DOE Hydrogen & Fuel Cell Overview
January 13, 2011
Fuel Cells for Diverse Applications

Diverse Energy Sources & Fuels
- Conventional Fuels
 - Natural Gas
 - Propane
 - Diesel
 - Other Hydrocarbons
- Biomass
- Renewable Resources
 - (wind, solar, biomass)
- Nuclear
- Natural Gas
- Coal
 - (with carbon sequestration)

Clean, Efficient Energy Conversion
- Fuel Cells
 - Alkaline
 - Direct Methanol
 - Molten Carbonate
 - Polymer electrolyte membrane (PEM)
 - Phosphoric Acid
 - Solid Oxide

Diverse Applications
- Stationary Power
 - Primary Power & CHP
 - Backup Power
- Transportation
- Auxiliary Power
 - Trucks
 - Trains
 - Aircraft
 - Ships
- Motive Power
 - Specialty Vehicles (e.g., forklifts)
 - Buses
 - Automobiles
- Portable Power
 - Consumer Electronics
 - Battery Chargers
 - Soldier Power

Energy Storage for Renewable Electricity
- Intermittent Renewables
 - (solar, wind, ocean)
- Hydrogen
- Fuel Cells or Turbines
- Grid Power or Distributed Power

Source: US DOE 10/2010
Fuel Cells - Where are we today?

Fuel Cells for Stationary Power, Auxiliary Power, and Specialty Vehicles

The largest markets for fuel cells today are in stationary power, portable power, auxiliary power units, and forklifts.

~75,000 fuel cells have been shipped worldwide.
~24,000 fuel cells shipped in 2009 (> 40% increase over 2008).

Fuel cells can be a cost-competitive option for critical-load facilities, backup power, and forklifts.

Fuel Cells for Transportation

In the U.S., there are currently:

> 200 fuel cell vehicles
~ 20 active fuel cell buses
~ 60 fueling stations

Sept. 2009: Auto manufacturers from around the world signed a letter of understanding supporting fuel cell vehicles in anticipation of widespread commercialization, beginning in 2015.

Production & Delivery of Hydrogen

In the U.S., there are currently:

~9 million metric tons of H₂ produced annually
~1200 miles of H₂ pipelines

Source: US DOE 09/2010
Global competition is increasing

Significant increase in MW shipped by non-US companies in just 1 year
>40% market growth in just one year

Example: Seoul’s
Renewable energy generation plan includes ~ 48% fuel cells

Preliminary market analysis

International Landscape favors H₂ & Fuel Cells
- Germany (>1.2B; 1,000 H₂ stations)
- European Commission (>1.2B, 2008-2013)
- Japan (2M vehicles, 1,000 H₂ stations by 2025)
- South Korea (plans to produce 20% of world shipments & create 560,000 jobs in Korea)
- China (thousands of small units; 70 FCVs, buses, 100 shuttles at World Expo, Olympics)
- Subsidies for jobs, manufacturing, deployments (e.g. South Africa)

Example: Denmark Backup Power Deployments

50,000 potential sites
>500 deployments worldwide
Overview of Combined Heat+Power

Excess power generated by the fuel cell is fed to the grid.

Fuel Cell

Natural Gas or Biogas

H₂

Electricity

Power

Heat + Cooling

Natural Gas

Electricity

National Renewable Energy Laboratory

Innovation for Our Energy Future

Source: US DOE 10/2010

eere.energy.gov
Stationary fuel cells offer significant reductions in criteria pollutant emissions.

Criteria Pollutant Emissions (g/M BTU)

Criteria Pollutant Emissions from Generating Heat and Power. Fuel cells emit about 75 – 90% less NOx and about 75 – 80% less particulate matter (PM) than other CHP technologies, on a life-cycle basis. In addition, similar to other CHP technologies, fuel cells can provide more than 50% reduction in CO₂ emissions, when compared with the national grid.

Source: US DOE 1/2011
Biogas Resource Example: Methane from Waste Water Treatment

Biogas from waste water treatment plants is ideally located near urban centers to supply hydrogen for fuel cell vehicles.

