Fuel-Cell Fundamentals at Low and Subzero Temperatures

Adam Z. Weber (PI), John Newman, Clayton Radke LBNL

> Rangachary Mukundan, Rodney Borup LANL

> > Michael Perry UTRC

> > > Mark Debe 3M

Chao-Yang Wang PSU

This presentation does not contain any proprietary or confidential information

- Fundamental understanding of transport phenomena and water and thermal management at low and subzero temperatures using state-of-the-art materials
 - Senable optimization strategies to be developed to overcome observed bottlenecks
 - Operational
 - Material
- Elucidate the associated degradation mechanisms due to subzero operation
 Section Strategies to be developed

Technical Barriers

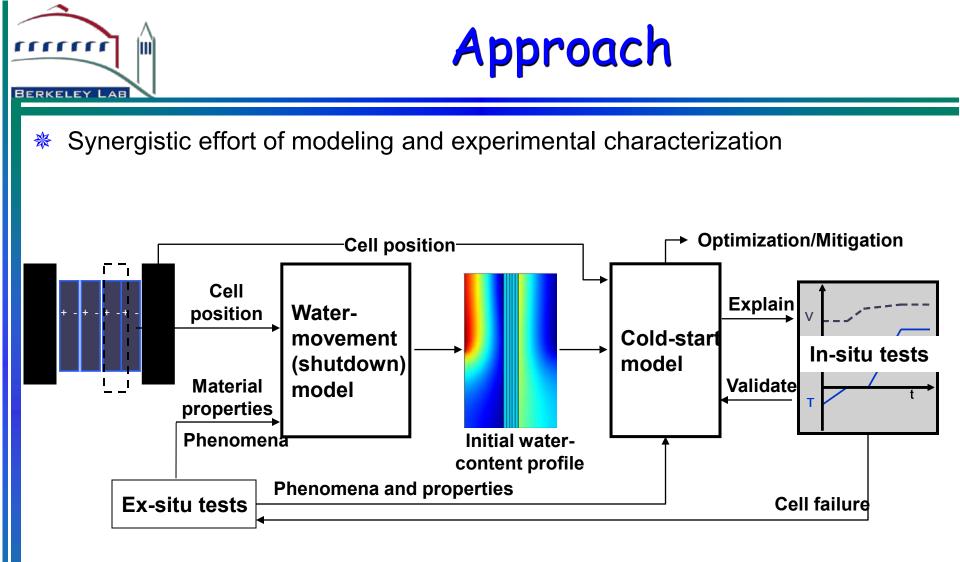
A. Durability

Subfreeze startup and freeze cycles; degradation-mechanism identification and mitigation

C. Performance

- Sum Efficiency and power density, especially at low temperature and with liquid water
- ✤ Novel materials (NSTF) for low-Pt catalyst layers

D. Water Transport within the Stack

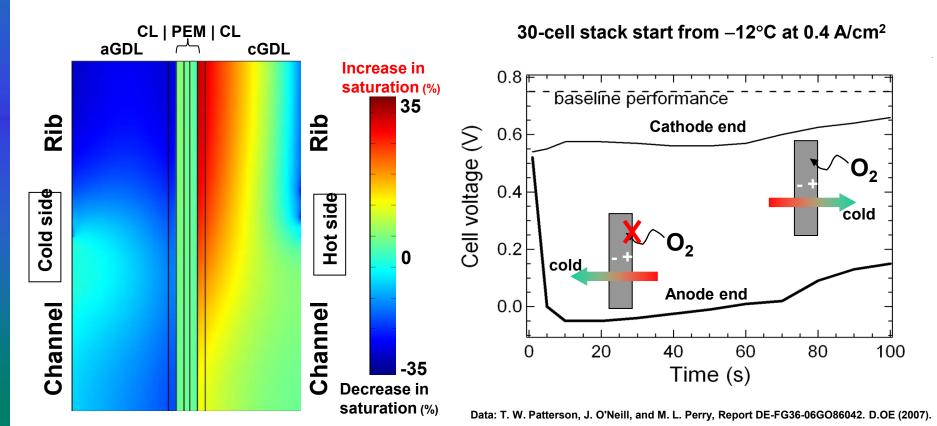

Scritical water management, especially at the component level

E. System Thermal and Water Management

✤ Improved techniques to manage water during shutdown and cold and cool start

G. Start-up and Shut-down Time and Energy/Transient Operation

- Minimize energy consumption and time during cold start
- Examine shutdown scenarios and transients



