 Finally, how often do you get ENERGY information from different types of mass media. Would you say that you never, sometimes, or frequently get energy information from ... [READ AND ROTATE STATEMENTS]

01 Never
02 Sometimes
03 Frequently
99 DON'T KNOW
A. Television
B. Radio
C. The Internet
D. Newspapers and non-technical magazines
E. Science and technology magazines and journals

I have a few questions about you and your household for statistical purposes only.

Q9 What was the last grade in school you completed?

```
01 8TH GRADE OR LESS
02 HIGH SCHOOL INCOMPLETE [GRADES 9, 10,11]
03 HIGH SCHOOL COMPLETE [GRADE 12]
04 SOME COLLEGE, BUT NO DEGREE
05 ASSOCIATES DEGREE
06 COLLEGE GRADUATE/BACHELORS DEGREE
07 POSTGRADUATE DEGREE, SUCH AS MASTER'S, PH.D., MD, JD
99 REFUSED/NR
```

Q10 What is your age?
01 18-20
02 21-24
$03 \quad 25-29$
04 30-34
05 35-39
06 40-44
07 45-49
08 50-54
09 55-59
10 60-64
11 65-69
12 70-74
1375 OR OLDER
99 REFUSED/NR
Q11 Which of the following best describes you? [READ LIST]
01 White/Caucasian
02 Black/African-American
03 Hispanic
04 Asian/Asian-American
05 American Indian/Native Alaskan
06 Some other race
99 REFUSED/NR
Q12 How many total telephone numbers does your household have that a person can answer? Please do not include extension phones, cell phones or telephone lines that are used only for a fax or a modem.

01	ONE
02	TWO
03	THREE
04	FOUR
05	FIVE OR MORE
99	DON'T KNOW/REFUSED

That's all the questions we have today. Thank you very much for your time.
CONFIRM PHONE NUMBER.

APPENDIX A. 2 HYDROGEN - STUDENTS

OPINION RESEARCH CORPORATION

JULY 2004
HYDROGEN-STUDENTS (TEENS 12-17 YEARS OLD)
PRE-TEST QUESTIONNAIRE [WITH REVISED INTRODUCTION]
ORC \# 34557

BALLOT \#
TELEPHONE \#
SURVEY \#
CALL

1000 TEENS 12-17 [TARGET $1 ⁄ 2$ MALES AND $1 ⁄ 2$ FEMALES] [50 FOR PRE-TEST]

INTERVIEWERS: MAKE SURE YOU HAVE THE FOLLOWING TO GIVE TO RESPONDENTS AS NEEDED OR IF REQUESTED:

- OMB CONTROL NUMBER: 1910-5124
- HFCIT WEBSITE URL: www.eere.energy.gov/hydrogenandfuelcells
- IF ASKED AT ANY POINT DURING THE SURVEY, THE INTERVIEWER SHOULD TELL THE RESPONDENT THAT THERE ARE NO TRICK QUESTIONS

Hello, I'm \qquad calling from Opinion Research Corporation on behalf of the US Department of Energy. Your household has been randomly selected for an important national research survey about new energy sources. I want to assure you we are not selling any products or services.

S1 Am I speaking to an adult 18 years old or older who lives in this household?

```
01 YES, SPEAKING - > CONTINUE
02 NO --> ASK FOR ADULT, REPEAT INTRODUCTION
03 NO, NOT AVAILABLE NOW -- > SET CALL BACK
04 NO, NOT AVAILABLE UNTIL AFTER FIELD-->THANK AND RECORD AS
UNAVAILABLE
96 BUSINESS -->THANK AND RECORD AS UNUSABLE; BUSINESS
97 GROUP QUARTERS --> THANK AND RECORD AS UNUSABLE; GROUP
        QUARTERS
98 OTHER NON-HOUSEHOLD - > THANK AND RECORD AS UNUSABLE; OTHER
        NON-HOUSEHOLD
99 REFUSED---> THANK, RECORD AS REFUSED AFTER INTRO/HH
```

S2 Your telephone number has been selected at random to be included in the study. I have a couple of questions to determine who in your household should be interviewed for this study. All of your responses will be confidential . . . how many [INSERT] live in this household?

00 NONE
01 ONE
02 TWO OR MORE
99 REFUSED
A. Adults 18 to 45 years old
B. Adults over 45 years old
C. Children under 6 years old
D. Children $6-11$ years old
E. Children 12 to 17 years old

IF TEENS 12-17, S2E [01,02] CONTINUE.
IF NO TEENS, S2E [00], THANK AND RECORD AS INELIGIBLE, NO TEEN (S2)
IF REFUSED TO ANY, S2A-E, AND S2E (TEEN) NOT 01,02, S2A-D, [99], THANK AND RECORD AS REFUSED AT SCREEN (S2)

For this interview, the person 12-17 has been selected.. None of the answers will be associated with your household in any way.

S3 May I please speak to the 12-17 year old who had the most recent birthday]? The survey should take about 12 minutes to complete.

```
0 1 ~ Y E S ~ - - > ~ C O N T I N U E ~
02 NO, TEEN NOT AVAILABLE --> SET SPECIFIC CALL BACK; RECORD TEEN FIRST NAME
03 NOT AVAILABLE TILL AFTER FIELD --> THANK AND RECORD AS UNAVAILABLE --> THANK AND RECORD AS
99 REFUSED TO PARTICIPATE REFUSED ELIGIBLE (S3)PARENT
```

WHEN TEEN RESPONDENT ON THE PHONE/ON CALLBACK: [READ AS NEEDED]
Hello, I'm \qquad calling from Opinion Research Corporation. We're conducting a research survey on behalf of the U.S. Department of Energy about your knowledge and opinions about hydrogen, fuel cells, and the hydrogen economy. Your responses are voluntary; however, every response is extremely important. The survey takes about 12 minutes to complete.

S4 The results to this survey will be used to help design the hydrogen education program for the US Department of Energy. Your answers are confidential and will not be associated with you or your household in any way.

INTERVIEWER RECORD:
1 OK TO CONTINUE
2 NOT CONVENIENT, SET CALL BACK APPOINTMENT; RECORD TEEN FIRST NAME 99 REFUSED --> RECORD AS REFUSED /TEEN IDENTIFIED [S4]

RECORD GENDER
MALE
FEMALE \qquad

CHECK GENDER QUOTAS.

IF FULL, TERMINATE AND RECORD AS INELIGIBLE, QUOTA FILLED

S5 Please tell me, what is your age?
$01 \quad 12$
0213
0314
0415
0516
0617 -> CONTINUE
99 REFUSED TO PARTICIPATE -> THANK AND RECORD AS REFUSED AT AGE(S5)

Before we get started, I want to mention that there are both technical and opinion questions in the survey. Tell me what you think or believe, but keep in mind that "no opinion" or "don't know" are perfectly acceptable responses.

First of all . . .
Q1 I am going to read several statements. After each one, please tell me if you believe the statement is true, if it is false, or if you don't know. [READ AND ROTATE STATEMENTS]

03 True
04 False
99 Don't Know
A. Hydrogen pipelines exist nationwide
B. In a hydrogen economy, hydrogen replaces fossil fuels as the dominant form of energy
C. Hydrogen gas is toxic
D. Fuel cells produce electricity through hydrogen combustion
E. Hydrogen is too dangerous for everyday use by the general public
F. OMITTED
G. Hydrogen is lighter than air
H. Hydrogen has a distinct odor

Q2A- OMITTED
Q2C
In the next few questions please choose the ONE answer you believe is correct. Keep in mind that you can answer "I don't know" or "I have no opinion."

Q3A In which state or condition can hydrogen be stored? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER. ROTATE 01-02]

05 Chemical compound
06 Liquid
07 Both of these
08 Or, neither of these
99 Don't know/No opinion
Q3B When using pure hydrogen, fuel cell vehicles generate electricity, water, and what else? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER. ROTATE 01-03]

05 Carbon dioxide
06 Nitrous oxides
07 Heat
08 Or, all of these
99 Don't know/No opinion

Q3C Hydrogen can be produced using which of the following sources of energy? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER. ROTATE 01-03]

05 Natural gas
06 Sunlight
07 Organic matter
08 Or, all of these
100 Don't know/No opinion
Q3D Which of the following would you MOST closely associate with the word "hydrogen"? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER.]

05 The H-bomb
06 Chemistry class
07 Fuel
08 Or, the Hindenburg
100 Don't know/No opinion
Q3E How would you feel if your local gas station also sold hydrogen? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER.]

05 Frightened
06 Uneasy
07 At ease
08 Or, pleased
100 Don't know/No opinion

Q3F Which of the following represents a type of fuel cell? [READ ENTIRE LIST BEFORE
RECORDING ONE ANSWER. ROTATE 01-03]
01 PDQ
02 PEM
03 CFC
04 Or, none of these
99 Don't know/No opinion

Q4 Next, I am going to read several statements about potential benefits of using hydrogen as a VEHICLE FUEL. For each, tell me if you disagree, are neutral, agree or if you have no opinion. [READ AND ROTATE STATEMENTS]

04 Disagree
05 Are neutral
06 Agree
100 No opinion
A. Using hydrogen will reduce U.S. dependence on foreign oil
B. Using hydrogen will reduce emissions and improve air quality
C. OMITTED
D. Hydrogen is as safe as gasoline and diesel fuels

Q5 Next, I am going to read several potential applications for hydrogen and fuel cells. Please rate the likelihood of widespread commercial availability in the next five years for each of the following applications. The scale to use is low, medium, high or no opinion for each one I mention. [READ AND ROTATE STATEMENTS]

04	Low
05	Medium
06	High
100	No opinion

A. Personal cars and trucks
B. Buses and commercial vehicles
C. Large power plants
D. Small portable devices such as laptop computers or cell phones
E. Onsite power for the home
F. Onsite power for buildings such as hospitals and schools

Q6 Now, for those same applications, please rate the safety of using hydrogen and fuel cells, in comparison with technology in use today.

Is it not as safe, equally as safe or safer to use hydrogen and fuel cells for...? [READ AND ROTATE EACH STATEMENT]

01 Not as safe
02 Equally as safe
03 Safer
99 No opinion
A. Personal cars and trucks
B. Buses and commercial vehicles
C. Large power plants
D. Small portable devices such as laptop computers or cell phones
E. Onsite power for the home
F. Onsite power for buildings such as hospitals and schools

Q7 I am going to read several characteristics of new vehicles. Please imagine that you are shopping for an automobile, and rank each of the following characteristics for its importance to you. Would you say it is not important, you are neutral, it is important or you don't have an opinion? [READ AND ROTATE STATEMENTS]

01 Not important
02 Neutral
03 Important
99 No opinion
A. Cost of vehicle at the point of sale
B. Gas mileage
C. Power and speed
E. Reliability
F. Safety
G. Environmental features, for example non-polluting

Q8 Finally, how often do you get ENERGY information from different types of mass media. Would you say that you never, sometimes, or frequently get energy information from ... [READ AND ROTATE STATEMENTS]

01 Never
02 Sometimes
03 Frequently
99 DON'T KNOW
A. Television
B. Radio
C. The Internet
D. Newspapers and non-technical magazines
E. Science and technology magazines and journals
F. Classroom instructions
G. General discussions with family and/or friends

I am going to ask several questions regarding science topics that you may have learned about at school or home or by some other method, for example, church, scouts, the Internet, etc.

ASK QUESTIONS Q9-Q11 IN SEQUENCE FOR A-G

Q9 Have you . . [READ AND ROTATE STATEMENTS]
01 YES
02 NO
99 DON'T KNOW
A. Received instruction on or otherwise learned about energy use, fuels, and emissions
B. Received instruction on or otherwise learned about hydrogen and fuel cells
C. Ever used a demonstration kit to produce hydrogen
D. Ever used a model fuel cell science kit
E. Ever seen or used a hydrogen fuel cell model car
F. Participated in a fuel cell vehicle design competition
G. Participated in a science bowl or other science competition
[ASK IF YES IN Q9A-G(01)]
Q10 Did the learning or activity take place at school? [IF ASKED, INDICATE THAT "AT SCHOOL"
INCLUDES HOME-SCHOOLED ACTIVITIES FOR STUDENTS WHO RECEIVE ALL THEIR EDUCATION VIA HOME SCHOOLING]

01 YES
02 NO
99 DON'T KNOW
A. Received instruction on or otherwise learned about energy use, fuels, and emissions
B. Received instruction on or otherwise learned about hydrogen and fuel cells
C. Ever used a demonstration kit to produce hydrogen
D. Ever used a model fuel cell science kit
E. Ever seen or used a hydrogen fuel cell model car
F. Participated in a fuel cell vehicle design competition
G. Participated in a science bowl or other science competition
[ASK IF NO/DON'T KNOW IN Q10A-G(02-99)]
Q11 If not at school, where did the learning take place? [DO NOT READ LIST. RECORD ONE ANSWER]

01 HOME [FAMILY ACTIVITY, NOT HOME-SCHOOL]
02 CHURCH/TEMPLE/RELIGIOUS ORGANIZATION
03 SCOUTS
04 THE INTERNET
195 OTHER [SPECIFY]
199 DON'T KNOW
A. Received instruction on or otherwise learned about energy use, fuels, and emissions
B. Received instruction on or otherwise learned about hydrogen and fuel cells
C. Ever used a demonstration kit to produce hydrogen
D. Ever used a model fuel cell science kit
E. Ever seen or used a hydrogen fuel cell model car
F. Participated in a fuel cell vehicle design competition
G. Participated in a science bowl or other science competition

I have a few questions about you and your household for statistical purposes only.

Q12 What was the last grade of school you completed?

01	4TH OR LESS
02	5
03	6
04	7
05	8
06	9
07	10
08	11
09	12
10	FIRST YEAR OF COLLEGE OR MORE
11	HOME SCHOOLED
99	REFUSED/NR

Q13 Which of the following best describes you? [READ LIST]
07 White/Caucasian
08 Black/African-American
09 Hispanic
10 Asian/Asian-American
11 American Indian/Native Alaskan
12 Some other race
100 REFUSED/NR
Q14 How many total telephone numbers does your household have that a person can answer? Please do not include extension phones, cell phones or telephone lines that are used only for a fax or a modem.

06	ONE
07	TWO
08	THREE
09	FOUR
10	FIVE OR MORE
100	DON'T KNOW/REFUSED

That's all the questions we have today. Thank you very much for your time.

CONFIRM PHONE NUMBER.

APPENDIX A. 3 HYDROGEN - STATE AND LOCAL GOVERNMENT AGENCIES

OPINION RESEARCH CORPORATION
AUGUST-SEPTEMBER 2004

HYDROGEN-STATE AND LOCAL GOVERNMENT AGENCIES

ORC \# 34559
BALLOT \#
TELEPHONE \# SURVEY \#

CALL

QUOTA CELLS/TARGETS

246 total respondents

TELEPHONE NUMBER: \qquad TIME ENDED: \qquad
TIME STARTED: \qquad
LENGTH: \qquad (MINUTES)

DATE: \qquad
INTERVIEWER: \qquad
I.D.: \qquad
INTERVIEWERS: MAKE SURE YOU HAVE THE FOLLOWING TO GIVE TO RESPONDENTS AS NEEDED OR IF REQUESTED:

- OMB CONTROL NUMBER: 1910-5124
- HFCIT WEBSITE URL: www.eere.energy.gov/hydrogenandfuelcells
- IF ASKED AT ANY POINT DURING THE SURVEY, THE INTERVIEWER SHOULD TELL THE RESPONDENT THAT THERE ARE NO TRICK QUESTIONS

AT INTRO SCREEN, DISPLAY INFO FOR INTERVIEWER: RESPONDENT NAME, TITLE AND AGENCY CONTACTED

SA May I please speak to [INSERT RESPONDENT NAME FROM SAMPLE]?
01
02
\qquad -->CONTINUE
NOT AVAILABLE NOW -->SCHEDULE CALLBACK

99 NO LONGER AT AGENCY -->SKIP TO S2 REFUSED --->THANK AND RECORD AS REFUSED (SA)

(READ ONCE RESPONDENT IS ON THE PHONE)

Hello, my name is \qquad calling from Opinion Research Corporation on behalf of the US Department of Energy. Your agency has been selected for an important national research survey about new energy sources. You have (your office has) been sent a letter from Steve Chalk, Program Manager of DOE's Hydrogen, Fuel Cells and Infrastructure Technologies Program, which explained the purpose and importance of this survey. The survey takes about 12 minutes to complete.

S1A [ASK IF S1(02)]
The Department of Energy is sponsoring a survey of state and local agencies and your agency has been selected for this important national research about new energy sources. Your responses are confidential and your agency's name will not be associated with the survey results. While your responses are voluntary, every response is extremely important because the results to this survey will be used to help design the hydrogen education program for the U.S. Department of Energy.

01 CONTINUE WITH SURVEY -->SKIP TO TEXT BEFORE Q1
02 NOT CONVENIENT NOW -->SET CALL BACK APPOINTMENT 03 NOT APPROPRIATE PERSON TO CONDUCT INTERVIEW-->CONTINUE TO S2 99 REFUSED -->THANK AND RECORD AS REFUSED (S1A)

S2 [IF SA(03) READ] Can you please give me the name, title and telephone number of the person who now fills the position vacated by [INSERT RESPONDENT NAME]?
[IF S1(04) OR S1A (03) READ] Can you please give me the name, title and telephone number of the person who is best suited to represent your agency for this survey?