- 500,000 MT per year of methane available from waste water treatment plants in U.S.
- Majority of resource located near urban centers.
- If ~50% of the biomethane was available, ~340,000 kg/day of renewable hydrogen could be produced from steam methane reforming.
- Renewable hydrogen is enough to fuel ~340,000 fuel cell vehicles per day.

Source: NREL report A Geographic Perspective on Current Biomass Resource Availability in the United States, 2005
Biogas Resource Example: Methane from Landfills

Biogas from landfills is located near large urban centers and could provide enough renewable resource to fuel ~8 million fuel cell vehicles per day.

- 12.4 million MT per year of methane available from landfills in U.S.
- Majority of resource located near urban centers.
- If 50% of the bio-methane was available, ~8 million kg/day of renewable hydrogen could be produced from steam methane reforming.
- Renewable hydrogen is enough to fuel ~8 million fuel cell vehicles per day.

Source: NREL report - A Geographic Perspective on Current Biomass Resource Availability in the United States, 2005
California Example: Potential Sources of Biogas

Example:
Landfills offer ~1.6 M tons/yr of biomethane.
➢ Only ~50% of the landfill biomethane is used

Source: NREL
Los Alamos Joint Forces Training Base (JFTB)

Urban wood waste is an abundant feedstock around the US

Los Alamitos JFTB

Resource potential for Los Alamitos
- 300 tons/day
- 19,200 kW

Urban wood waste is an abundant feedstock around the US

Biomass Resources of the United States
Urban Wood Residues

National Renewable Energy Laboratory
Innovation for Our Energy Future

Waste To Energy Example
Los Alamos Joint Forces Training Base (JFTB)

Urban Compost
25 ton/day

Gasifier & Cleanup

Fuel Cells

1,600 kW
Demonstrations are essential for validating the performance of technologies in integrated systems, under real-world conditions.

RECENT PROGRESS

Vehicles & Infrastructure

- 152 fuel cell vehicles and 24 hydrogen fueling stations
- Over 2.8 million miles traveled
- Over 114 thousand total vehicle hours driven
- 2,500 hours (nearly 75K miles) durability
- Fuel cell efficiency 53-59%
- Vehicle Range: ~196 – 254 miles (independently also validated 430 mile range)

Buses

- DOE is evaluating real-world bus fleet data (DOT collaboration)
- H₂ fuel cell buses have a 41% to 132% better fuel economy compared to diesel & CNG buses

Forklifts

- Over 18,000 refuelings at Defense Logistics Agency site

Recovery Act

- DOE (NREL) is collecting operating data from deployments for an industry-wide report
Landfills generate landfill gas (LFG) from active microorganisms interacting with the waste. Through available efficient reformation processes, this gas can easily be converted into hydrogen and used to provide energy or fuel, effectively turning trash into power.

Project Goals

- To show that LFG, cleaned up and reformed, can be used to power material handling equipment (MHE)

Next Steps

- Gas analysis & MHE performance data.
- Comparing LFG-produced hydrogen and delivered hydrogen.
- “Real world” evaluation and testing of equipment.

Landfill Gas to Hydrogen Benefits

- Reduced emissions
- Additional power supply
- Additional vehicle fuel source

Source: US DOE 12/2010
Standards

Market Transformation activities seek to overcome barriers to commercialization

BARRIERS

<table>
<thead>
<tr>
<th>Market/Industry</th>
<th>Lack of domestic supply base and high volume manufacturing. Estimated backlog > 100 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low-volume capital cost is >2-3x of targets</td>
</tr>
<tr>
<td></td>
<td>Policies — e.g., many early adopters not eligible for $3,000/kW tax credit</td>
</tr>
<tr>
<td>Delivery Infrastructure</td>
<td>Significant investment needed—~$55B gov’t funding required over 15 years for ~5.5M vehicles ($~10B for stations)*</td>
</tr>
<tr>
<td>Codes and Standards</td>
<td>Complicated permitting process. 44,000 jurisdictions</td>
</tr>
<tr>
<td></td>
<td>H₂-specific codes needed; only 60% of component standards specified in NFPA codes and standards are complete</td>
</tr>
<tr>
<td></td>
<td>Need for domestic and international consistency</td>
</tr>
<tr>
<td>Education</td>
<td>In spite of >7,000 teachers trained and online tools averaging 300-500 visits/month, negative public perception and safety concerns remain.</td>
</tr>
</tbody>
</table>

