

Fuel Cell Power Plants Renewable and Waste Fuels

DOE-DOD Workshop Washington, DC. January 13, 2011

reliable, efficient, ultra-clean

FuelCell Energy, Inc.

- Premier developer of stationary fuel cell technology — founded in 1969
- Over 50 installations in North America, Europe, and Asia
- Industrial, commercial, utility products
- 300 KW to 50 MW and beyond

Product Line Based on Stack Building Block

DFC1500 Powerplant Subsystems

Electrical Balance Of Plant (EBOP):

• Converts DC power to grid quality AC power

• Meets IEEE and UL Codes for Safety and Grid Interface

4-stack Module

Mechanical Balance Of Plant (MBOP):

- Water and Fuel flow cleanup and preheat
- Air supply, startup heater

Applications

On-site self generation of combined heat and power

- –Clean Power with natural gas fuel
- Renewable Power with biofuels
- Grid connected power generation
 - High Efficiency Grid support
 - Renewable PortfolioStandards

Fuels Resources for DFC

- Natural Gas and LNG
- Propane
- Biogas (by អ្នកម្មាស្រ្ត់ទ្រ Digestion)
 - Municipal Waste Water Treatment
 - Brewery
 - Food and Animal Waste
- Biogasifier derived Fuels

Comparative Electrical Efficiency

DFC power plants offer the high efficiency

Fuels Diversity and Efficiency

Diversity of Fuels plus High Efficiency – High Sustainability

Ultra Low Emissions

	NOX (lb/MWh)	SOX (lb/MWh)	PM-10 (lb/MWh)	CO2 (lb/MWh)
Average US Grid	3.43	7.9	0.19	1,408
Average US Fossil Fuel Plant	5.06	11.6	0.27	2,031
Microturbine (60 kW)	0.44	0.008	.09	1,596
Small Gas Turbine (250 kW)	1.15	0.008	.08	1,494
DFC Fuel Cell 47% efficiency	0.01	0.0001	.00002	980
DFC Fuel Cell – CHP 80% efficiency	0.006	0.00006	.00001	552

Source for non-DFC data: "Model Regulations For The Output Of Specified Air Emissions From Smallerscale Electric Generation Resources Model Rule and Supporting Documentation", October 15, 2002; The Regulatory Assistance Project report to NREL

DFC Advantages for Biogas

- More power for given amount of biogas: Higher efficiency than any other generation at typical digester facility sizes
- Good heat to power ratio for digester support: Fuel cell makes enough heat to support digester operation
- Avoids generation of NO_X and other pollutants from flare or from other generation technologies

Typical Fuels Composition

Composition	Natural Gas	Biogases				
		Waste Water	Food Waste	Animal Waste	Landfill	
Methane (Vol%)	80-100	~50-60	~50-70	45-60	40-55	
Carbon Dioxide (Vol%)	<3	30-40	25-45	35-50	35-50	
Nitrogen (Vol%)	<3	<4	<4	<4	<20	
Oxygen (Vol%)	<0.2	<1	<1	<1	<2	
H ₂ S, ppm	<0.1	<400	<10000	<300	<200	
Non-H ₂ S Sulfur, ppm	<10	<1	<1000	<30	<30	
Halogens, ppm	<0.1	<0.2	<0.2	<0.2	<100	
Moisture, %	<0.02	~3	~3	~3	~3	

Bio-gas Plants in North America

FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc.

Tulare CA Wastewater Treatment Plant

- 3 DFC300 Units operating on ADG, provide ~ half of facility load
- 94% Availability from Jan 2008 through Aug 2010
- Recently ordered fourth unit

4 DFC300 Plants Sierra Nevada Brewery, California

Site With Power Generation in Excess of ADG Supply First Site with Automated Fuel Blending

Turlock Irrigation District Waste Water Treatment Facility, Turlock, CA

FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc.

Gills Onion Food Processing Facility, Oxnard, CA

FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc.

Eastern Municipal Water District Waste Water Treatment Facility, Moreno Valley, CA

FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc.

VOC Solvent Fuel.

Ford Motor Company, Ontario Assembly

- Challenge:
 - Cost-effectively dispose of VOC*
 - Reduce emissions in paint operations
- Solution:
 - –300 kW Ultra-Clean 24/7 reliable power running on VOC
- Results:
 - Low-cost, low-emissions electricity
 - VOC disposal cost cut in half over ten years

* Volatile Organic Compounds

DFC-ERG High Efficiency Application

- DFC-ERG designed for pipeline letdown operations
 - Byproduct heat warms gas to prevent freezing
 - Energy from pressure letdown fed to turbine
 - Combined electricity delivered to the grid
- Improved economics and lower CO2 emissions
- 2.2MW Toronto plant demonstrating technology and validating_{value} proposition
 - Efficiency greater than 70%

2.2 MW DFC-ERG in Toronto

Co-Production of Renewable Hydrogen Orange County, CA

Orange County Sanitation District (OCSD)

Renewable H₂ Filling Station

ADG fueled DFC-H2® Production Unit

Co-Production of Renewable Hydrogen Orange County, CA

First DFC-H₂® Unit Installation

Smart Grid Integration Power, Fuel and Energy Storage

DFC-H2® Peaker - Compliments Smart Grid

FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc.

Co-Production Capacity of DFC-H2® Power Plants

DFC300®

Co-product Power, kW 250 1,000 2,000 Hydrogen, kg/day 125 500 1,000 0.5 2.0 4.0 Heat, mmBtu/hr **Peaker Capacity** Peak Power (8 hrs/day), kw **500** 2,000 4,000 **Refueling Capacity** Fuel Cell Cars, 0.5 kg/day 300 1,200 2,400