01 YES -->CONTINUE
99

FIELDS FOR RECORDING CONTACT INFORMATION
Full Name: 2a- First name, 2b- Last name
Title: 2c
Telephone number: 2d
S2VER [CONFIRM INFORMATION- READ BACK TO THEM FOR ACCURACY]
01 FIRST NAME INCORRECT/CHANGE
02 LAST NAME INCORRECT/CHANGE
03 TITLE INCORRECT/CHANGE
04 TELEPHONE NUMBER INCORRECT/CHANGE
05 ALL INFORMATION CORRECT
99 REFUSED -->THANK AND RECORD AS REFUSED (S2VER)
INTERVIEWER: IF NEW CONTACT WOULD LIKE TO CONDUCT INTERVIEW NOW, GO BACK TO TEXT BEFORE S1.

OTHERWISE, IF PROVIDED NEW CONTACT INFO, S2[1], S2VER[05] SCHEDULE CALLBACK.

Before we get started, I want to mention that there are both technical and opinion questions in the survey. Tell me what you think or believe, but keep in mind that "no opinion" or "don't know" are perfectly acceptable responses.

First of all . . .

Q1 I am going to read several statements. After each one, please tell me if you believe the statement is true, if it is false, or if you don't know. [READ AND ROTATE STATEMENTS]

05 True
06 False
99 Don’t Know
A. Hydrogen pipelines exist nationwide
B. In a hydrogen economy, hydrogen replaces fossil fuels as the dominant form of energy
C. Hydrogen gas is toxic
D. Fuel cells produce electricity through hydrogen combustion
E. Hydrogen is too dangerous for everyday use by the general public
F. OMITTED
G. Hydrogen is lighter than air
H. Hydrogen has a distinct odor

Q2A-Q2C OMITTED

In the next few questions please choose the ONE answer you believe is correct. Keep in mind that you can answer "I don't know" or "I have no opinion."

Q3A In which state or condition can hydrogen be stored? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER. ROTATE 01-02]

09 Chemical compound
10 Liquid
11 Both of these
12 Or, neither of these
99 Don't know/No opinion
Q3B When using pure hydrogen, fuel cell vehicles generate electricity, water, and what else? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER. ROTATE 01-03]

09 Carbon dioxide
10 Nitrous oxides
11 Heat
12 Or, all of these
99 Don't know/No opinion

Q3C Hydrogen can be produced using which of the following sources of energy? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER. ROTATE 01-03]

09 Natural gas
10 Sunlight
11 Organic matter
12 Or, all of these
101 Don't know/No opinion
Q3D Which of the following would you MOST closely associate with the word "hydrogen"? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER.]

09 The H-bomb
10 Chemistry class
11 Fuel
12 Or, the Hindenburg
101 Don't know/No opinion
Q3E How would you feel if your local gas station also sold hydrogen? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER.]

09 Frightened
10 Uneasy
11 At ease
12 Or, pleased
101 Don't know/No opinion

Q3F Which of the following represents a type of fuel cell? [READ ENTIRE LIST BEFORE
RECORDING ONE ANSWER. ROTATE 01-03]
01 PDQ
02 PEM
03 CFC
04 Or, none of these
99 Don't know/No opinion

Q4 Next, I am going to read several statements about potential benefits of using hydrogen as a VEHICLE FUEL. For each, tell me if you disagree, are neutral, agree or if you have no opinion? [READ AND ROTATE STATEMENTS]

07 Disagree
08 Are neutral
09 Agree
101 No opinion
A. Using hydrogen will reduce U.S. dependence on foreign oil
B. Using hydrogen will reduce emissions and improve air quality
C. OMITTED
D. Hydrogen is as safe as gasoline and diesel fuels

Q5 Next, I am going to read several potential applications for hydrogen and fuel cells. Please rate the likelihood of widespread commercial availability in the next five years for each of the following applications. The scale to use is low, medium, high or no opinion for each one I mention. [READ AND ROTATE STATEMENTS]

07	Low
08	Medium
09	High
101	No opinion

A. Personal cars and trucks
B. Buses and commercial vehicles
C. Large power plants
D. Small portable devices such as laptop computers or cell phones
E. Onsite power for the home
F. Onsite power for buildings such as hospitals and schools

Q6 Now, for those same applications, please rate the safety of using hydrogen and fuel cells, in comparison with technology in use today.

Is it not as safe, equally as safe or safer to use hydrogen and fuel cells for...? [READ AND ROTATE EACH STATEMENT]

01 Not as safe
02 Equally as safe
03 Safer
99 No opinion
A. Personal cars and trucks
B. Buses and commercial vehicles
C. Large power plants
D. Small portable devices such as laptop computers or cell phones
E. Onsite power for the home
F. Onsite power for buildings such as hospitals and schools

Q7 The next question is about your use of information sources that can help you make decisions about energy costs and safety. How often do you use each of the following sources to get energy information. Would you say never, sometimes, or frequently? [READ STATEMENTS]

01 Never
02 Sometimes
03 Frequently
99 DON'T KNOW
A. Teachers and schools
B. Friends and family members
C. Environmental and conservation groups
D. Utility companies or brokers, for example, gas or electricity providers
E. Federal government
F. State government
G. Local government

Q8 How often do you get ENERGY information from different types of mass media. Would you say that you never, sometimes, or frequently get energy information from ... [READ AND ROTATE STATEMENTS]

01 Never
02 Sometimes
03 Frequently
99 DON'T KNOW
A. Television
B. Radio
C. The Internet
D. Newspapers and non-technical magazines
E. Science and technology magazines and journals

Our final set of questions relates to your specific agency and plans that you may have for future use of hydrogen and/or fuel cells.

Q9 Does your agency operate any hydrogen-powered vehicles?
01 YES
02 NO
99 DON'T KNOW
Q10 Do you know of any other organization that operates hydrogen-powered buses or other fleet vehicles in the area covered by your geographic jurisdiction?

01 YES
02 NO
99 DON'T KNOW
Q11 Does your agency own or operate any stationary fuel cells?
01 YES
02 NO
99 DON'T KNOW
Q12 Do you know of any other organization that operates stationary fuel cells in the area covered by your geographic jurisdiction?

01 YES
02 NO
99 DON'T KNOW
Q13 Does your agency have plans to use hydrogen or fuel cells in the future?
01 YES -->CONTINUE
02 NO
99 DON'T KNOW -->SKIP TO Q15

Q14 What is the time frame for plans to use hydrogen or fuel cells? [READ LIST. RECORD ONE ANSWER]

01 Within the next year
02 1-5 years
03 Over 5 years
99 DON'T KNOW
Q15 How do you feel about the use of hydrogen and fuel cells in or around the workplace? [READ LIST. RECORD ONE ANSWER]

01 Pleased
02 At ease
03 Uneasy
04 Frightened
99 Don't know/No opinion
Q16 Have you received information at your workplace concerning hydrogen and/or fuel cells?
01 YES
02 NO
99 DON'T KNOW
Q17 Have you attended any of the following events? [READ AND ROTATE ITEMS]
01 YES
02 NO
99 DON'T KNOW
A. A training class on hydrogen or fuel cells
B. A press conference concerning the use of hydrogen or fuel cells
C. A conference or workshop that included a session on hydrogen or fuel cells

Q18 Would a DOE-sponsored class, conference or workshop on hydrogen and fuel cells be of value to you?
01 YES

02 NO
99 DON'T KNOW
Q19 Finally, can you please tell me your full title? [RECORD RESPONDENT TITLE]

That's all the questions we have today. Thank you very much for your time.
CONFIRM PHONE NUMBER.

APPENDIX A. 4 HYDROGEN - POTENTIAL LARGE-SCALE END USERS

OPINION RESEARCH CORPORATION
SEPTEMBER-OCTOBER 2004

HYDROGEN-LARGE SCALE END USERS

ORC \# 34558
BALLOT \#
TELEPHONE \#
SURVEY \#
CALL

QUOTA CELLS/TARGETS

99 total respondents

TELEPHONE NUMBER: \qquad TIME ENDED: \qquad
TIME STARTED: \qquad
LENGTH: \qquad (MINUTES)

DATE: \qquad
INTERVIEWER: \qquad
I.D.: \qquad

```
INTERVIEWERS: MAKE SURE YOU HAVE THE FOLLOWING TO GIVE TO RESPONDENTS AS
    NEEDED OR IF REQUESTED:
- OMB CONTROL NUMBER: 1910-5124
- HFCIT WEBSITE URL: www.eere.energy.gov/hydrogenandfuelcells
- IF ASKED AT ANY POINT DURING THE SURVEY, THE INTERVIEWER SHOULD
    TELL THE RESPONDENT THAT THERE ARE NO TRICK QUESTIONS
```


[AT SWITCHBOARD]

SA May I please speak to the person who is most responsible for energy related decisions at this location? [INTERVIEWER: SEE HELP SHEET FOR POSSIBLE TITLES FOR THIS SEGMENT]

04
YES -->CONTINUE
05
NOT AVAILABLE NOW -->SCHEDULE CALLBACK
(READ ONCE RESPONDENT IS ON THE PHONE)
Hello, my name is \qquad calling from Opinion Research Corporation on behalf of the US Department of Energy. The DOE is sponsoring a survey about energy sources with business leaders in your sector. Each company we contact is an important part of the survey process and we urge you or someone within your organization to participate. Every response is valuable in this survey because the results will be used to help design the hydrogen education program for the Department of Energy. Are you the person most responsible for energy related decisions at this location? REFUSED -->THANK AND RECORD AS REFUSED

S2 Can you please give me the name, title and telephone number of the person who is best suited to represent your organization for this survey?

01 \qquad -->RECORD INFORMATION AND ARRANGE CALLBACK -->THANK AND RECORD AS REFUSED (S2)

Before we begin I would like you to know that your responses are confidential and you and your company name will not be associated with the results. It should take about 12 minutes to complete.

Our first set of questions relates to you or the specific facility or facilities for which you are responsible.
Q1 I am going to read several job titles; please tell me which one applies to you. [READ LIST. RECORD ONE ANSWER]

07	Fleet manager
08	Plant or facility manager
09	Operations manager
10	Financial manager
11	Energy manager
12	CEO
195	Something else [SPECIFY]
199	DON'T KNOW/REFUSED

Q2 How many years have you held this position? [READ LIST. RECORD ONE ANSWER]
01 Less than one year
02 Between one and five years
03 Over five years
99 DON'T KNOW/REFUSED
[ASK IF RESPONDENT IS IN "TRANSPORTATION" CATEGORY]
Q3A How many vehicles are in the GROUND-BASED fleet operated by your organization or agency?
[DO NOT READ LIST. RECORD ONE ANSWER]
01 LESS THAN 100
02 100-1,000
03 1,001-10,000
04 OVER 10,000
99 DON'T KNOW/REFUSED
[ASK IF RESPONDENT IS IN "NEEDS UNINTERRUPTED POWER" OR "LARGE POWER REQUIREMENTS" CATEGORIES]
Q3B What is the average annual cost of electrical energy for your organization or agency? [DO NOT READ LIST. RECORD ONE ANSWER]

01 UNDER \$100,000
$02 \quad \$ 100,000$ TO \$1,000,000
$03 \quad \$ 1,000,001$ TO \$2,000,000
04 OVER \$2,000,000
99 DON'T KNOW/REFUSED

Q4 I am going to read some characteristics of fuels or power supplies. Please rate the importance of each characteristic for your facility, using a scale of low, medium, high or no opinion. [READ AND ROTATE STATEMENTS]

01 Low
02 Medium
03 High
99 No opinion
A. System installation cost
B. System maintenance cost
C. Fuel cost
D. Dependability
E. Safety
F. Protection of the environment
G. Uninterrupted availability

Q5 Does your organization use hydrogen and/or fuel cells for any purpose?

01	YES	-->CONTINUE
02	NO	
99	DON'T KNOW	-->SKIP TO Q7

Q6 What is the PRIMARY function of the hydrogen and/or fuel cells used by your organization?
[READ ENTIRE LIST BEFORE RECORDING ONE ANSWER]
01 To power buses
02 To power vehicles other than buses
03 To provide stationary on-site power
04 To provide power for small portable equipment
05 To provide back-up power
195 OTHER [SPECIFY]
199 DON'T KNOW/REFUSED
[ASK IF Q5 $(02,99)]$
Q7 Does your organization have plans to use hydrogen or fuel cells in the future?

01	YES	-->CONTINUE
02	NO	
99	DON'T KNOW	$-->$ SKIP TO Q9

Q8 What is the time frame for your plans to use hydrogen or fuel cells? [READ LIST. RECORD ONE ANSWER]

04	Within the next year
05	$1-5$ years
06	Over 5 years
100	DON'T KNOW

[ASK EVERYONE]

Q9 Have you received information at your workplace concerning hydrogen and/or fuel cells?

03	YES
04	NO
100	DON'T KNOW

Q10 Have you attended any of the following events? [READ AND ROTATE ITEMS]
03 YES
04 NO
99 DON'T KNOW
A. A training class on hydrogen or fuel cells
B. A press conference concerning the use of hydrogen or fuel cells
C. A conference or workshop that included a session on hydrogen or fuel cells

Q11 Would a "Hydrogen 101" class, or training at a conference or workshop sponsored by the U.S. Department of Energy on hydrogen and fuel cells be of value to you?

```
03 YES
04 NO
100 DON'T KNOW
```

For the upcoming questions, I want to mention that there are both technical and opinion questions. Tell me what you think or believe, but keep in mind that "no opinion" or "don't know" are perfectly acceptable responses.

First of all . . .
Q12 I am going to read several statements. After each one, please tell me if you believe the statement is true, if it is false, or if you don't know. [READ AND ROTATE STATEMENTS]

01 True
02 False
99 Don't Know
A. Hydrogen pipelines exist nationwide
B. In a hydrogen economy, hydrogen replaces fossil fuels as the dominant form of energy
C. Hydrogen gas is toxic
D. Fuel cells produce electricity through hydrogen combustion
E. Hydrogen is too dangerous for everyday use by the general public
F. Hydrogen is lighter than air
G. Hydrogen has a distinct odor

In the next few questions please choose the ONE answer you believe is correct. Keep in mind that you can answer "I don't know" or "I have no opinion."

Q13A In which state or condition can hydrogen be stored? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER. ROTATE 01-02]

13 Chemical compound
14 Liquid
15 Both of these
16 Or, neither of these
99 Don’t know/No opinion
Q13B When using pure hydrogen, fuel cell vehicles generate electricity, water, and what else? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER. ROTATE 01-03]

13 Carbon dioxide
14 Nitrous oxides
15 Heat
16 Or, all of these
99 Don't know/No opinion
Q13C Hydrogen can be produced using which of the following sources of energy? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER. ROTATE 01-03]

13 Natural gas
14 Sunlight
15 Organic matter
16 Or, all of these
102 Don't know/No opinion

Q13D Which of the following would you MOST closely associate with the word "hydrogen"? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER.]

13 The H-bomb
14 Chemistry class
15 Fuel
16 Or, the Hindenburg
102 Don't know/No opinion
Q13E How would you feel if your local gas station also sold hydrogen? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER.]

13 Frightened
14 Uneasy
15 At ease
16 Or, pleased
102 Don't know/No opinion
Q13F Which of the following represents a type of fuel cell? [READ ENTIRE LIST BEFORE RECORDING ONE ANSWER. ROTATE 01-03]

01	PDQ
02	PEM
03	CFC
04	Or, none of these
99	Don't know/No opinion

Q14 Next, I am going to read several statements about potential benefits of using hydrogen as a VEHICLE FUEL. For each, tell me if you disagree, are neutral, agree or if you have no opinion? [READ AND ROTATE STATEMENTS]

10 Disagree
11 Are neutral
12 Agree
102 No opinion
A. Using hydrogen will reduce U.S. dependence on foreign oil
B. Using hydrogen will reduce emissions and improve air quality
C. Hydrogen is as safe as gasoline and diesel fuels

Q15 Next, I am going to read several potential applications for hydrogen and fuel cells. Please rate the likelihood of widespread commercial availability in the next five years for each of the following applications. The scale to use is low, medium, high or no opinion for each one I mention. [READ AND ROTATE STATEMENTS]

10	Low
11	Medium
12	High
102	No opinion

A. Personal cars and trucks
B. Buses and commercial vehicles
C. Large power plants
D. Small portable devices such as laptop computers or cell phones
E. Onsite power for the home
F. Onsite power for buildings such as hospitals and schools

Q16 Now, for those same applications, please rate the safety of using hydrogen and fuel cells, in comparison with technology in use today.