*2008 National Academies Study, *Transitions to Alternative Transportation Technologies—A Focus on Hydrogen*

ADDRESSING BARRIERS

Example:

A government acquisition program could have a significant impact on fuel cell stack costs

Source: US DOE 10/2010
Recovery Act Funding for Fuel Cells

More than $40 million from the 2009 American Recovery and Reinvestment Act to fund 12 projects to deploy up to 1,000 fuel cells

FROM the LABORATORY to DEPLOYMENT:
DOE funding has supported R&D by all of the fuel cell suppliers involved in these projects.

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>AWARD</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delphi Automotive</td>
<td>$2.4 M</td>
<td>Auxiliary Power</td>
</tr>
<tr>
<td>FedEx Freight East</td>
<td>$1.3 M</td>
<td>Lift Truck</td>
</tr>
<tr>
<td>GENCO</td>
<td>$6.1 M</td>
<td>Lift Truck</td>
</tr>
<tr>
<td>Jadoo Power</td>
<td>$2.2 M</td>
<td>Portable</td>
</tr>
<tr>
<td>MTI MicroFuel Cells</td>
<td>$3.0 M</td>
<td>Portable</td>
</tr>
<tr>
<td>Nuvera Fuel Cells</td>
<td>$1.1 M</td>
<td>Lift Truck</td>
</tr>
<tr>
<td>Plug Power, Inc. (1)</td>
<td>$3.4 M</td>
<td>CHP</td>
</tr>
<tr>
<td>Plug Power, Inc. (2)</td>
<td>$2.7 M</td>
<td>Back-up Power</td>
</tr>
<tr>
<td>Univ. of N. Florida</td>
<td>$2.5 M</td>
<td>Portable</td>
</tr>
<tr>
<td>ReliOn, Inc.</td>
<td>$8.5 M</td>
<td>Back-up Power</td>
</tr>
<tr>
<td>Sprint Nextel</td>
<td>$7.3 M</td>
<td>Back-up Power</td>
</tr>
<tr>
<td>Sysco of Houston</td>
<td>$1.2 M</td>
<td>Lift Truck</td>
</tr>
</tbody>
</table>

Approximately $54 million in cost-share funding from industry participants—for a total of about $96 million.
Examples of DOE Funded Fuel Cell Deployments

U.S. Fuel Cell Deployments Using DOE Market Transformation and Recovery Act Funding

Primarily forklifts and back-up power units

Source: US DOE 10/2010
Federal Interagency Cooperation

Department of Defense

Coordination
- Interagency Task Force
- Interagency Action Plan
- Interagency Working Group
- DOD/DOE MOU- LOU
 - Aviation APUs Workshop (completed)
 - Waste-to-Energy Workshop (1/13/11)
 - Shipboard APUs Workshop (TBD)
- Hawaii Hydrogen Initiative (H2I)
 - Commitment by industry, academia, and government to integrate hydrogen into Hawaii’s sustainable energy plans

Deployments
- Over 30 DOD sites with fuel cells providing back up & primary power
- Deployment of H2ICE buses at Hickam, AFB Honolulu, HI
- Continue exploring new applications

DOD

- Defense Logistics Agency
 - 50 additional MHE units (on top of 40 current units) at Susquehanna, PA depot
- Office of Naval Research
 - Utility scale renewable hydrogen generation & H2ICE shuttle buses
- Army CERL
 - Backup power, waste-to-energy, and H2ICE shuttle buses

Other Agency Coordination

- Federal Aviation Administration
 - Ground support equipment & backup power
- National Park Service
 - Renewably generated backup power and H2ICE buses
- NASA
 - 5kW fuel cells for back up power
- USPS
- National Laboratories

Source: US DOE 1/2011
Emerging Market Example

- Early Defense Logistics Agency (DLA) Procurement helped drive market development
 - From 250 fills/week to over 4500 fills/week

