

Project Scope

- Focus will be on competition between hydrogen production and distribution technologies with respect to hydrogen fuel demand, technology cost, regional mix, and impact on feedstock prices.
- Evaluate impacts on U.S. energy markets including price and consumption changes for coal, natural gas, renewables, and electricity, and the impact of inter-sectoral competition.
- Identify most economic routes, financial risks of hydrogen production, and evaluate impacts of various scenarios of developing a supply infrastructure.

Models

- A portfolio of models will be employed to project demands for hydrogen as a fuel, and impacts on feedstock price and supplies under alternative technological, regulatory and market scenarios.
 - U.S. DOE MARKAL model
 - Hydrocarbon Supply Model (HSM)
 - Gas Market Data Forecasting System (GMDFS) model
 - Power & Energy Analytic Resources (PEAR) Coal Compliance
 Options and Competitive Generation Cost models

Approach

- Primary modeling framework will be the MARKAL model.
- Additional analyses on natural gas markets will be performed using models from Energy and Environmental Analysis, Inc. (EEA). Key relationships will be incorporated/calibrated into MARKAL.
- Additional analyses on coal and electricity markets will be performed using models from PEAR. Key relationships will be incorporated/calibrated into MARKAL.

MARKAL for Integrated Market Analysis

- Generates least-cost energy path based on life-cycle costs of technologies
- Utilizes a bottom-up approach to identify an optimal technology/resource mix to meet demands in a balanced energy market
- Consists of a dynamic integrated framework to assess market competition, technology diffusion and emission accounting
- Produces outputs that facilitate the analysis of economic tradeoffs among alternative energy infrastructure systems

Preliminary MARKAL Analysis

- All scenarios based on AEO2005 High "B" Oil Price Scenario
- IEA cost data from "Prospects for Hydrogen and Fuel Cells"
- Unless otherwise noted, gasoline HEVs and H2 FCVs are assumed to be 1.5 & 2.0 times as efficient than gasoline ICE vehicles

H2IO - IEA "Optimistic" fuel cell costs

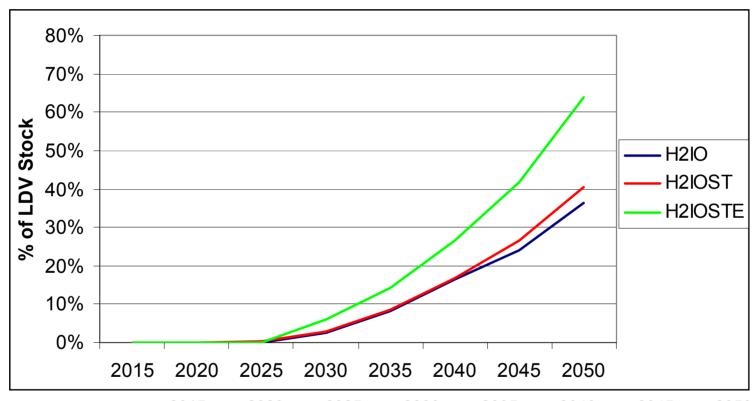
H2IOST - H2IO + vehicle subsidy (\$3,000 for 2015 & 2020, \$1,500 for 2025) and H2

fuel taxes at ½ level of gasoline.

H2IOSTE - H2IOSTE + H2 FCV assumed to be 3.0 times as efficient as gasoline ICE vehicles.

- HFCIT Program goals for fuel cell costs

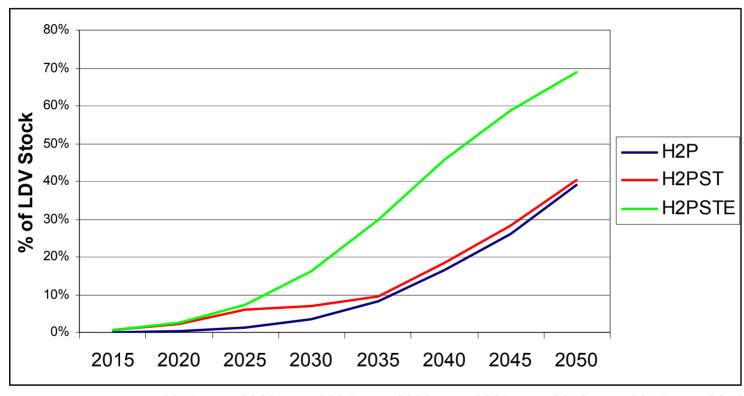
- H2P + vehicle subsidy (\$3,000 for 2015 & 2020, \$1,500 for 2025) and H2 fuel taxes at ½ level of gasoline.


- H2PST + H2 FCV assumed to be 3.0 times as efficient as gasoline ICE vehicles.

CICS.

H₂P

Preliminary LDV Market Shares IEA "Optimistic" Fuel Cell Costs



% of LDV Stock	2015	2020	2025	2030	2035	2040	2045	2050
H2IO	0.0%	0.0%	0.0%	2.4%	8.2%	16.4%	24.2%	36.4%
H2IOST	0.0%	0.0%	0.3%	2.8%	8.5%	16.7%	26.4%	40.5%
H2IOSTE	0.0%	0.0%	0.0%	5.9%	14.4%	26.5%	41.9%	63.8%

Preliminary LDV Market Shares HFCTP Fuel Cell Cost Goals

% of LDV Stock	2015	2020	2025	2030	2035	2040	2045	2050
H2P	0.0%	0.2%	1.2%	3.5%	8.1%	16.4%	25.9%	38.9%
H2PST	0.6%	2.1%	6.0%	7.0%	9.5%	18.5%	28.2%	40.3%
H2PSTE	0.6%	2.4%	7.2%	16.3%	29.9%	45.6%	58.7%	69.0%

Draft Results - Do Not Quote or Cite

Unique Features of Project

- Integrates supply/demand and various fuel markets
- Inter-temporal approach that looks at technology evolution and stranded investments
- Evaluates energy markets over the long-term (2005 2050)
- Examines alternative scenarios and sensitivities
- Focuses of on the competition among production technologies
- Considers hydrogen demand levels, technology costs, regional cost variations, and feedstock prices
- Estimates impact of hydrogen production on hydrogen feedstock prices and consumption changes in other energy markets