Is it not as safe, equally as safe or safer to use hydrogen and fuel cells for...? [READ AND ROTATE STATEMENTS]

01 Not as safe
02 Equally as safe
03 Safer
99 No opinion
A. Personal cars and trucks
B. Buses and commercial vehicles
C. Large power plants
D. Small portable devices such as laptop computers or cell phones
E. Onsite power for the home
F. Onsite power for buildings such as hospitals and schools

Q17 The next question is about your use of information sources that can help you make decisions about energy costs and safety. How often do you use each of the following sources to get energy information. Would you say never, sometimes, or frequently? [READ STATEMENTS]

01 Never
02 Sometimes
03 Frequently
99 DON'T KNOW
A. Trade shows and conferences
B. Friends and family members
C. Environmental and conservation groups
D. Utility companies or brokers, for example, gas or electricity providers
E. Federal government
F. State government
G. Local government

Q18 How often do you get ENERGY information from different types of mass media. Would you say that you never, sometimes, or frequently get energy information from ... [READ AND ROTATE STATEMENTS]

01 Never
02 Sometimes
03 Frequently
99 DON'T KNOW
A. Television
B. Radio
C. The Internet
D. Newspapers and general interest magazines
E. Science and technology magazines and journals
F. Business or trade magazines

That's all the questions we have today. Thank you very much for your time.
CONFIRM PHONE NUMBER.

APPENDIX B

FEDERAL REGISTER NOTICES

APPENDIX B.1: FEDERAL REGISTER, August 20, 2003, pp. 50127-50128. APPENDIX B.2: FEDERAL REGISTER, January 12, 2004, pp. 1702-1702.

Federal Register / Vol. 68, No. 161 / Wednesday, August 20, 2003 / Notices		
accompanied the NAFTA Implementation	By a manufacturer of the yarn stating that it	period, contact the person listed below
Act stated that any interested person may	produces the yarn that is in the subject	
submit to CITA a request for a modification	of the request, including the quantit	ADDRESSES: Written comments may be
change in the availability in North America	necessary to fill an order, as well as	National Laboratory, P.O. Box 2008, Oak
of a particular fiber, yarn or fabric and that	relevant information regarding past	Ridge, TN 37831-6073; or by fax
of demonstrating that a change is warranted	CITA will protect any business	TruettLF@ORNL.gov; and to (2) Shar
The SAA provides that CITA may make a	confidential infor	Evelin, Acting Director, Records Management
recommendation to the President regarding	bu	Division IM-
a change to a rule of origin for a textile or	the full extent permitted by law. CITA	Germantown Bldg., Office of Business
apparel good. The NAFTA Implementatio	will make available to the p	mation Mana
Act provides the President with the	nonconfident	the Chief Information Officer, U.S.
authority to proclaim modifications to the	versions of the request	Department of Energy, Washington, DC
NAFTA rules of origin as are necessary to implement an agreement with one or more	non-confidential versions of any publ	20585-1290.
$\begin{aligned} & 1 \mathrm{mp} \\ & \mathrm{NA} \end{aligned}$	$\begin{aligned} & \text { col } \\ & \text { red } \end{aligned}$	
On July 10, 2003, the Chairman of	Hoover Building, 14th and Constitution	the information colle
CITA received a petition from Amicale	Avenue, NW., Washington, DC 20230.	strument and instructions should b
Industries, Inc. alleging that certain	Persons submitting comments on a	directed to Lorena F. Truett, Oak Ridge
yarns of carded cashmere or of carded camel hair, classified in HTSUS heading	request are encouraged to include nonconfidential	National Laboratory, phone (865) 574 4225, fax (865) 574-3851, e-mail
5108.10 .60 , cannot be supplied by the	version and a nonconfidenti	TruettLF@ORNL.gov.
domestic industr		SUPPLEMENTARY INFORMATION: T
quantities in a timely manner and	D. Michael Hutchinso	package contains the following
requesting that the President pro	A	supplementary information:
modification of the NAFTA ru) $O M B$ No.: NEW.
origin. The referenced yarns	[FR Doc.03-21285 Filed 8-19-03; 8:45 BILLING CODE 3510-DR-S	(2) Package Title: Hydrogen, Fuel
used to produce woven fabrics classified	DEPAR	Cells \& Infrastructure Technologies
in HTS subheadings 5111.11 and	Proposed Agency Informatio	Program Baseline Knowledge
5111.19 for use in suits, coats and suit	Collect	Assessment.
type jackets classified under HTS	A	(3) Type of Review: New collectio
subheadings 6201.11, 6202.11, 6203.1	ACTION: No	(4) Purpose: The Baseline Knowledge
6203.31, 6204.11 and 6204.31. Such a	comments.	Assessment for the DOE Hydrogen, Fuel
proclamation may be made only afte reaching agreement with the other	SUMMARY: The Department of	Cells \& Infrastructure Technologies
NAFTA countries on the modificatio	proposed collection of	and changes in awareness and understandin
CITA is soliciting public comments regarding this request, particularly	DOE is developing for submission to the	of hydrogen and fuel cell technologies and the hydrogen economy within four target
respect to whether the yarns of cashm	(OMB) pursuant to the Paper	populations: (1) The general public, (2)
of camel hair described above, classified in HTSUS heading 5108.10.60, can be	Reduction Act of 1995. Comments ar	students and educators, (3) personnel in stat and local governments, and (4) potential
HTSUS heading 5108.10.60, can be supplied by the domestic industry in	invited on: (a) Whether the proposed	and local governments, and (4) potential users of hydrogen fuel and technologies in
commercial quantities in a timely manner	for the proper performance of the	business and industry. Four distinct
The petition states that potential North	functions of the agency, includi	information collections will be required, on
American suppliers of the referenced yarns would be required to deliver them	whether the information shall have	for each of the target populations. These collections will be conducted in stages,
within 21 days of receipt of a purch	pr	the general public study conducted first.
order. To ensure full consideration, comments must be received no later than	proposed collection of informatio including the validity of the	Changes relative to aseline knowledge levels will be determined when, after three years,
September 19, 2003. Interested persons are invited to submit six copies of such	methodology and assumptions used; (c)	each population group will be surveyed again
comments or information to the Chairman,	clarity of the	methodology. The instrument f
Committee for the Implementation of	collected; and (d) ways to minimize the	assessing baseline knowledge will b
Textile Agreements, room 3100, U.S.	burden of the collection of information	specifically targeted to the population group
Department of Commerce, 14th and	on respondents, including through the	The public survey, for example, will assess a
Constitution Avenue NW., Washington, DC 20230 .	use of automated collection techniques	general knowledge of the production, storage, delivery, applications, and safety of hydrogen
If a comment alleges that yarns of	techn	and fuel cells. Information gathered in this
cashmer supplied	DATES: Con	assessment will assist the HFC\&IT program in
CITA will closely review any supporting	2003. If you anticipate	baseline for determining changes in public
documentation, such as a signed statement	submitting comments within that	

Federal Register / Vol. 68, No. 161 / Wednesday, August 20, 2003 / Notices 50128		
the hydrogen economy, which is an important measure from which the success of program education strategies can be evaluated. (5) Respondents: Although the numbers of respondents and methods of information collection will differ for each of the populations, the general scope and temper of the four collections will be the same. The general public will be surveyed first. That survey and the general public responses may influence the design of the surveys for the other target populations. For the general public, a random (probability sample) survey of 1,000 adults, age 18 and over, will be conducted via computer-assisted phone telephone interviews (CATI) or by other appropriate mechanism. About twenty closed-end questions will be posed. For students, a random survey of 500 teens (ages 12-17) and 500 pre-teens (ages 611) will be conducted, also using CATI or other technology and closed-end questions. Approximately 100-150 primary and secondary educators will be randomly selected from a national contact list for interviewing. Questions for educators will be of both closed-end and open-end formats. Contacts with energy agencies in all 50 states and the District of Columbia will be made, and a limited number of local (i.e., municipal) agencies will also be contacted. Questions to state and local government agencies will be of both closed-end and open-end formats. A limited number of large-scale or potential large-scale users of energy sources powered by hydrogen and fuel cells will also be interviewed using both closed-end and open-end questions. (6) Estimated Number of Burden Hours: For the general public survey, the burden is estimated at ten minutes per respondent for 1,000 respondents, for a total time and cost burden of 167 hours and $\$ 0$. The total burdens for the other populations will depend on the designs of those surveys, but will be similar in temper and scope to the burden for the general public survey. The total time and cost burden for the student survey is tentatively estimated to be 133 hours and $\$ 0$; the total burden for educators is estimated to be 25 hours and $\$ 0$. The total burden for the state and local government and large-scale user surveys is expected to be less than the burden for the student survey. Statutory Authority: Energy Reorganization Act of 1974 (Public Law 93438).	Issued in Washington, DC, on August 13, 2003. Sharon Evelin, Acting Director, Records Management Division, Office of Records and Business Management, Office of the Chief Information Officer. [FR Doc. 03-21299 Filed 8-19-03; 8:45 am] BILLING CODE 6450-01-P DEPARTMENT OF ENERGY Agency Information Collection Extension AGENCY: Department of Energy. ACTION: Submission for Office of Management and Budget Review; Comment request. SUMMARY: The Department of Energy (DOE) has submitted an information collection package, OMB Control Number 1910-5103, Reporting and Record Keeping Requirements for Safety Management System for extension under the Paperwork Reduction Act of 1995 (Pub. L. 104-13, 44 U.S.C. chapter 35). This package contains an information collection that is used by Departmental Management to exercise management oversight and control over management and operating (M\&O) contractors operating DOE's facilities. This contractor management oversight and control function concerns the ways in which DOE management contractors document their environment, safety and health systems to ensure contractor employees' safety and health. DATES: Comments must be submitted on or before September 19, 2003. If you anticipate that you will be submitting comments, but find it difficult to do so within the period of time allowed by this notice, you should advise the OMB Desk Officer of your intention to do so as soon as possible. The Desk Officer may be telephoned at (202) 395-3087. (Also, please notify the DOE contact listed in this notice.) ADDRESSES: Address comments to DOE Desk Officer, Office of Management and Budget. Office of Information and Regulatory Affairs (OIRA), Room 10102, New Executive Office Building, 725 17th Street, NW., Washington, DC 20503. (Comments should also be addressed to Sharon Evelin, Acting Director, Records Management Division, Office of Business and Information Management, Office of Chief Information Officer, IM-11, U.S. Department of Energy, 1000 Independence Avenue, SW., Washington, DC 20585-1290. SUPPLEMENTARY INFORMATION: (1) Title: Environment, Safety and Health; (2)	Current OMB Control Number: 19105103; (3) Summary: A three year extension is requested which includes mandatory obligations; (4) Purpose: This information is required by the Department to ensure that the Departmental environment, safety and health resources and requirements are managed efficiently and effectively and to exercise management oversight of DOE contractors; (5) Type of Respondents: DOE management and operating contractors; (6) Estimated number of responses: 7 per year; and (7) Estimated total burden hours: 2,450. Statutory Authority: Department of Energy Organization Act, Public Law 92-01. Issued in Washington, DC, on August 13, 2003. Sharon Evelin, Acting Director, Records Management Division, Office of Business and Information Management, Office of the Chief Information Officer. [FR Doc. 03-21300 Filed 8-19-03; 8:45 am] BILLING CODE 6450-01-P DEPARTMENT OF ENERGY Environmental Management Site- Specific Advisory Board, Idaho National Engineering and Environmental Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Engineering and Environmental Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of these meeting be announced in the Federal Register. DATES: Wednesday, September 17, 2003; 8 a.m. -5 p.m. Opportunities for public participation will be held from 11:45-12 noon and 3:30 to $3: 45$ p.m. Additional time may be made available for public comment during the presentations. ADDRESSES: Willard Arts Center, 498 A Street, Idaho Falls, ID 83402. FOR FURTHER INFORMATION CONTACT: Ms. Wendy Green Lowe, Idaho National Engineering and Environmental Laboratory (INEEL) Citizens' Advisory Board (CAB) Facilitator, Jason Associates Corporation, 545 Shoup Avenue, Suite 335B, Idaho Falls, ID 83402, Phone (208) 522-1662, X3012 or visit the Board's Internet home page at http://www.ida.net/users/cab.

Federal Register / Vol. 69, No. 7 / Monday, January 12, 2004 / Notices		
within four target populations: (1) The	less than 50 interviews with large-scale	Tentative
educators, (3) personnel in state	(7) Estimated Nu	8:30 a.m.-Special Session on CAB
local governments, and (4) potentia	Hours: For the general pu	Administration
users of hydrogen fuel and technologie	the burden is estimated at ten minut	10 a.m.-Special Session on 2004 CAB
business and industry. Four distinct	per respondent for 1,000	Workplan
information collections will be require	for a total time and cost b	12 noon-Lunch Brea
one for each of the target populations.	d	1:30 p.m.-Combined Committee S
These collections will be conducted	other popul	5:15 p.m.-Adjourn
	designs of	Tuesday, January 27, 20
conducted first. Changes	si	8:30 a.m.-Recognition of Outgoin
baseline knowledge levels will be	burden for the general publi	Members \& Remarks; Approval of
determined when, after three years,	The total time and cost burd	Minutes; Agency Updates
population group will be surveyed agai	student survey is tentatively estima	9:15 a.m.-Public Comment Sessio
using the same survey instrument and	be 133 hours and $\$ 0$; the total bur	9:30 a.m.-Chair and Facilitator Upd
thodology. The instrume	for educators is estimated to be no more	9:45 a.m.-Waste Manage
baseline knowledge will be specifically	25 hours and \$0. The total burd	Committee Report
targeted to the population g	for the state and local government a	11:30 a.m.-Strategic \& Legacy
public survey, for example, will	ge-scale user surveys is expected	Management Committee Report
general knowledge of the product	be less than the burden for the student	11:50 a.m.-Public Comment Ses
storage, delivery, applications, and s		12 noon-Lunc
of hydrogen and fuel cells. Information	Statutory Authority: Ener	1 p.m.-Nuclear Materials Committe
gathered in this assessment will assist	Reorganization Act of 1974 (Pub. L. 93-438)	Report
HFCIT program in formulating an overall	Issued in Washington, DC on January 5,	1:50 p.m.-Facilities Disposition \& Site
ucation plan for hydrogen tech		Remediation Committee Rep
ture surveys will provide a basis for	Su	2:40 p.m.-Administrative Committe
determining changes in p		Report
and understanding of the hydrogen	Office of the Chief Information Officer.	3:10 p.m.-2004 Candidate Review and
economy, which is an important too	[FR Doc. 04-574 Filed 1	Electio
knowing whether the education strategie	Br	-2004 Commi
uld be modified and, if so,	DEPARTMENT OF ENERGY	3:50 p.m.-Public Comment Session
(5) Type of Respondents: There are	-	4 p.m.-Adjo
populations to be surveyed; however,	Specific Advisory Board, Savan River	If needed, time will be allotted after public
general scope and temper of the four	AGENCY: Department of Energy.	comments for items added to the agend
collections will be the same. The gen	AGENCY: Department of Energy.	and administrative details. A final agend
ic will be surveye	ACTION: Notice of open meeting. SUMMARY: This notice announces a	will be available at the meeting Monday
general public, a random (probability		January 26, 2004
sample) survey of adults, age 18 and ove will be conducted via computer-assisted	Management Site-Specific Advisory	Public Participation: The meeting is open to the public. Written statements
phone interviews (CATI) or by ot	Board (EM SSAB), Savannah River. The	may be filed with the Board either befor
appropriate mechanism. About twent	Federal Advisory Committee Act (Pub	er the meeting
closed-end questions will be posed. T	L. 92-463, 86 Stat.770) requires that	ake the oral statements pertaining to
second survey population will consist of	mnounced in the Federal Register.	agenda items should contact Ger
random sample of students-that is, teens	announced in the Federal Register. DATES: Monday, January 26, 2004, 8:30	Flemming's office at the address or
and educators. The third population will be randomly selected from energy agencies in	$2004, \text { 8:30 a.m. }$	days prior to the meeting and
0 states	ADDRESSES: Hilton-Palmetto Dune	he presentatio
a limite	FOR FURTHER INFORMATION CONTAC	nated Federal Officer is empowered to
1	osur	conduct the meeting in a fashion that will
ber of large-scale or potential large	Department of Energy Savannah Ri	cilitate the orderly conduct of business.
users of energy sources powere	Operations Office, P.O. Box A, Aike	ublic
interviewed using both closed-end	SC, 29802; Phone: (803) 952-788	t will be provided equal time to
open-end questions.	SUPPLEMENTARY INFORMATION: Purpose of	ing
pondents: The numbers		pying at the Freedom of Infor
differ for each of the populations. The	to make recommendations to DOE and	Reading Room, 1E-190, Forres
adults; the educational survey is planned to	nmental restoration, was	ashington, DC, 20585 between
include 1,000 students and approximately	management, and related activities.	m. and 4 p.m., Monday through
0-150 educators; it is estimated that the		Friday except Federal holidays.
number of cont		
local agencies will be less than 100; fin		writing to Gerri Flemming, Departme

APPENDIX C

SURVEY COUNTS FOR EACH SURVEY QUESTION WITH WEIGHTS AND STANDARD ERRORS

APPENDIX C.1: SUMMARY OF RESULTS OF THE GENERAL PUBLIC SURVEY APPENDIX C.2: SUMMARY OF RESULTS OF THE STUDENT SURVEY APPENDIX C.3: SUMMARY OF RESULTS OF THE STATE AND LOCAL GOVERNMENT SURVEY
APPENDIX C.4: SUMMARY OF RESULTS OF THE LARGE-SCALE END USER SURVEY