- Today’s market is increasingly being driven by commercial demand
 - HEB, Whole Foods, Coca Cola, Sysco, Nestle, FedEx, BMW, etc

- DLA Demonstrations helped enable Codes and Standard approval of indoor Hydrogen dispensing

* ARRA Fills reflect 44% of data to coincide with cost share
Example of RD&D to Deployments

Deployments

- DOE Loan Guarantees
- DOE Recovery Act Projects
- Government Early Adoption (DoD, FAA, California, etc.)
- Investment Tax Credits, Manufacturing Tax Credits, Grants

Examples of Program

- Reduced high volume cost of transportation PEM Fuel Cells by 30% since 2008 and 80% since 2002
- Demonstrated double durability (>75,000 miles)

What more can Government do to accelerate commercialization?

Source: US DOE 12/2010
Executive Order 13514

On October 5, 2009
President Obama signed
Executive Order 13514 –
Federal Leadership in
Environmental, Energy, and
Economic Performance

Requirements:

- Set GHG reduction Targets
- Develop Strategic Sustainability Plans and provide in concert with budget submissions
- Conduct bottom up Scope 1, 2 and 3 baselines
- Track performance

Examples:

- Achieve 30% reduction in vehicle fleet petroleum use by 2020
- Requires 15% of buildings meet the Guiding Principles for High Performance and Sustainable Buildings by 2015
- Design all new Federal buildings which begin the planning process by 2020 to achieve zero-net energy by 2030

Potential opportunities for fuel cells and other clean energy technologies....

Source: US DOE 09/2010

http://www1.eere.energy.gov/femp/regulations/eo13514.html
Collaborations

Federal Agencies
- DOC
- DOD
- DOE
- DOT
- EPA
- GSA
- DOI
- DHS
- NASA
- NSF
- USDA
- USP
- Interagency coordination through staff-level Interagency Working Group (meets monthly)
- Assistant Secretary-level Interagency Task Force mandated by EPACT 2005.

DOE Fuel Cell Technologies Program*
- Applied RD&D
- Efforts to Overcome Non-Technical Barriers
- Internal Collaboration with Fossil Energy, Nuclear Energy and Basic Energy Sciences

Industry Partnerships & Stakeholder Assn’s.
- FreedomCAR and Fuel Partnership
- Fuel Cell and Hydrogen Energy Association (FCEA)
- Hydrogen Utility Group
- ~ 65 projects with 50 companies

Universities
- ~ 50 projects with 40 universities

International
- IEA Implementing agreements – 25 countries
- International Partnership for Hydrogen & Fuel Cells in the Economy – 17 countries & EC, 30 projects

State & Regional Partnerships
- California Fuel Cell Partnership
- California Stationary Fuel Cell Collaborative
- SC H₂ & Fuel Cell Alliance
- Upper Midwest Hydrogen Initiative
- Ohio Fuel Coalition
- Connecticut Center for Advanced Technology

National Laboratories
- National Renewable Energy Laboratory
 P&D, S, FC, A, SC&S, TV, MN
- Argonne
 A, FC, P&D, SC&S
- Los Alamos
 S, FC, SC&S
- Sandia
 P&D, S, SC&S
- Pacific Northwest
 P&D, S, FC, A, SC&S
- Argonne
 P&D, S, A, SC&S
- Oak Ridge
 P&D, S, FC, A, SC&S
- Lawrence Berkeley
 FC, A
- Lawrence Livermore
 P&D, S, SC&S
- Savannah River
 S, P&D
- Brookhaven
 S, FC
- Idaho National Lab
 P&D

Other Federal Labs: Jet Propulsion Lab, National Institute of Standards & Technology, National Energy Technology Lab (NETL)

P&D = Production & Delivery; S = Storage; FC = Fuel Cells; A = Analysis; SC&S = Safety, Codes & Standards; TV = Technology Validation, MN = Manufacturing

Source: US DOE 09/2010
* Office of Energy Efficiency and Renewable Energy eere.energy.gov
Thank you

For more information, please contact

Sunita.Satyapal@ee.doe.gov

hydrogenandfuelcells.energy.gov