Appendix C.1. Summary of Results for the General Public Survey

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Sex					
Male	386	427.3	19.2	48.1	1.86
Female	503	461.7	16.4	51.9	1.86
Total	889	889.0	13.5	100	0.00
Age					
18-44	362	464.3	21.4	52.7	1.83
45+	519	416.6	13.1	47.3	1.83
Total	881	880.9	13.4	100	0.00
Region					
Northeast	181	173.8	6.2	19.5	0.62
Midwest	205	204.5	5.2	23.0	0.55
South	280	314.0	8.3	35.3	0.74
West	223	196.7	6.9	22.1	0.67
Total	889	889.0	13.5	100	0.00
Degree					
No degree	519	547.7	19.4	62.0	1.74
Degree	363	336.2	14.8	38.0	1.74
Total	882	883.9	13.5	100	0.00
Urban/Non-Urban					
Urban	448	455.4	9.9	51.2	0.76
Non-Urban	441	433.6	9.2	48.8	0.76
Total	889	889.0	13.5	100	0.00

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Introduction Change					
Before Intro Change	540	525.0	17.2	59.1	1.82
After Intro Change	349	364.0	17.7	40.9	1.82
Total	889	889.0	13.5	100	0.00
Technical Score Level (Below Average/Above Average)					
Score Below Average	449	457.5	18.3	51.5	1.83
Score Above Average	440	431.5	16.8	48.5	1.83
Total	889	889.0	13.5	100	0.00
Question 1a. Hydrogen pipelines exist nationwide.					
True	164	184.3	14.8	20.7	1.57
False	301	287.7	15.0	32.4	1.68
Don't Know	424	417.0	17.1	46.9	1.82
Total for 1a	889	889.0	13.5	100	0.00
Question 1b. In a hydrogen economy, hydrogen replaces fossil fuels as the dominant form of energy.					
True	380	391.3	17.9	44.0	1.84
False	106	102.4	10.2	11.5	1.15
Don't Know	403	395.3	17.0	44.5	1.83
Total for 1b	889	889.0	13.5	100	0.00
Question 1c. Hydrogen gas is toxic.					
True	270	302.5	17.7	34.0	1.80
False	342	329.8	16.1	37.1	1.76
Don't Know	277	256.7	14.2	28.9	1.61
Total for 1c	889	889.0	13.5	100	0.00

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Question 1d. Fuel cells produce electricity through hydrogen combustion.					
True	318	321.5	16.3	36.2	1.77
False	102	105.1	11.1	11.8	1.23
Don't Know	469	462.4	17.7	52.0	1.84
Total for 1d	889	889.0	13.5	100	0.00
Question 1e. Hydrogen is too dangerous for everyday use by the general public.					
True	233	244.6	15.8	27.5	1.68
False	381	372.5	16.3	41.9	1.80
Don't Know	275	271.9	15.9	30.6	1.71
Total for 1e	889	889.0	13.5	100	0.00
Question 1g. Hydrogen is lighter than air.					
True	508	509.6	17.9	57.3	1.82
False	93	100.8	11.1	11.3	1.22
Don't Know	288	278.5	15.2	31.3	1.68
Total for 1g	889	889.0	13.5	100	0.00
Question 1h. Hydrogen has a distinct odor.					
True	110	131.5	13.0	14.8	1.41
False	435	417.7	16.6	47.0	1.83
Don't Know	344	339.8	16.7	38.2	1.78
Total for 1h	889	889.0	13.5	100	0.00
Question 3a. In which state or condition can hydrogen be stored?					
Chemical compound	34	39.4	7.6	4.43	0.84
Liquid	210	205.2	14.0	23.1	1.54
Both of the above	255	261.8	15.4	29.4	1.68

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
None of the above	37	43.9	7.9	4.94	0.88
Don't know/No opinion	353	338.8	16.1	38.1	1.77
Total for 3a	889	889.0	13.5	100	0.00
Question 3b. When using pure hydrogen, fuel cell vehicles generate electricity, water and what else?					
Carbon dioxide	68	67.7	8.5	7.61	0.95
Nitrous oxides	28	33.7	7.0	3.80	0.78
Heat	167	164.2	12.4	18.5	1.39
All of these	165	192.4	15.8	21.6	1.65
Don't know/No opinion	461	431.0	16.0	48.5	1.82
Total for 3b	889	889.0	13.5	100	0.00
Question 3c. Hydrogen can be produced using which of the following sources of energy?					
Natural gas	86	99.2	11.7	11.2	1.27
Sunlight	36	39.0	6.9	4.39	0.78
Organic matter	73	74.0	9.2	8.33	1.02
All of these	335	341.6	16.7	38.4	1.78
Don't know/No opinion	359	335.1	15.6	37.7	1.75
Total for 3c	889	889.0	13.5	100	0.00
Question 3d. Which of the following would you MOST closely associate with the word "hydrogen"?					
The H-bomb	251	232.7	13.9	26.2	1.57
Chemistry class	235	252.1	16.3	28.4	1.72
Fuel	132	133.5	11.7	15.0	1.30
The Hindenburg	176	169.7	12.6	19.1	1.41
Don't know/No opinion	95	101.1	11.1	11.4	1.23
Total for 3d	889	889.0	13.5	100	0.00

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Question 3e. How would you feel if your local gas station also sold hydrogen?					
Frightened	62	71.4	9.6	8.03	1.06
Uneasy	154	165.2	13.9	18.6	1.50
At ease	203	193.0	13.2	21.7	1.48
Pleased	242	232.2	14.0	26.1	1.57
Don't know/No opinion	228	227.2	14.6	25.6	1.60
Total for 3e	889	889.0	13.5	100	0.00
Question 3f. Which of the following represents a type of fuel cell?					
PDQ	11	15.5	5.4	1.75	0.60
PEM	28	30.1	5.9	3.38	0.66
CFC	55	58.9	8.5	6.63	0.95
None of these	108	110.7	11.5	12.5	1.27
Don't know/No opinion	687	673.7	16.6	75.8	1.63
Total for 3f	889	889.0	13.5	100	0.00
Question 4a. Using hydrogen will reduce U.S. dependence on foreign oil.					
Disagree	56	62.9	9.9	7.07	1.08
Are neutral	43	44.2	7.1	4.97	0.80
Agree	607	586.9	16.7	66.0	1.80
No opinion	183	195.0	14.5	21.9	1.57
Total for 4a	889	889.0	13.5	100	0.00
Question 4b. Using hydrogen will reduce emissions and improve air quality.					
Disagree	46	51.9	8.4	5.84	0.93
Are neutral	44	51.6	8.8	5.80	0.97
Agree	545	524.7	16.9	59.0	1.83
No opinion	254	260.8	15.5	29.3	1.66

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Total for 4b	889	889.0	13.5	100	0.00
Question 4d. Hydrogen is as safe as gasoline and diesel fuels.					
Disagree	137	138.8	12.3	15.6	1.36
Are neutral	63	68.4	9.6	7.69	1.06
Agree	353	348.3	16.1	39.2	1.78
No opinion	336	333.5	16.6	37.5	1.78
Total for 4d	889	889.0	13.5	100	0.00
Question 5a. Personal cars and trucks					
Low	243	225.2	13.8	25.3	1.55
Medium	224	233.7	15.2	26.3	1.64
High	243	248.3	15.5	27.9	1.66
No opinion	179	181.7	13.6	20.4	1.50
Total for 5a	889	889.0	13.5	100	0.00
Question 5b. Buses and commercial vehicles					
Low	181	174.6	13.0	19.6	1.45
Medium	220	212.3	13.7	23.9	1.54
High	302	317.6	17.3	35.7	1.79
No opinion	186	184.5	13.6	20.8	1.49
Total for 5b	889	889.0	13.5	100	0.00
Question 5c. Large power plants					
Low	205	196.9	13.0	22.2	1.48
Medium	183	177.4	13.3	20.0	1.47
High	299	317.3	17.3	35.7	1.78
No opinion	202	197.3	13.6	22.2	1.51

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Total for 5c	889	889.0	13.5	100	0.00
Question 5d. Small portable devices such as laptop computers or cell phones					
Low	364	366.0	16.8	41.2	1.80
Medium	120	122.0	11.5	13.7	1.28
High	129	141.3	13.0	15.9	1.42
No opinion	276	259.8	14.8	29.2	1.64
Total for 5d	889	889.0	13.5	100	0.00
Question 5e. Onsite power for the home					
Low	342	322.2	15.5	36.2	1.75
Medium	205	212.0	14.7	23.8	1.60
High	135	148.7	13.5	16.7	1.46
No opinion	207	206.1	14.2	23.2	1.56
Total for 5e	889	889.0	13.5	100	0.00
Question 5f. Onsite power for buildings such as hospitals and schools					
Low	215	209.5	13.9	23.6	1.54
Medium	234	226.8	14.5	25.5	1.61
High	237	257.3	16.3	28.9	1.72
No opinion	203	195.5	13.4	22.0	1.50
Total for 5f	889	889.0	13.5	100	0.00
Question 6a. Personal cars and trucks					
Not as safe	138	136.9	12.0	15.4	1.33
Equally as safe	326	331.9	17.1	37.3	1.79
Safer	152	159.7	13.2	18.0	1.45
No opinion	273	260.5	14.6	29.3	1.63

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Total for 6a	889	889.0	13.5	100	0.00
Question 6b. Buses and commercial vehicles					
Not as safe	115	116.9	11.4	13.2	1.27
Equally as safe	334	339.9	17.2	38.2	1.79
Safer	165	168.5	13.2	18.9	1.46
No opinion	275	263.8	14.6	29.7	1.64
Total for 6b	889	889.0	13.5	100	0.00
Question 6c. Large power plants					
Not as safe	128	142.4	13.4	16.0	1.45
Equally as safe	313	311.0	15.9	35.0	1.73
Safer	169	170.3	13.3	19.2	1.47
No opinion	279	265.3	14.7	29.8	1.65
Total for 6 c	889	889.0	13.5	100	0.00
Question 6d. Small portable devices such as laptop computers or cell phones					
Not as safe	198	204.1	14.3	23.0	1.56
Equally as safe	235	246.4	15.8	27.7	1.68
Safer	86	88.6	10.2	9.97	1.13
No opinion	370	349.9	15.8	39.4	1.76
Total for 6d	889	889.0	13.5	100	0.00
Question 6e. Onsite power for the home					
Not as safe	158	161.9	13.3	18.2	1.45
Equally as safe	320	327.7	16.9	36.9	1.79
Safer	120	125.1	11.8	14.1	1.30
No opinion	291	274.2	14.8	30.8	1.66

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Total for 6e	889	889.0	13.5	100	0.00
Question 6f. Onsite power for buildings such as hospitals and schools					
Not as safe	127	131.0	12.2	14.7	1.34
Equally as safe	336	337.9	16.7	38.0	1.77
Safer	143	147.8	12.6	16.6	1.39
No opinion	283	272.3	14.9	30.6	1.66
Total for 6 f	889	889.0	13.5	100	0.00
Question 7a. Teachers and schools					
Never	612	592.9	17.1	66.7	1.76
Sometimes	189	197.7	14.2	22.2	1.54
Frequently	73	83.7	10.4	9.42	1.15
Don't know	15	14.7	4.0	1.65	0.45
Total for 7a	889	889.0	13.5	100	0.00
Question 7b. Friends and family members					
Never	287	300.2	16.7	33.8	1.76
Sometimes	410	399.6	17.0	44.9	1.81
Frequently	177	175.9	12.9	19.8	1.43
Don't know	15	13.4	3.7	1.51	0.42
Total for 7b	889	889.0	13.5	100	0.00
Question 7c. Environmental and conservation groups					
Never	412	433.6	18.4	48.8	1.85
Sometimes	315	303.7	15.8	34.2	1.74
Frequently	141	132.3	11.6	14.9	1.29
Don't know	21	19.4	4.5	2.19	0.50

Value			Standard Deviation of Unweighted Frequency	Weighted Frequency	Weighted Frequency	Weighted Percent

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Total for 7g	889	889.0	13.5	100	0.00
Question 8a. Television					
Never	144	147.7	12.8	16.6	1.41
Sometimes	503	506.0	18.2	56.9	1.82
Frequently	236	230.0	14.3	25.9	1.59
Don't know	6	5.3	2.3	0.60	0.26
Total for 8 a	889	889.0	13.5	100	0.00
Question 8b. Radio					
Never	333	336.2	17.1	37.8	1.80
Sometimes	424	425.6	17.3	47.9	1.82
Frequently	128	123.6	11.1	13.9	1.24
Don't know	4	3.6	1.9	0.41	0.22
Total for 8b	889	889.0	13.5	100	0.00
Question 8c. The Internet					
Never	450	450.7	17.9	50.7	1.83
Sometimes	270	262.1	14.9	29.5	1.65
Frequently	165	172.6	13.6	19.4	1.48
Don't know	4	3.6	1.9	0.40	0.22
Total for 8c	889	889.0	13.5	100	0.00
Question 8d. Newspapers and non-technical magazines					
Never	214	230.0	15.6	25.9	1.67
Sometimes	454	451.2	17.7	50.8	1.85
Frequently	215	202.2	13.4	22.7	1.50
Don't know	6	5.6	2.3	0.62	0.26

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	$\begin{gathered} \text { Standard } \\ \text { Error } \\ \text { of } \\ \text { Percent } \end{gathered}$
Total for 8d	889	889.0	13.5	100	0.00
Question 8e. Science and technology magazines and journals					
Never	495	494.2	18.0	55.6	1.83
Sometimes	251	246.6	14.8	27.7	1.63
Frequently	136	140.2	12.3	15.8	1.36
Don't know	7	8.0	3.3	0.90	0.37
Total for 8e	889	889.0	13.5	100	0.00
Question 9. What was the last grade in school you completed?					
8th or less	30	36.7	7.4	4.13	0.83
9th, 10th, or 11th	71	80.9	10.0	9.10	1.11
High school complete	228	240.5	16.0	27.0	1.70
Some college, no degree	190	189.6	14.0	21.3	1.53
Associate degree	34	33.3	6.1	3.74	0.68
Bachelors degree	216	207.3	13.2	23.3	1.50
Postgraduate degree	113	95.6	8.7	10.8	1.00
refused/nr	7	5.1	2.0	0.57	0.22
Total for 9	889	889.0	13.5	100	0.00
Question 10. What is your age?					
18-20	25	47.8	9.9	5.38	1.08
21-24	36	66.5	11.6	7.48	1.25
25-29	62	68.3	9.2	7.68	1.02
30-34	86	94.9	10.4	10.7	1.15
35-39	64	81.9	10.4	9.21	1.14
40-44	89	105.0	11.0	11.8	1.21
45-49	94	89.1	9.3	10.0	1.05

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
50-54	85	76.4	8.3	8.60	0.95
55-59	90	59.7	6.2	6.72	0.73
60-64	67	48.7	6.1	5.48	0.70
65-69	60	47.8	6.2	5.38	0.71
70-74	42	32.1	5.0	3.62	0.57
75 OR OLDER	81	62.6	6.9	7.05	0.80
REFUSED/NR	8	8.1	3.0	0.91	0.34
Total for 10	889	889.0	13.5	100	0.00
Question 11. Which of the following best describes you?					
White	696	626.6	13.3	70.5	1.84
Black	60	98.2	12.7	11.0	1.37
Hispanic	53	102.6	14.2	11.5	1.50
Asian	21	17.1	3.9	1.93	0.44
American Indian	15	11.0	3.1	1.24	0.35
Other	28	18.2	3.6	2.04	0.41
Refused/nr	16	15.3	4.0	1.72	0.46
Total for 11	889	889.0	13.5	100	0.00
Question 12. How many total telephone numbers does your household have?					
One	713	720.9	17.3	81.1	1.41
Two	136	133.8	11.7	15.1	1.31
Three	25	21.6	4.5	2.43	0.51
Four	6	5.3	2.2	0.60	0.25
Five or more	6	4.9	2.2	0.56	0.25
Don't know/refused	3	2.4	1.4	0.27	0.15
Total for 12	889	889.0	13.5	100	0.00

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Safety > Cost?					
No	421	416.4	17.0	46.8	1.84
Yes	468	472.6	18.3	53.2	1.84
Total for Safety > Cost?	889	889.0	13.5	100	0.00
Safety > Enviro?					
No	345	354.7	17.4	39.9	1.81
Yes	544	534.3	17.4	60.1	1.81
Total for Safety > Enviro?	889	889.0	13.5	100	0.00
Safety > Conven?					
No	257	252.6	14.7	28.4	1.63
Yes	632	636.4	17.9	71.6	1.63
Total for Safety > Conven?	889	889.0	13.5	100	0.00
Cost > Enviro?					
No	411	421.8	18.3	47.4	1.84
Yes	478	467.2	17.0	52.6	1.84
Total for Cost > Enviro?	889	889.0	13.5	100	0.00
Cost $>$ Conven?					
No	263	267.5	15.8	30.1	1.69
Yes	626	621.5	17.3	69.9	1.69
Total for Cost $>$ Conven?	889	889.0	13.5	100	0.00
Enviro > Conven?					
No	335	325.8	15.9	36.6	1.75
Yes	554	563.2	18.4	63.4	1.75

			Standard Deviation of Weighted	Weighted Percent	Error of Percent
Value	Unweighted Frequency	Weighted Frequency	Frequency		
Total for Enviro $>$ Conven?	889	889.0	13.5	100	0.00

Appendix C.2. Summary of Results for the Student Survey

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Sex					
Males	534	511.4	15.9	51.1	1.63
Females	466	488.6	17.6	48.9	1.63
Total for sex	1,000	1,000.0	7.9	100	0.00
Age					
12	149	165.5	12.9	16.6	1.26
13	146	161.1	12.9	16.1	1.26
14	163	182.3	13.5	18.2	1.32
15	153	139.4	10.7	13.9	1.09
16	183	165.1	11.5	16.5	1.17
17	206	186.6	12.0	18.7	1.22
Total for age	1,000	1,000.0	7.9	100	0.00
Grade					
8th or lower	447	488.8	18.2	49.2	1.65
9th or higher	546	503.9	15.4	50.8	1.65
Total for grade	993	992.7	7.9	100	0.00
Region					
Northeast	177	169.9	3.2	17.0	0.29
Midwest	248	218.9	3.4	21.9	0.31
South	333	368.8	5.0	36.9	0.39
West	242	242.5	4.0	24.2	0.35
Total for region	1,000	1,000.0	7.9	100	0.00

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Urban/Non-Urban					
Urban	505	510.1	5.8	51.0	0.40
Non-Urban	495	489.9	5.4	49.0	0.40
Total for urban	1,000	1,000.0	7.9	100	0.00
Above Average?					
Score Below Average	478	493.9	17.4	49.4	1.64
Score Above Average	522	506.1	16.3	50.6	1.64
Total for above avg.	1,000	1,000.0	7.9	100	0.00
Question 1a. Hydrogen pipelines exist nationwide.					
True	375	390.9	16.8	39.1	1.61
False	265	252.8	14.0	25.3	1.41
Don't know	360	356.3	15.9	35.6	1.58
Total for 1a	1,000	1,000.0	7.9	100	0.00
Question 1b. In a hydrogen economy, hydrogen replaces fossil fuels as the dominant form of energy.					
True	444	431.6	16.1	43.2	1.61
False	164	166.1	12.4	16.6	1.23
Don't know	392	402.3	16.6	40.2	1.60
Total for 1b	1,000	1,000.0	7.9	100	0.00
Question 1c. Hydrogen gas is toxic.					
True	396	407.0	16.9	40.7	1.62
False	392	379.4	15.8	37.9	1.58
Don't know	212	213.5	13.6	21.4	1.35
Total for 1c	1,000	1,000.0	7.9	100	0.00

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	$\begin{aligned} & \text { Standard } \\ & \text { Error } \\ & \text { of } \\ & \text { Percent } \end{aligned}$
Question 1d. Fuel cells produce electricity through hydrogen combustion.					
True	411	407.5	16.2	40.7	1.60
False	132	134.5	11.3	13.5	1.12
Don't know	457	458.0	16.8	45.8	1.64
Total for 1d	1,000	1,000.0	7.9	100	0.00
Question 1e. Hydrogen is so dangerous that it will never be safe for everyday use.					
True	314	314.9	15.6	31.5	1.53
False	457	448.0	16.3	44.8	1.63
Don't know	229	237.1	14.3	23.7	1.40
Total for 1e	1,000	1,000.0	7.9	100	0.00
Question 1g. Hydrogen is lighter than air.					
True	539	520.9	16.2	52.1	1.63
False	277	292.3	15.6	29.2	1.51
Don't know	184	186.8	13.0	18.7	1.29
Total for 1g	1,000	1,000.0	7.9	100	0.00
Question 1h. Hydrogen has a distinct odor.					
True	281	286.6	15.1	28.7	1.48
False	474	467.3	16.5	46.7	1.63
Don't know	245	246.1	14.2	24.6	1.40
Total for 1h	1,000	1,000.0	7.9	100	0.00
Question 3a. In which state or condition can hydrogen be stored?					
Chemical	140	141.2	11.6	14.1	1.15
Liquid	138	138.9	11.3	13.9	1.13
Both	363	354.5	15.5	35.5	1.55

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Neither	118	119.7	10.8	12.0	1.07
Don't know/No opinion	241	245.6	14.4	24.6	1.41
Total for 3a	1,000	1,000.0	7.9	100	0.00
Question 3b. When using pure hydrogen, fuel cell vehicles generate electricity, water and what else?					
Carbon dioxide	140	148.1	12.0	14.8	1.18
Nitrous oxides	40	38.4	6.2	3.84	0.62
Heat	173	167.1	12.0	16.7	1.21
All of these	337	333.3	15.5	33.3	1.53
Don't know/No opinion	310	313.1	15.5	31.3	1.53
Total for 3b	1,000	1,000.0	7.9	100	0.00
Question 3c. Hydrogen can be produced using which of the following sources?					
Natural gas	213	222.1	14.0	22.2	1.38
Sunlight	91	91.8	9.5	9.18	0.95
Organic matter	89	86.6	9.0	8.66	0.90
All of these	355	354.3	16.0	35.4	1.57
Don't know/No opinion	252	245.3	14.1	24.5	1.40
Total for 3c	1,000	1,000.0	7.9	100	0.00
Question 3d. Which of the following would you MOST closely associate with the word "hydrogen"?					
The H-bomb	223	212.1	13.2	21.2	1.32
Chemistry class	440	445.1	16.8	44.5	1.64
Fuel	112	109.0	10.2	10.9	1.02
The Hindenburg	84	83.5	8.9	8.35	0.89
Don't know/No opinion	141	150.2	12.2	15.0	1.20
Total for 3d	1,000	1,000.0	7.9	100	0.00

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Question 3e. How would you feel if your local gas station also sold hydrogen?					
Frightened	85	91.2	9.8	9.12	0.97
Uneasy	186	187.1	13.1	18.7	1.30
At ease	211	207.6	13.2	20.8	1.32
Pleased	168	161.5	11.8	16.2	1.18
Don't know/No opinion	350	352.6	16.1	35.3	1.57
Total for 3e	1,000	1,000.0	7.9	100	0.00
Question 3f. Which of the following represents a type of fuel cell?					
PDQ	36	33.9	5.8	3.39	0.58
PEM	26	26.7	5.4	2.67	0.53
CFC	71	73.2	8.7	7.32	0.86
None of these	290	295.5	15.4	29.5	1.51
Don't know/No opinion	577	570.8	16.7	57.1	1.63
Total for 3f	1,000	1,000.0	7.9	100	0.00
Question 4a. Using hydrogen will reduce U.S. dependence on foreign oil.					
Disagree	124	130.8	11.5	13.1	1.14
Are neutral	83	82.4	9.0	8.24	0.89
Agree	549	529.2	16.2	52.9	1.64
No opinion	244	257.6	14.9	25.8	1.45
Total for 4a	1,000	1,000.0	7.9	100	0.00
Question 4b. Using hydrogen will reduce emissions and improve air quality.					
Disagree	163	172.5	12.9	17.2	1.26
Are neutral	95	92.2	9.5	9.22	0.95
Agree	510	496.4	16.4	49.6	1.63
No opinion	232	238.9	14.3	23.9	1.41

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Total for 4 b	1,000	1,000.0	7.9	100	0.00
Question 4d. Hydrogen is as safe as gasoline and diesel fuels.					
Disagree	266	270.1	14.9	27.0	1.47
Are neutral	114	110.6	10.2	11.1	1.02
Agree	369	366.0	15.8	36.6	1.57
No opinion	251	253.3	14.5	25.3	1.43
Total for 4d	1,000	1,000.0	7.9	100	0.00
Question 5a. Personal cars and trucks					
Low	192	185.2	12.6	18.5	1.26
Medium	329	329.4	15.7	32.9	1.55
High	360	366.5	16.3	36.7	1.59
No opinion	119	118.8	10.8	11.9	1.08
Total for 5a	1,000	1,000.0	7.9	100	0.00
Question 5b. Buses and commercial vehicles					
Low	174	170.8	12.3	17.1	1.22
Medium	325	320.0	15.5	32.0	1.53
High	354	359.8	16.1	36.0	1.58
No opinion	147	149.5	11.9	15.0	1.18
Total for 5b	1,000	1,000.0	7.9	100	0.00
Question 5c. Large power plants					
Low	158	162.3	12.3	16.2	1.22
Medium	227	221.5	13.4	22.1	1.34
High	473	471.8	16.8	47.2	1.65
No opinion	142	144.5	11.8	14.4	1.17

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Total for 5c	1,000	1,000.0	7.9	100	0.00
Question 5d. Small portable devices such as laptop computers or cell phones					
Low	407	397.8	15.9	39.8	1.59
Medium	173	173.2	12.4	17.3	1.23
High	274	281.0	15.4	28.1	1.50
No opinion	146	148.0	11.8	14.8	1.18
Total for 5d	1,000	1,000.0	7.9	100	0.00
Question 5e. Onsite power for the home					
Low	220	216.5	13.5	21.7	1.34
Medium	381	375.7	15.9	37.6	1.57
High	257	261.5	14.7	26.1	1.45
No opinion	142	146.3	11.8	14.6	1.17
Total for 5e	1,000	1,000.0	7.9	100	0.00
Question 5f. Onsite power for buildings such as hospitals and schools					
Low	184	183.2	12.7	18.3	1.26
Medium	278	278.9	14.7	27.9	1.46
High	391	387.7	16.2	38.8	1.60
No opinion	147	150.2	11.9	15.0	1.18
Total for 5f	1,000	1,000.0	7.9	100	0.00
Question 6a. Personal cars and trucks					
Not as safe	223	224.4	14.0	22.4	1.38
Equally as safe	372	366.4	15.8	36.6	1.57
Safer	272	271.1	14.6	27.1	1.45
No opinion	133	138.1	11.5	13.8	1.14

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Total for 6a	1,000	1,000.0	7.9	100	0.00
Question 6b. Buses and commercial vehicles					
Not as safe	232	239.2	14.5	23.9	1.42
Equally as safe	351	342.9	15.6	34.3	1.56
Safer	281	278.3	14.8	27.8	1.47
No opinion	136	139.6	11.6	14.0	1.15
Total for 6b	1,000	1,000.0	7.9	100	0.00
Question 6c. Large power plants					
Not as safe	314	319.9	15.7	32.0	1.53
Equally as safe	261	251.7	13.9	25.2	1.39
Safer	280	279.4	14.7	27.9	1.46
No opinion	145	149.0	11.8	14.9	1.17
Total for 6c	1,000	1,000.0	7.9	100	0.00
Question 6d. Small portable devices such as laptop computers or cell phones					
Not as safe	276	272.4	14.7	27.2	1.45
Equally as safe	364	361.9	16.0	36.2	1.57
Safer	209	211.7	13.6	21.2	1.34
No opinion	151	154.0	11.8	15.4	1.18
Total for 6d	1,000	1,000.0	7.9	100	0.00
Question 6e. Onsite power for the home					
Not as safe	256	251.4	14.2	25.1	1.41
Equally as safe	379	376.4	16.0	37.6	1.58
Safer	223	224.4	13.9	22.4	1.38
No opinion	142	147.8	11.9	14.8	1.18

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Total for 6e	1,000	1,000.0	7.9	100	0.00
Question 6f. Onsite power for buildings such as hospitals and schools					
Not as safe	207	206.5	13.4	20.7	1.32
Equally as safe	349	344.2	15.7	34.4	1.56
Safer	307	306.8	15.3	30.7	1.51
No opinion	137	142.5	11.8	14.2	1.17
Total for 6 f	1,000	1,000.0	7.9	100	0.00
Question 7a. Cost of vehicle					
Not important	97	100.6	10.0	10.1	1.00
Neutral	144	137.0	11.2	13.7	1.12
Important	691	691.9	16.1	69.2	1.52
No opinion	68	70.6	8.7	7.06	0.86
Total for 7a	1,000	1,000.0	7.9	100	0.00
Question 7b. Gas mileage					
Not important	50	53.3	7.6	5.33	0.75
Neutral	87	86.7	9.3	8.67	0.93
Important	814	809.7	14.1	81.0	1.30
No opinion	49	50.4	7.4	5.04	0.74
Total for 7b	1,000	1,000.0	7.9	100	0.00
Question 7c. Power and speed					
Not important	211	209.7	13.5	21.0	1.34
Neutral	236	235.4	13.7	23.5	1.36
Important	492	494.5	16.8	49.4	1.63
No opinion	61	60.4	7.9	6.04	0.79

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	$\begin{gathered} \text { Standard } \\ \text { Error } \\ \text { of } \\ \text { Percent } \end{gathered}$
Total for 7c	1,000	1,000.0	7.9	100	0.00
Question 7e. Reliability					
Not important	34	35.6	6.3	3.56	0.63
Neutral	75	77.2	9.0	7.72	0.89
Important	831	825.3	13.8	82.5	1.27
No opinion	60	61.9	8.2	6.19	0.81
Total for 7e	1,000	1,000.0	7.9	100	0.00
Question 7f. Safety					
Not important	15	14.4	3.9	1.44	0.39
Neutral	57	55.1	7.3	5.51	0.74
Important	891	892.0	12.4	89.2	1.01
No opinion	37	38.5	6.5	3.85	0.65
Total for 7f	1,000	1,000.0	7.9	100	0.00
Question 7g. Environment					
Not important	74	68.5	8.0	6.85	0.80
Neutral	153	147.8	11.4	14.8	1.14
Important	707	714.6	16.0	71.5	1.46
No opinion	66	69.0	8.5	6.90	0.84
Total for 7g	1,000	1,000.0	7.9	100	0.00
Question 8a. Television					
Never	224	215.4	13.1	21.5	1.32
Sometimes	525	520.1	16.7	52.0	1.63
Frequently	230	242.0	14.5	24.2	1.42
Don't know	21	22.6	5.0	2.26	0.50

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Total for 8 a	1,000	1,000.0	7.9	100	0.00
Question 8b. Radio					
Never	522	516.5	16.7	51.6	1.64
Sometimes	337	335.0	15.7	33.5	1.55
Frequently	111	116.9	10.8	11.7	1.07
Don't know	30	31.7	6.0	3.17	0.59
Total for 8 b	1,000	1,000.0	7.9	100	0.00
Question 8c. The Internet					
Never	397	397.6	16.3	39.8	1.59
Sometimes	366	361.2	15.7	36.1	1.56
Frequently	206	206.3	13.4	20.6	1.33
Don't know	31	35.0	6.3	3.50	0.63
Total for 8c	1,000	1,000.0	7.9	100	0.00
Question 8d. Newspapers and non-technical magazines					
Never	368	361.8	15.8	36.2	1.57
Sometimes	449	451.7	16.6	45.2	1.63
Frequently	140	141.2	11.5	14.1	1.14
Don't know	43	45.3	7.0	4.53	0.70
Total for 8d	1,000	1,000.0	7.9	100	0.00
Question 8e. Science and technology magazines and journals					
Never	364	361.6	15.9	36.2	1.57
Sometimes	336	334.7	15.7	33.5	1.54
Frequently	263	265.8	14.7	26.6	1.45
Don't know	37	37.9	6.4	3.79	0.63

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Total for 8 e	1,000	1,000.0	7.9	100	0.00
Question 8f. Classroom instructions					
Never	205	198.7	13.0	19.9	1.29
Sometimes	454	447.0	16.5	44.7	1.63
Frequently	312	325.1	15.8	32.5	1.54
Don't know	29	29.2	5.6	2.92	0.56
Total for 8 f	1,000	1,000.0	7.9	100	0.00
Question 8g. General discussions with family or friends					
Never	496	492.5	16.8	49.2	1.65
Sometimes	372	373.6	16.2	37.4	1.59
Frequently	112	113.2	10.5	11.3	1.04
Don't know	20	20.7	4.8	2.07	0.48
Total for 8 g	1,000	1,000.0	7.9	100	0.00
Question 9a. Received instruction on or otherwise learned about energy use, fuels, and emissions					
Yes	634	641.1	16.7	64.1	1.57
No	348	341.0	15.6	34.1	1.54
Don't know	18	17.9	4.4	1.79	0.44
Total for 9a	1,000	1,000.0	7.9	100	0.00
Question 9b. Received instruction on or otherwise learned about hydrogen and fuel cells					
Yes	569	566.8	16.8	56.7	1.62
No	412	413.2	16.5	41.3	1.61
Don't know	19	20.0	4.7	2.00	0.47
Total for 9b	1,000	1,000.0	7.9	100	0.00

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Question 9c. Ever used a demonstration kit to produce hydrogen					
Yes	114	119.5	11.0	12.0	1.09
No	863	859.6	13.2	86.0	1.15
Don't know	23	20.8	4.3	2.08	0.44
Total for 9c	1,000	1,000.0	7.9	100	0.00
Question 9d. Ever used a model fuel cell science kit					
Yes	95	99.7	10.0	9.97	1.00
No	883	878.5	12.7	87.8	1.08
Don't know	22	21.8	4.8	2.18	0.48
Total for 9d	1,000	1,000.0	7.9	100	0.00
Question 9e. Ever seen or used a hydrogen fuel cell model car					
Yes	130	131.1	11.1	13.1	1.11
No	856	854.8	13.4	85.5	1.16
Don't know	14	14.1	4.0	1.41	0.40
Total for 9e	1,000	1,000.0	7.9	100	0.00
Question 9f. Participated in a fuel cell vehicle design competition					
Yes	28	28.5	5.6	2.85	0.56
No	963	962.1	9.9	96.2	0.64
Don't know	9	9.4	3.2	0.94	0.32
Total for 9f	1,000	1,000.0	7.9	100	0.00
Question 9g. Participated in a science bowl or other science competition					
Yes	382	387.2	16.5	38.7	1.61
No	616	610.3	16.7	61.0	1.61
Don't know	2	2.4	1.7	0.24	0.17

Value			Standard Deviation of Unweighted Frequency		Weighted Frequency	Weighted Frequency	Weighted Percent

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Total for 10e	130	131.1	2.7	100	0.00
Question 10f. Participated in a fuel cell vehicle design competition					
Yes	23	22.4	2.3	78.5	8.48
No	5	6.1	2.5	21.5	8.48
Total for 10f	28	28.5	1.2	100	0.00
Question 10g. Participated in a science bowl or other science competition					
Yes	370	377.0	6.1	97.4	0.79
No	12	10.3	3.1	2.65	0.79
Total for 10 g	382	387.2	5.1	100	0.00
Question 11a. Received instruction on or otherwise learned about energy use, fuels, and emissions					
Home	25	23.6	2.7	45.2	5.76
Scouts	2	2.3	1.6	4.35	3.08
Internet	6	5.6	1.3	10.6	2.58
Other	14	14.9	3.5	28.5	6.30
Don't know	6	5.9	2.4	11.3	4.55
Total for 11a	53	52.2	1.9	100	0.00
Question 11b. Received instruction on or otherwise learned about hydrogen and fuel cells					
Home	22	21.9	3.2	51.1	6.87
Religious organization	2	1.4	1.0	3.36	2.42
Internet	7	6.0	1.8	14.0	4.31
Other	14	12.5	2.8	29.3	6.96
Don't know	1	0.9	0.0	2.19	0.05
Total for 11b	46	42.8	1.0	100	0.00

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Question 11c. Ever used a demonstration kit to produce hydrogen					
Home	3	3.4	0.0	38.8	0.94
Scouts	2	2.4	1.1	27.3	13.1
Don't know	3	3.0	1.3	33.9	14.0
Total for 11c	8	8.8	0.2	100	0.00
Question 11d. Ever used a model fuel cell science kit					
Home	8	8.4	1.2	71.2	12.7
Scouts	1	0.9	0.9	7.98	7.72
Internet	1	0.5	0.0	4.60	0.17
Other	1	0.6	0.0	5.16	0.20
Don't know	1	1.3	1.3	11.1	10.9
Total for 11d	12	11.7	0.4	100	0.00
Question 11e. Ever seen or used a hydrogen fuel cell model car					
Home	16	16.5	3.5	29.4	6.13
Religious organization	1	0.9	0.9	1.67	1.68
Scouts	2	2.0	1.4	3.53	2.50
Internet	6	6.1	1.9	10.9	3.33
Other	27	26.0	3.5	46.4	6.26
Don't know	5	4.5	1.7	8.11	3.09
Total for 11e	57	56.1	1.2	100	0.00
Question 11f. Participated in a fuel cell vehicle design competition					
Home	2	2.2		35.5	
Other	1	1.1		18.3	
Don’t know	2	2.8		46.2	
Total for 11f	5	6.1		100	0.00

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent
Question 11g. Participated in a science bowl or other science competition					
Home	1	0.8	0.8	7.43	7.56
Religious organization	1	0.5	0.0	5.32	0.21
Scouts	1	0.9	0.9	9.15	9.00
Other	8	6.8	0.4	66.2	1.67
Don't know	1	1.2	0.0	11.9	0.47
Total for 11g	12	10.3	0.4	100	0.00
Question 12. What was the last grade in school you completed?					
4TH OR LESS	4	4.3	2.2	0.43	0.22
5	16	16.7	4.3	1.67	0.43
6	110	118.6	11.1	11.9	1.09
7	165	182.2	13.4	18.2	1.30
8	152	166.9	12.9	16.7	1.27
9	174	162.7	11.6	16.3	1.17
10	161	149.3	11.1	14.9	1.13
11	174	158.9	11.3	15.9	1.15
12	31	26.9	5.0	2.69	0.50
MORE THAN 12	6	6.2	2.5	0.62	0.25
HOME SCHOOLED	2	1.9	1.4	0.19	0.14
REFUSED/NR	5	5.3	2.4	0.53	0.24
Total for 12	1,000	1,000.0	7.9	100	0.00
Question 13. Which of the following best describes you?					
White	631	626.8	15.1	62.7	1.56
Black	112	149.7	13.1	15.0	1.26
Hispanic	125	152.9	12.6	15.3	1.22

Value	Unweighted Frequency	Weighted Frequency	Standard Deviation of Weighted Frequency	Weighted Percent	Standard Error of Percent	
Asian	38	18.0	2.8	1.80	0.29	
American Indian	24	11.6	2.3	1.16	0.24	
Other	57	27.5	3.6	2.75	0.37	
Refused/nr	13	13.4	3.8	1.34	0.38	
Total for 13	1,000	$1,000.0$	7.9	100	0.00	
Question 14. How many total telephone numbers does your household have?						
One	718	715.2	15.8	71.5	1.46	
Two	176	176.1	12.3	17.6	1.23	
Three	50	50.4	7.2	5.04	0.72	
Four	21	21.4	4.8	2.14	0.48	
Five or more	16	16.7	4.3	1.67	0.43	
Don't know/refused	19	20.2	4.7	2.02	0.47	
Total for 14	1,000	$1,000.0$	7.9	100	0.00	

Appendix C.3. Summary of Results for the State and Local Government Survey

Value	Frequency	Standard Deviation of Frequency	Percent	Standard Error of Percent
Function				
City	44	1.2	18.6	0.51
County	46	1.3	19.5	0.54
DEP (State)	49	1.2	20.8	0.52
DOT (State)	50	1.3	21.2	0.53
SEO (State)	47	1.2	19.9	0.51
Total for Function	236	0.0	100	0.00
Region				
Northeast	47	1.2	19.9	0.53
Midwest	56	1.3	23.7	0.56
South	70	1.4	29.7	0.59
West	63	1.4	26.7	0.58
Total for Region	236	0.0	100	0.00
Above Average?				
Score Below Average	117	1.3	49.6	0.57
Score Above Average	119	1.3	50.4	0.57
Total for above avg.	236	0.0	100	0.00
Question 1a. Hydrogen pipelines exist nationwide.				
True	19	1.0	8.05	0.41
False	170	1.4	72.0	0.58
Don't know	47	1.1	19.9	0.48
Total for 1a	236	0.0	100	0.00
Question 1b. In a hydrogen economy, hydrogen replaces fossil fuels as the dominant form of energy.				

	Value	Standard Deviation of		Standard Error of
Frue	Frequency	Frequency	Percent	Percent
False	162	1.3	68.6	0.55
Don't know	31	1.2	17.4	0.49
Total for 1b	236	0.8	14.0	0.35

Question 1c. Hydrogen gas is toxic.

True	23	0.7	9.75	0.28
False	170	1.3	72.0	0.53
Don't know	43	1.1	18.2	0.46
Total for 1c	236	0.0	100	0.00

Question 1d. Fuel cells produce electricity through hydrogen combustion.

True	116	1.5	49.2	0.61
False	88	1.3	37.3	0.57
Don't know	32	0.9	13.6	0.40
Total for 1d	236	0.0	100	0.00

Question 1e. Hydrogen is so dangerous that it will never be safe for everyday use.

True	23	0.6	9.75	0.26
False	185	1.1	78.4	0.45
Don't know	28	0.9	11.9	0.39
Total for 1e	236	0.0	100	0.00

Question 1g. Hydrogen is lighter than air.

True	187	1.0	79.2	0.43
False	15	0.8	6.36	0.33
Don't know	34	0.8	14.4	0.32
Total for 1 g	236	0.0	100	0.00

Value	Standard Deviation of Frequency				
Frequency	Percent	Standard Error of Percent			
Question 1h. Hydrogen has a distinct order.	7	0.6	2.97	0.27	
True	7	1.1	81.4	0.49	
False	192	1.0	15.7	0.43	
Don't know	27	0.0	100	0.00	
Total for 1h	236				
Question 3a. In which state or condition can hydrogen be stored?					
Chemical	2	0.0	0.85	0.00	
Liquid	41	1.0	17.4	0.42	
Both	153	1.2	64.8	0.53	
Neither	6	0.5	2.54	0.22	
Don't know/No opinion	34	0.8	14.4	0.34	
Total for 3a	236	0.0	100	0.00	

Question 3b. When using pure hydrogen, fuel cell vehicles generate electricity, heat and what else?

Carbon dioxide	23	0.9	9.75	0.40
Nitrous oxides	7	0.7	2.97	0.28
Heat	124	1.4	52.5	0.58
All of these	22	0.4	9.32	0.19
Don't know/No opinion	60	1.1	25.4	0.48
Total for 3b	236	0.0	100	0.00

Question 3c. Hydrogen can be produced using which of the following sources?

Natural gas	21	0.9	8.90	0.40
Sunlight	14	0.7	5.93	0.30
Organic matter	4	0.0	1.69	0.00
All of these	158	1.3	66.9	0.56
Don't know/No opinion	39	1.0	16.5	0.41
Total for 3c	236	0.0	100	0.00

Value	Frequency	Standard Deviation of Frequency	Percent	Standard Error of Percent
Question 3d. Which of the following would you MOST closely associate with the word "hydrogen"?				
The H-bomb	31	0.9	13.1	0.38
Chemistry class	57	1.0	24.2	0.43
Fuel	91	1.4	38.6	0.61
The Hindenburg	52	1.4	22.0	0.58
Don't know/No opinion	5	0.5	2.12	0.21
Total for 3d	236	0.0	100	0.00

Question 3e. How would you feel if your local gas station also sold hydrogen?

Frightened	1	0.0	0.42	0.00
Uneasy	16	0.7	6.78	0.30
At ease	82	1.4	34.7	0.58
Pleased	125	1.3	53.0	0.55
Don't know/No opinion	12	0.5	5.08	0.21
Total for 3e	236	0.0	100	0.00

Question 3f. Which of the following represents a type of fuel cell?

PDQ	1	0.0	0.42	0.00
PEM	120	1.3	50.8	0.57
CFC	10	0.6	4.24	0.24
None of these	18	0.8	7.63	0.35
Don't know/No opinion	87	1.3	36.9	0.55
Total for 3f	236	0.0	100	0.00

Question 4a. Using hydrogen will reduce U.S. dependence on foreign oil.

Disagree	6	0.5	2.54	0.21
Are neutral	11	0.7	4.66	0.28
Agree	217	0.8	91.9	0.35

		Standard Deviation of		Standard Error of
Value	Frequency	Frequency	Percent	Percent

Question 4b. Using hydrogen will reduce emissions and improve air quality.

Disagree	3	0.4	1.27	0.17
Are neutral	7	0.5	2.97	0.21
Agree	217	0.6	91.9	0.27
No opinion	9	0.0	3.81	0.00
Total for 4b	236	0.0	100	0.00

Question 4d. Hydrogen is as safe as gasoline and diesel fuels.

Disagree	28	0.9	11.9	0.39
Are neutral	11	0.4	4.66	0.17
Agree	167	1.2	70.8	0.49
No opinion	30	0.8	12.7	0.35
Total for 4d	236	0.0	100	0.00

Question 5a. Personal cars and trucks

Low	120	1.4	50.8	0.59
Medium	73	1.3	30.9	0.57
High	40	0.9	16.9	0.40
No opinion	3	0.0	1.27	0.00
Total for 5a	236	0.0	100	0.00

Question 5b. Buses and commercial vehicles

Low	73	1.3	30.9	0.56
Medium	95	1.5	40.3	0.62
High	63	1.3	26.7	0.53
No opinion	5	0.3	2.12	0.12

$\left.\begin{array}{|c|c|c|c|c|}\hline & \text { Value } & \text { Frequency } & \begin{array}{c}\text { Standard } \\ \text { Deviation } \\ \text { of } \\ \text { Frequency }\end{array} & \text { Percent }\end{array} \begin{array}{c}\text { Standard } \\ \text { Error } \\ \text { of } \\ \text { Percent }\end{array}\right]$

Question 5c. Large power plants

Low	149	1.3	63.1	0.56
Medium	57	1.2	24.2	0.51
High	17	0.5	7.20	0.22
No opinion	13	0.5	5.51	0.21
Total for 5c	236	0.0	100	0.00

Question 5d. Small portable devices such as laptop computers or cell phones

Low	129	1.4	54.7	0.58
Medium	52	1.3	22.0	0.54
High	36	0.9	15.3	0.39
No opinion	19	0.6	8.05	0.27
Total for 5d	236	0.0	100	0.00

Question 5e. Onsite power for the home

Low	163	1.3	69.1	0.57
Medium	54	1.2	22.9	0.52
High	10	0.5	4.24	0.21
No opinion	9	0.3	3.81	0.12
Total for 5 e	236	0.0	100	0.00

Question 5f. Onsite power for buildings such as hospitals and schools

Low	92	1.5	39.0	0.64
Medium	103	1.5	43.6	0.63
High	24	0.6	10.2	0.27
No opinion	17	0.7	7.20	0.31
Total for 5 f	236	0.0	100	0.00

Value	Frequency	Standard Deviation of Frequency	Percent	Standard Error of Percent
Question 6a. Personal cars and trucks				
Not as safe	24	0.9	10.2	0.39
Equally as safe	144	1.3	61.0	0.57
Safer	55	1.3	23.3	0.54
No opinion	13	0.5	5.51	0.20
Total for 6a	236	0.0	100	0.00
Question 6b. Buses and commercial vehicles				
Not as safe	19	0.9	8.05	0.36
Equally as safe	152	1.4	64.4	0.58
Safer	52	1.2	22.0	0.53
No opinion	13	0.5	5.51	0.23
Total for 6b	236	0.0	100	0.00
Question 6c. Large power plants				
Not as safe	20	0.9	8.47	0.39
Equally as safe	134	1.5	56.8	0.63
Safer	49	1.1	20.8	0.48
No opinion	33	1.0	14.0	0.43
Total for 6c	236	0.0	100	0.00
Question 6d. Small portable devices such as laptop computers or cell phones				
Not as safe	49	1.3	20.8	0.54
Equally as safe	118	1.4	50.0	0.60
Safer	23	1.0	9.75	0.41
No opinion	46	1.0	19.5	0.42
Total for 6d	236	0.0	100	0.00

Value Standard Deviation of Frequency	Percent	Standard Error of Percent		
Question 6e. Onsite power for the home				
Not as safe	35	1.0	14.8	0.41
Equally as safe	145	1.3	61.4	0.55
Safer	30	0.9	12.7	0.37
No opinion	26	0.7	11.0	0.29
Total for 6e	236	0.0	100	0.00

Question 6f. Onsite power for buildings such as hospitals and schools

Not as safe	23	0.8	9.75	0.32
Equally as safe	159	1.3	67.4	0.54
Safer	29	1.0	12.3	0.41
No opinion	25	0.9	10.6	0.39
Total for 6 f	236	0.0	100	0.00

Question 7a. Teachers and schools

Never	163	1.4	69.1	0.58
Sometimes	62	1.4	26.3	0.57
Frequently	11	0.5	4.66	0.21
Total for 7 a	236	0.0	100	0.00

Question 7b. Friends and family members

Never	109	1.4	46.2	0.61
Sometimes	115	1.4	48.7	0.60
Frequently	12	0.8	5.08	0.33
Total for 7b	236	0.0	100	0.00

Question 7c. Environmental and conservation groups

Never	22	0.7	9.32	0.30
Sometimes	138	1.5	58.5	0.62

\(\left.$$
\begin{array}{|l|c|c|c|c|}\hline & \text { Value } & \begin{array}{c}\text { Standard } \\
\text { Deviation } \\
\text { of }\end{array} & & \begin{array}{c}\text { Standard } \\
\text { Error } \\
\text { of }\end{array}
$$

Frequency\end{array}\right]\) Percent | Percent |
| :---: |$|$

Question 7d. Utility companies or brokers, for example, gas or electricity providers

Never	27	0.9	11.4	0.36
Sometimes	133	1.5	56.4	0.62
Frequently	76	1.4	32.2	0.59
Total for 7d	236	0.0	100	0.00

Question 7e. Federal government

Never	16	1.0	6.78	0.42
Sometimes	87	1.3	36.9	0.53
Frequently	133	1.3	56.4	0.56
Total for 7 e	236	0.0	100	0.00

Question 7f. State government

Never	16	0.9	6.78	0.36
Sometimes	137	1.4	58.1	0.60
Frequently	82	1.3	34.7	0.55
Don't know	1	0.0	0.42	0.00
Total for 7f	236	0.0	100	0.00

Question 7g. Local government

Never	100	1.4	42.4	0.61
Sometimes	109	1.4	46.2	0.60
Frequently	27	1.0	11.4	0.43
Total for 7 g	236	0.0	100	0.00

Question 8a. Television

Value	Frequency	Standard Deviation of Frequency	Percent	Standard Error of Percent
Never	60	1.3	25.4	0.53
Sometimes	149	1.5	63.1	0.62
Frequently	27	1.0	11.4	0.44
Total for 8a	236	0.0	100	0.00
Question 8b. Radio				
Never	101	1.4	42.8	0.58
Sometimes	120	1.4	50.8	0.58
Frequently	15	0.7	6.36	0.28
Total for 8 b	236	0.0	100	0.00
Question 8c. The Internet				
Never	23	0.7	9.75	0.31
Sometimes	77	1.4	32.6	0.58
Frequently	136	1.4	57.6	0.60
Total for 8c	236	0.0	100	0.00
Question 8d. Newspapers and non-technical magazines				
Never	14	0.5	5.93	0.22
Sometimes	153	1.3	64.8	0.57
Frequently	69	1.3	29.2	0.55
Total for 8d	236	0.0	100	0.00
Question 8e. Science and technology magazines and journals				
Never	23	0.6	9.75	0.24
Sometimes	101	1.4	42.8	0.60
Frequently	112	1.4	47.5	0.59
Total for 8e	236	0.0	100	0.00

Value	Frequency	Standard Deviation of Frequency	Percent	Standard Error of Percent
Question 9. Does your agency operate any hydrogen-powered vehicles?				
Yes	12	0.5	5.08	0.21
No	216	0.8	91.5	0.35
Don't know	8	0.7	3.39	0.30
Total for 9	236	0.0	100	0.00
Question 10. Do you know of any other organization that operates hydrogenpowered buses or other fleet vehicles your geographic jurisdiction?				
Yes	54	1.2	22.9	0.52
No	164	1.3	69.5	0.54
Don't know	18	0.9	7.63	0.37
Total for 10	236	0.0	100	0.00
Question 11. Does your agency own or operate any stationary fuel cells?				
Yes	20	0.6	8.47	0.26
No	208	0.8	88.1	0.36
Don't know	8	0.6	3.39	0.24
Total for 11	236	0.0	100	0.00

Question 12. Do you know of any other organization that operates stationary fuel cells in your geographic jurisdiction?

Yes	71	1.0	30.1	0.44
No	147	1.3	62.3	0.56
Don't know	18	0.8	7.63	0.35
Total for 12	236	0.0	100	0.00

Question 13. Does your agency have plans to use hydrogen or fuel cells in the future?

Yes	71	1.3	30.1	0.53
No	119	1.5	50.4	0.63
Don't know	46	1.2	19.5	0.49

Value		Standard Deviation of Frequency	Percent	Standard Error of Percent
Total for 13	Frequency	100	0.00	
Question 14. What is the time frame for plans to use hydrogen or fuel cells?				
Within the next year	13	0.5	18.3	0.74
1-5 years	33	0.8	46.5	1.06
Over 5 years	23	0.7	32.4	1.02
DON'T KNOW	2	0.0	2.82	0.00
Total for 14	71	0.0	100	0.00

Question 15. How do you feel about the use of hydrogen and fuel cells in or around the workplace?

Pleased	81	1.3	34.3	0.55
At ease	126	1.4	53.4	0.60
Uneasy	12	0.5	5.08	0.21
Frightened	1	0.0	0.42	0.00
Don't know/No opinion	16	0.7	6.78	0.30
Total for 15	236	0.0	100	0.00

Question 16. Have you received information at your workplace concerning hydrogen and/or fuel cells?

Yes	123	1.1	52.1	0.46
No	112	1.1	47.5	0.46
Don't know	1	0.0	0.42	0.00
Total for 16	236	0.0	100	0.00

Question 17a. A training class on hydrogen or fuel cells

Yes	39	1.1	16.5	0.47
No	197	1.1	83.5	0.47
Total for 17 a	236	0.0	100	0.00

Question 17b. A press conference concerning the use of hydrogen or fuel cells

	Value	Standard Deviation of		Standard Error of
Yes	Frequency	Frequency	Percent	Percent

Question 17c. A conference or workshop that included a session on hydrogen or fuel cells

Yes	101	1.1	42.8	0.47
No	135	1.1	57.2	0.47
Total for 17 c	236	0.0	100	0.00

Question 18. Would a DOE-sponsored class, conference or workshop on hydrogen and fuel cells be of value to you?

Yes	203	1.1	86.0	0.45
No	28	1.1	11.9	0.45
Don't know	5	0.0	2.12	0.00
Total for 18	236	0.0	100	0.00

Appendix C.4. Summary of Results for the Large-Scale End User Survey

Value	Frequency	Standard Deviation of Frequency	Percent	Standard Error of Percent
Category				
Transportation	33	4.7	33.3	4.76
Uninterrupted supply users	33	4.7	33.3	4.76
Large power users	33	4.7	33.3	4.76
Total for category	99	0.0	100	0.00
Subcategory				
Trucking	9	2.5	9.09	2.57
Transit	1	1.0	1.01	0.99
Postal service	7	2.3	7.07	2.36
Couriers \& messengers	4	1.9	4.04	1.89
Automotive rental/leasing	4	1.9	4.04	1.89
Police	2	1.4	2.02	1.38
Fire	2	1.4	2.02	1.38
Private fleets	3	1.6	3.03	1.66
Airports	1	1.0	1.01	0.99
Farms	9	2.6	9.09	2.61
Financial institutions	5	2.1	5.05	2.10
Educational services	2	1.4	2.02	1.40
Hospitals/residential care	3	1.7	3.03	1.68
Wired communications	1	1.0	1.01	1.00
Wireless communications	1	1.0	1.01	1.00
National security	1	1.0	1.01	1.00
Utilities	2	1.4	2.02	1.40
Government Services	9	2.6	9.09	2.61
Industry	33	0.0	33.3	0.00
Total for subcategory	99	0.0	100	0.00

Value	Frequency	Standard Deviation of Frequency	Percent	Standard Error of Percent
Region				
Northeast	13	3.3	13.1	3.34
Midwest	29	4.5	29.3	4.55
South	34	4.5	34.3	4.58
West	23	4.2	23.2	4.24
Total for region	99	0.0	100	0.00
Urban/Non-Urban				
Urban	68	4.5	68.7	4.60
Non-Urban	31	4.5	31.3	4.60
Total for urban	99	0.0	100	0.00
Above Average?				
Score Below Average	41	4.7	41.4	4.75
Score Above Average	58	4.7	58.6	4.75
Total for above avg.	99	0.0	100	0.00
Question 1. I am going to read several job titles. Please tell me which one applies to you.				
Fleet manager	3	1.7	3.03	1.71
Plant or facility manager	22	4.1	22.2	4.17
Operations manager	22	4.1	22.2	4.13
Financial manager	7	2.5	7.07	2.55
Energy manager	13	3.3	13.1	3.30
CEO	1	1.0	1.01	1.00
Something else	31	4.4	31.3	4.49
Total for 1	99	0.0	100	0.00
Question 2. How many years have you held this position?				
Less than one year	1	1.0	1.01	0.99

Value		Standard Deviation of		Standard Error of
Frequency	Frequency	Percent	Percent	
Between one and five years	37	4.8	37.4	4.85
Over five years	61	4.8	61.6	4.87
Total for 2	99	0.0	100	0.00

Question 3a. How many vehicles are in the GROUND-BASED fleet operated by your organization or agency?

LESS THAN 100	21	2.8	63.6	8.34
$100-1,000$	9	2.5	27.3	7.72
$1,001-10,000$	2	1.4	6.06	4.14
OVER 10,000	1	1.0	3.03	2.97
Total for 3 a	33	0.0	100	0.00

Question 3b. What is the average annual cost of electrical energy for your organization or agency?				
UNDER \$100,000	5	2.2	7.58	3.27
$\$ 100,000$ TO $\$ 1,000,000$	17	3.6	25.8	5.38
$\$ 1,000,001$ TO $\$ 2,000,000$	8	2.7	12.1	4.03
OVER $\$ 2,000,000$	23	3.5	34.8	5.35
Don't know/Refused	13	3.1	19.7	4.63
Total for 3b	66	0.0	100	0.00

Question 4a. System installation cost

Low	1	1.0	1.01	0.99
Medium	46	5.0	46.5	5.02
High	44	4.9	44.4	4.96
No opinion	8	2.7	8.08	2.68
Total for 4 a	99	0.0	100	0.00

Question 4b. System maintenance cost

Low	7	2.5	7.07	2.57
Medium	33	4.6	33.3	4.66

Value	Frequency	Standard Deviation of Frequency	Percent	Standard Error of Percent
High	53	5.0	53.5	5.01
No opinion	6	2.3	6.06	2.35
Total for 4b	99	0.0	100	0.00
Question 4c. Fuel cost				
Low	1	1.0	1.01	0.99
Medium	18	3.8	18.2	3.86
High	78	4.1	78.8	4.11
No opinion	2	1.4	2.02	1.41
Total for 4c	99	0.0	100	0.00
Question 4d. Dependability				
Medium	6	2.4	6.06	2.39
High	92	2.5	92.9	2.55
No opinion	1	1.0	1.01	0.99
Total for 4d	99	0.0	100	0.00
Question 4e. Safety				
Low	2	1.4	2.02	1.41
Medium	12	3.2	12.1	3.26
High	83	3.7	83.8	3.70
No opinion	2	1.4	2.02	1.38
Total for 4e	99	0.0	100	0.00
Question 4f. Protection of the environment				
Low	6	2.4	6.06	2.38
Medium	35	4.7	35.4	4.77
High	56	4.8	56.6	4.90
No opinion	2	1.4	2.02	1.38

Value	Frequency	Standard Deviation of Frequency	Percent	Standard Error of Percent
Total for 4 f	99	0.0	100	0.00
Question 4g. Uninterrupted availability				
Low	3	1.7	3.03	1.68
Medium	15	3.6	15.2	3.59
High	79	3.9	79.8	3.97
No opinion	2	1.4	2.02	1.41
Total for 4 g	99	0.0	100	0.00

Question 5. Does your organization use hydrogen and/or fuel cells for any purpose?

Yes	9	2.8	9.09	2.86
No	87	3.2	87.9	3.28
Don't know	3	1.7	3.03	1.71
Total for 5	99	0.0	100	0.00

Question 6. What is the PRIMARY function of the hydrogen and/or fuel cells used by your organization?

Vehicles other than buses	3	1.7	33.3	19.0
Power for small portable equipment	2	1.4	22.2	15.4
Back-up power	1	1.0	11.1	11.0
Other	3	1.2	33.3	13.4
Total for 6	9	0.0	100	0.00

Question 7. Does your organization have plans to use hydrogen or fuel cells in the future?

Yes	7	2.5	7.78	2.82
No	57	4.5	63.3	4.96
Don't know	26	4.2	28.9	4.65
Total for 7	90	0.0	100	0.00

Question 8. What is the time frame for your plans to use hydrogen or fuel cells?

	Value		Standard Deviation of	
Frequency	Percent	Standard Error of Percent		
1-5 years	5	1.4	71.4	19.9
Over 5 years	1	1.0	14.3	14.0
Don't know	1	1.0	14.3	14.2
Total for 8	7	0.0	100	0.00

Question 9. Have you received information at your workplace concerning hydrogen and/or fuel cells?

Yes	28	4.5	28.3	4.50
No	68	4.6	68.7	4.64
Don't know	3	1.7	3.03	1.71
Total for 9	99	0.0	100	0.00

Question 10a. A training class on hydrogen or fuel cells

Yes	6	2.4	6.06	2.39
No	93	2.4	93.9	2.39
Total for 10a	99	0.0	100	0.00

Question 10b. A press conference concerning the use of hydrogen or fuel cells

Yes	4	1.9	4.04	1.95
No	95	1.9	96.0	1.95
Total for 10b	99	0.0	100	0.00

Question 10c. A conference or workshop that included a session on hydrogen or fuel cells

Yes	14	3.4	14.1	3.47
No	85	3.4	85.9	3.47
Total for 10c	99	0.0	100	0.00

Question 11. Would a "Hydrogen 101" class, or training at a conference or workshop sponsored by the U.S. Department of Energy on hydrogen and

Yes	70	4.4	70.7	4.46

Value		Standard Deviation of		Standard Error of
No	Frequency	Frequency	Percent	Percent
Don't know	25	4.2	25.3	4.29
Total for 11	4	1.9	4.04	1.94
Question 12a. Hydrogen pipelines exist nationwide				
True	5	0.0	100	0.00
False	48	2.2	5.05	2.20
Don't know	46	4.9	48.5	4.97
Total for 12a	99	0.0	100	4.96

Question 12b. In a hydrogen economy, hydrogen replaces fossil fuels as the dominant form of energy

True	50	4.6	50.5	4.62
False	13	3.3	13.1	3.38
Don't know	36	4.4	36.4	4.46
Total for 12b	99	0.0	100	0.00

Question 12c. Hydrogen gas is toxic

True	9	2.9	9.09	2.88
False	54	4.8	54.5	4.85
Don't know	36	4.6	36.4	4.64
Total for 12c	99	0.0	100	0.00

Question 12d. Fuel cells produce electricity through hydrogen combustion

True	44	4.9	44.4	4.95
False	17	3.8	17.2	3.79
Don't know	38	4.8	38.4	4.83
Total for 12d	99	0.0	100	0.00

Question 12e. Hydrogen is too dangerous for everyday use by the general public

Value	Frequency	Standard Deviation of Frequency	Percent	Standard Error of Percent
True	10	3.0	10.1	3.03
False	60	4.6	60.6	4.68
Don't know	29	4.3	29.3	4.38
Total for 12e	99	0.0	100	0.00
Question 12f. Hydrogen is lighter than air				
True	62	4.7	62.6	4.74
False	6	2.4	6.06	2.38
Don't know	31	4.4	31.3	4.49
Total for 12 f	99	0.0	100	0.00
Question 12g. Hydrogen has a distinct odor				
True	3	1.7	3.03	1.71
False	59	4.6	59.6	4.62
Don't know	37	4.6	37.4	4.63
Total for 12 g	99	0.0	100	0.00
Question 13a. In which state or condition can hydrogen be stored?				
Liquid	11	3.0	11.1	3.08
Both	46	4.8	46.5	4.83
Neither	4	1.9	4.04	1.95
Don't know/No opinion	38	4.7	38.4	4.74
Total for 13a	99	0.0	100	0.00
Question 13b. When using pure hydrogen, fuel cell vehicles generate electricity, water, and what else?				
Carbon dioxide	10	2.9	10.1	2.97
Nitrous oxides	2	1.4	2.02	1.40
Heat	29	4.5	29.3	4.58
All of these	9	2.9	9.09	2.89

Value	Frequency	Standard Deviation of Frequency	Percent	Standard Error of Percent
Don't know/No opinion	49	5.0	49.5	5.01
Total for 13b	99	0.0	100	0.00

Question 13c. Hydrogen can be produced using which of the following sources of energy?

Natural gas	7	2.5	7.07	2.56
Sunlight	2	1.4	2.02	1.38
Organic matter	4	1.9	4.04	1.91
All of these	40	4.8	40.4	4.83
Don't know/No opinion	46	4.9	46.5	4.98
Total for 13c	99	0.0	100	0.00

Question 13d. Which of the following would you MOST closely associate with the word "hydrogen"?

The H-bomb	19	3.9	19.2	3.93
Chemistry class	41	4.8	41.4	4.82
Fuel	18	3.8	18.2	3.87
The Hindenburg	12	3.2	12.1	3.25
Don't know/No opinion	9	2.8	9.09	2.82
Total for 13d	99	0.0	100	0.00

Question 13e. How would you feel if your local gas station also sold hydrogen?

Uneasy	3	1.7	3.03	1.73
At ease	41	4.8	41.4	4.80
Pleased	32	4.6	32.3	4.60
Don't know/No opinion	23	3.9	23.2	3.94
Total for 13e	99	0.0	100	0.00

Question 13f. Which of the following represents a type of fuel cell?

PEM	19	3.9	19.2	3.95
CFC	1	1.0	1.01	0.99

Value		Standard Deviation of		Standard Error of
Frequency	Frequency	Percent	Percent	

Question 14a. Using hydrogen will reduce U.S. dependence on foreign oil

Agree	86	3.1	86.9	3.09
No opinion	13	3.1	13.1	3.09
Total for 14a	99	0.0	100	0.00

Question 14b. Using hydrogen will reduce emissions and improve air quality

Disagree	1	1.0	1.01	0.99
Are neutral	1	1.0	1.01	0.99
Agree	81	3.6	81.8	3.66
No opinion	16	3.4	16.2	3.42
Total for 14b	99	0.0	100	0.00

Question 14c. Hydrogen is as safe as gasoline and diesel fuels

Disagree	10	3.0	10.1	3.01
Are neutral	4	2.0	4.04	1.98
Agree	52	4.9	52.5	4.92
No opinion	33	4.5	33.3	4.54
Total for 14 c	99	0.0	100	0.00

Question 15a. Personal cars and trucks

Low	28	4.5	28.3	4.52
Medium	35	4.6	35.4	4.65
High	22	4.1	22.2	4.15
No opinion	14	3.2	14.1	3.24
Total for 15a	99	0.0	100	0.00

$\begin{array}{|c|c|c|c|c|}\hline & & \begin{array}{c}\text { Standard } \\ \text { Deviation } \\ \text { of } \\ \text { Falue }\end{array} & \text { Frequency } & \text { Prequency }\end{array}$ Percent $\left.\begin{array}{c}\text { Standard } \\ \text { Error } \\ \text { of } \\ \text { Percent }\end{array}\right]$

Question 15b. Buses and commercial vehicles

Low	21	4.0	21.2	4.08
Medium	31	4.4	31.3	4.46
High	31	4.6	31.3	4.66
No opinion	16	3.4	16.2	3.42
Total for 15b	99	0.0	100	0.00

Question 15c. Large power plants

Low	45	4.7	45.5	4.78
Medium	18	3.8	18.2	3.82
High	17	3.7	17.2	3.76
No opinion	19	3.7	19.2	3.70
Total for 15 c	99	0.0	100	0.00

Question 15d. Small portable devices such as laptop computers or cell phones

Low	57	4.8	57.6	4.84
Medium	7	2.5	7.07	2.57
High	7	2.5	7.07	2.54
No opinion	28	4.3	28.3	4.30
Total for 15 d	99	0.0	100	0.00

Question 15e. Onsite power for the home

Low	56	4.6	56.6	4.67
Medium	14	3.5	14.1	3.50
High	9	2.7	9.09	2.75
No opinion	20	3.7	20.2	3.72
Total for 15 e	99	0.0	100	0.00

| | | Standard
 Deviation
 of
 Value | Frequency | Frequency |
| :---: | :---: | :---: | :---: | :---: | Percent | Standard |
| :---: |
| Error |
| of |
| Percent |

Question 15f. Onsite power for buildings such as hospitals and schools

Low	32	4.6	32.3	4.66
Medium	30	4.5	30.3	4.58
High	15	3.5	15.2	3.58
No opinion	22	4.0	22.2	3.99
Total for 15 f	99	0.0	100	0.00

Question 16a. Personal cars and trucks

Not as safe	8	2.7	8.08	2.74
Equally as safe	40	4.7	40.4	4.75
Safer	23	4.0	23.2	4.01
No opinion	28	4.2	28.3	4.28
Total for 16a	99	0.0	100	0.00

Question 16b. Buses and commercial vehicles

Not as safe	6	2.4	6.06	2.39
Equally as safe	43	4.7	43.4	4.72
Safer	25	4.1	25.3	4.18
No opinion	25	4.1	25.3	4.14
Total for 16b	99	0.0	100	0.00

Question 16c. Large power plants

Not as safe	5	2.2	5.05	2.20
Equally as safe	50	4.9	50.5	4.93
Safer	9	2.8	9.09	2.86
No opinion	35	4.6	35.4	4.67
Total for 16 c	99	0.0	100	0.00

Question 16d. Small portable devices such as laptop computers or cell phones

Value	Frequency	Standard Deviation of Frequency	Percent	Standard Error of Percent
Not as safe	20	4.0	20.2	4.03
Equally as safe	28	4.3	28.3	4.39
Safer	3	1.7	3.03	1.71
No opinion	48	4.8	48.5	4.90
Total for 16d	99	0.0	100	0.00
Question 16e. Onsite power for the home				
Not as safe	13	3.3	13.1	3.34
Equally as safe	50	4.8	50.5	4.87
Safer	6	2.3	6.06	2.35
No opinion	30	4.4	30.3	4.42
Total for 16e	99	0.0	100	0.00
Question 16f. Onsite power for buildings such as hospitals and schools				
Not as safe	8	2.7	8.08	2.73
Equally as safe	50	4.8	50.5	4.87
Safer	11	3.1	11.1	3.12
No opinion	30	4.4	30.3	4.42
Total for 16 f	99	0.0	100	0.00
Question 17a. Trade shows and conferences				
Never	47	4.8	47.5	4.82
Sometimes	39	4.6	39.4	4.64
Frequently	13	3.3	13.1	3.38
Total for 17a	99	0.0	100	0.00
Question 17b. Friends and family members				
Never	63	4.8	63.6	4.84
Sometimes	33	4.7	33.3	4.74

Value	Frequency	Standard Deviation of Frequency	Percent	Standard Error of Percent
Frequently	3	1.7	3.03	1.71
Total for 17b	99	0.0	100	0.00
Question 17c. Environmental and conservation groups				
Never	33	4.7	33.3	4.74
Sometimes	54	4.9	54.5	4.96
Frequently	12	3.2	12.1	3.20
Total for 17c	99	0.0	100	0.00
Question 17d. Utility companies or brokers, for example, gas or electricity providers				
Never	15	3.5	15.2	3.54
Sometimes	43	4.9	43.4	4.97
Frequently	39	4.8	39.4	4.84
Don't know	2	1.4	2.02	1.41
Total for 17d	99	0.0	100	0.00
Question 17e. Federal government				
Never	25	4.1	25.3	4.19
Sometimes	39	4.8	39.4	4.86
Frequently	34	4.7	34.3	4.72
Don't know	1	1.0	1.01	1.00
Total for 17e	99	0.0	100	0.00
Question 17f. State government				
Never	33	4.6	33.3	4.62
Sometimes	51	4.8	51.5	4.86
Frequently	14	3.5	14.1	3.50
Don't know	1	1.0	1.01	1.00
Total for 17f	99	0.0	100	0.00

Value	Frequency	Standard Deviation of Frequency	Percent	Standard Error of Percent
Question 17g. Local government				
Never	54	4.9	54.5	4.93
Sometimes	37	4.7	37.4	4.73
Frequently	7	2.5	7.07	2.57
Don't know	1	1.0	1.01	1.00
Total for 17 g	99	0.0	100	0.00
Question 18a. Television				
Never	29	4.5	29.3	4.55
Sometimes	59	4.8	59.6	4.87
Frequently	11	3.1	11.1	3.15
Total for 18a	99	0.0	100	0.00
Question 18b. Radio				
Never	61	4.7	61.6	4.79
Sometimes	33	4.7	33.3	4.70
Frequently	5	2.2	5.05	2.18
Total for 18b	99	0.0	100	0.00
Question 18c. The Internet				
Never	27	4.3	27.3	4.39
Sometimes	26	4.3	26.3	4.37
Frequently	46	4.7	46.5	4.79
Total for 18c	99	0.0	100	0.00
Question 18d. Newspapers and general interest magazines				
Never	15	3.5	15.2	3.55
Sometimes	62	4.7	62.6	4.74

\(\left.$$
\begin{array}{|l|c|c|c|c|}\hline & & \begin{array}{c}\text { Standard } \\
\text { Deviation } \\
\text { of } \\
\text { Falue }\end{array} & & \begin{array}{c}\text { Standard } \\
\text { Error } \\
\text { of }\end{array}
$$

Frequency\end{array}\right]\) Percent | Percent |
| :---: |$|$

Question 18e. Science and technology magazines and journals

Never	27	4.4	27.3	4.44
Sometimes	46	4.9	46.5	4.99
Frequently	26	4.4	26.3	4.43
Total for 18e	99	0.0	100	0.00

Question 18f. Business or trade magazines

Never	17	3.7	17.2	3.75
Sometimes	46	4.9	46.5	4.93
Frequently	36	4.7	36.4	4.79
Total for 18 f	99	0.0	100	0.00

APPENDIX D

COPIES OF LETTERS PREPARED FOR STATE AND LOCAL AGENCIES AND LARGE-SCALE END USERS

August 12, 2004
«Title»»First_Name» «Last_Name»
«Company_Name»
«Address_Line_1»
«Address_Line_2»
«City», «State» «ZIP_Code»
Dear «Title» «Last_Name»:
The U.S. Department of Energy (DOE) is developing a campaign to educate key target audiences about hydrogen technology. In preparation for this effort, DOE's Hydrogen, Fuel Cells, and Infrastructure Technologies (HFCIT) Program is surveying four target audiences to assess the current level of awareness and understanding of hydrogen and fuel cell technologies. The results of these surveys will inform, focus, and help ensure the effectiveness of the education campaign and will also provide a baseline for comparison with future knowledge and opinion surveys.

The four target audiences are the general public, the education community, potential commercial end users, and state and local governmental agencies. For the state and local government category, primary agency representatives of State Energy Offices, Departments of Transportation, and Departments of Environmental Protection will be contacted. On the local level, offices of the mayors of largest cities and executives of largest counties (in population) will be contacted.

In the next few weeks, you, in your capacity as agency representative, will be contacted by Opinion Research Corporation, an independent public opinion research firm requesting your input for the HFCIT survey. We encourage and appreciate your participation. The survey, which will be conducted over the phone, takes about 10-12 minutes to complete. Your response is voluntary; however, every response is extremely important. None of the responses will be associated with you or your office in any way, and the survey will be treated as confidential. There will be both technical and opinion questions, but in all cases "no opinion" or "don't know" are perfectly acceptable responses.

The education campaign and scientific survey are being conducted pursuant to the National Energy Policy (May 2001). Notices of the surveys appeared in the Federal Register on August 12, 2003, and January 12, 2004. For more information about DOE's hydrogen program or the President's Hydrogen Fuel Initiative, please visit www.eere.energy.gov/hydrogenandfuelcells. If you have any questions, please contact Christy Cooper of my staff, at 202-586-1885.

If you need to assign someone in your office to take the survey as the agency representative, please contact Janet Ulrich, Opinion Research Corporation, 609-452-5464 and provide the name, title, and phone number for the person who will take the survey in your place. Thank you in advance for your help in this extremely important survey.

Sincerely,

Steve Chalk, Program Manager, HFCIT Program U.S. Department of Energy

Dear Respondent:

The U.S. Department of Energy (DOE) is developing a campaign to educate key target audiences about hydrogen technology. In preparation for this effort, DOE's Hydrogen, Fuel Cells, and Infrastructure Technologies (HFCIT) Program is surveying four target audiences to assess the current level of awareness and understanding of hydrogen and fuel cell technologies. The results of these surveys will inform, focus, and help ensure the effectiveness of the education campaign and will also provide a baseline for comparison with future knowledge and opinion surveys.

The four target audiences are the general public, the education community, state and local governmental agencies, and potential commercial end users.

You, in your capacity as representative of a potential large-scale end user of hydrogen and/or fuel cell technology, will be contacted by Opinion Research Corporation, an independent public opinion research firm requesting your input for the HFCIT survey. We encourage and appreciate your participation. The survey, which will be conducted over the phone, takes about 10-12 minutes to complete. Your response is voluntary; however, every response is extremely important. None of the responses will be associated with you or your organization in any way, and the survey will be treated as confidential. There will be both technical and opinion questions, but in all cases "no opinion" or "don't know" are perfectly acceptable responses.

The education campaign and scientific survey are being conducted pursuant to the National Energy Policy (May 2001). Notices of the surveys appeared in the Federal Register on August 12, 2003, and January 12, 2004. For more information about DOE's hydrogen program or the President's Hydrogen Fuel Initiative, please visit www.eere.energy.gov/hydrogenandfuelcells. If you have any questions, please contact Christy Cooper of my staff, at 202-586-1885.

If you need to assign someone in your office to take the survey as the agency representative, please contact Janet Ulrich, Opinion Research Corporation, 609-452-5464 and provide the name, title, and phone number for the person who will take the survey in your place. Thank you in advance for your help in this extremely important survey.

Sincerely,

Steve Chalk, Program Manager, HFCIT Program U.S. Department of Energy

APPENDIX E
 SUBPOPULATIONS FOR THE LARGE-SCALE USER SURVEY

Table E.1. Subpopulations for the Large-Scale End User Survey						
Strata	NAICS	SIC	Number of Establishments	Source	Type of company	Selection Criteria (Size)
				Econ Census		
	622623		76,069		hospitals and nursing or residential care facility	employees
	5171	$\begin{aligned} & 4813, \\ & 4822 \end{aligned}$	41,999	D\&B	Wired Communications Carriers	employees
	5172	$\begin{aligned} & \hline 4812, \\ & 4899 \end{aligned}$	27,419	D\&B	Wireless Communications Carriers	employees
	9281	9711	13,898	D\&B	national security and international affairs	employees
	221	49	50,603	D\&B	utilities (electric, gas, and sanitary services)	employees
	452	5311	22,541	D\&B	shopping centers (department stores)	employees
	921	$\begin{aligned} & \hline 9111, \\ & 9121, \\ & 9311, \\ & 9131, \\ & 8641, \\ & 9199 \end{aligned}$	141,612	D\&B	executive, legislative, and other government support	employees
Industrial sectors with large power requirements:			344,188			
	31-33		344,188	2002 Econ Census	aluminum processing plants, chemical manufacturing, fabrication plants, industrial machinery and equipment, petroleum refining, pulp and paper, steel mills, textile mills, and wastewater plants	revenue

[^0]: ${ }^{1}$ See also http://www.m-s-g.com/reference/genmeth.htm (Marketing Systems Group, "GENESYS Methodologies") for a discussion of the GENESYS implicit stratification.
 ${ }^{2}$ A replicate is a conveniently sized subsample (e.g., 100-500 records) of a larger sample of records, selected in conformance with the larger sample's statistical design (e.g., stratification) so as to represent the target population.

[^1]: ${ }^{3}$ For the purposes of this document, state environmental offices are called Departments of Environmental Protection. The agency name, however, varies by state. Equivalent agency names include Department of Environmental Quality, Department of Environment, or Department of Natural Resources.
 ${ }^{4}$ The four census regions are Northeast, South, Midwest, and West. A map showing the states in each of the census regions may be found at U.S. Census Bureau, http://www.census.gov/geo/www/us regdiv.pdf.

[^2]: ${ }^{5}$ Before the change of wording in the introduction in the General Public Survey, there were 540 respondents, and after the change there were 349 respondents. After the introduction was changed, the technical scores decreased slightly, on average, from 34.7% correct (before) to 30.2% correct (after). Apparently the general public was in fact self-screening for knowledge about hydrogen and fuel cells; that is, before the change in wording, some people refused to take the survey, possibly because they assumed that they could not answer the questions; therefore, a greater percentage of those who did take the survey really did have an understanding of hydrogen and fuel cells. After the change in wording, fewer individuals refused based on the introduction; therefore, the population taking the survey after the change in wording may have had less of an understanding about hydrogen and fuel cells, which is one possible explanation for the lower scores.

[^3]: ${ }^{6}$ See also http://www.m-s-g.com/reference/genmeth.htm (Marketing Systems Group, "GENESYS Methodologies") for a discussion of the GENESYS implicit stratification.
 ${ }^{7}$ The state and local populations are all of the states $(9,12,16$, and 13 states respectively in the Northeast, Midwest, South, and West Census Regions) and the twelve largest cities and counties in each Census Region. The large-scale end user populations are the largest 0.3% of transportation businesses, businesses

[^4]: ${ }^{8}$ This perspective does not take into consideration tied responses. For example, safety and environment might both be ranked number 1 .

[^5]: ${ }^{9}$ Measures could also be based on odds ratios or combinations of odd ratios and significance levels as well as other metrics. Significance levels alone were used for simplicity and because sample sizes are essentially the same for all survey questions.

[^6]: ${ }^{10}$ Measures could also be based on odds ratios or combinations of odd ratios and significance levels as well as other metrics. Significance levels alone were used for simplicity and because sample sizes are essentially the same for all survey questions.

[^7]: ${ }^{11}$ For the purposes of this document, state environmental offices are called Departments of Environmental Protection. The agency name, however, varies by state. Equivalent agency names include Department of Environmental Quality, Department of Environment, or Department of Natural Resources.

[^8]: ${ }^{12}$ Target populations were selected randomly by taking 0.3% from the Dun and Bradstreet list of postal service entries.

[^9]: ${ }^{13}$ Among the uninterrupted supply users, six of the fifteen lower scorers were classified as farms, whereas only three of the eighteen higher scorers were classified as farms.

[^10]: ${ }^{14}$ Additional information on these distinct subpopulations of the end users is provided in Section 7.
 ${ }^{15}$ The numbering of the technical questions is the same for all survey components except for the LargeScale End User Survey. Large-Scale End User Survey Questions 12a-e correspond to Question 1a-e, respectively, on the other surveys; Large-Scale End User Survey Questions 1f and 1 g correspond to Questions 1g and 1h, respectively, on the other surveys; and Large-Scale User Survey Questions 13a, b, and f correspond to Questions $3 \mathrm{a}, \mathrm{b}$, and f , respectively, on the other surveys.

[^11]: ${ }^{16}$ Questions $14 \mathrm{a}, 14 \mathrm{~b}$, and 14 c on the Large-Scale End User Survey.

[^12]: ${ }^{17}$ Question 15 on the Large-Scale End User Survey.

[^13]: ${ }^{18}$ Question 16 on the Large-Scale End User Survey.

[^14]: ${ }^{19}$ Question 18 on the Large-Scale End User Survey.

[^15]: ${ }^{20}$ These are questions 12 e and 14 c on the Large-Scale End User Survey.