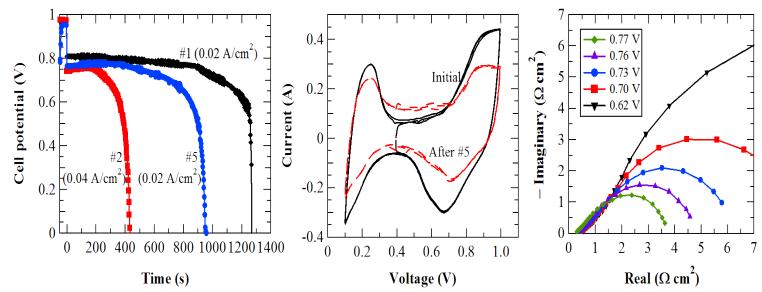
Multiscale, multiphysics continuum-based modeling

- Develop, validate, and refine a series of models for cell performance including cold and cool startup and shutdown
 - Model cells with respect to stack position in a 2-D+1 cell framework while also accounting for the component microstructure

In-situ and ex-situ parametric studies

* Experimentally characterize component, cell, and stack properties and performance

- Solution Measure critical properties
- ✤ Visualize water and ice distributions
- Utilize various assemblies and components to elucidate governing phenomena


Material	Material Baseline		Alternative 2		
Membrane	3M 850 EW	Gore	3M variable thickness		
Catalyst layer	NSTF PtCoMn	Supported carbon	NSTF advanced		
GDL	GDL Hydrophobized		SGL (more hydrophobic)		
MPL	Hydrophobic	Very hydrophobic	Mixed property		
Flow field	Flow field Quad serpentine		Single channel		
Bipolar plate	Bipolar plate Solid		Hybrid (one WTP)		

Durability and degradation

- Elucidate and mitigate critical degradation and failure mechanisms related to cold and cool operation and start
 - Serve and characterize failed cells
 - Teardown analysis
 - Replicate failure
 - Model stress effects and help identify and mitigate failure mechanisms
 - ✤ Leverage off of existing LANL water-transport project

5 sequential isothermal starts from -10°C

Project Timeline

Main tasks

Performance modeling

- Durability modeling
- Cell and stack characterization
- 🏷 Imaging
- Mitigation and optimization
- Component
 characterization

	Year / Quarter																
Task		1				2			3			4					
#	Name	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1.1	Steady-state performance model						3]									
1.2	Startup model							3			- [5		-[11		
1.3	Simple stack model					1]											
1.4	Shutdown model								ļ	5							
1.5	Three-dimensional modeling												-[3]			
2.1	Property-change degradation model										. 	1.		7	12		
2.2	Mechanical stress model												- [<u>ə]</u>			
3.1	Performance evaluation							3			Ţ	7					- <u>(</u>
3.2	Stack studies					1]											
3.3	Failure analysis										Ţ						5
4.1	Neutron imaging							3/4	7								
4.2	X-ray tomography and radiography							4]								
5.1	Cold-start optimization																
5.2	Understanding performance losses																
5.3	Failure mitigation																
6.1	Membrane characterization				-\	2]											
6.2	Catalyst-layer characterization						3							10			
6.3	Diffusion-media characterization						3							10			
	Legend: 1 Milest	one/	Deli	vera	ble		Go/	'No-	Go	decis	sion						

Project Timeline

Begin	M1 09/10	M2 09/11	M3 03/12	M4 09/12	M5 09/13 End
Begin 09/09	G1 03/11	G2 06/11			12/13

Major Milestones/Deliverables

- M1: Stack-study data and model agree (< 10%) with respect to thermal and mass boundary conditions and cell position.
- M2: Shutdown model is completed.
- M3: Complete data for the baseline cell and interim report on the experimentally observed leading causes of freeze-related failure and performance losses.
- M4: Scaling expression for 3D and rigorous gas-channel effects developed. Mechanical-analysis model including GDL compression and freeze/thaw and humidity-cycling effects completed.
- M5: Final report on the parametric study of low and subzero operation including causes of performance loss and possible mitigation strategies.

Go/No-Go Decision

G1: Start of transient modeling. Go means that < 10% difference between model and data. No-Go means more fundamental studies and detailed component models are required.
G2: Continued study of X-ray tomography depending on ability to gain information on water and ice distributions with resolution that is better than the available neutron imaging.

Organization

			Fuel-Cell Fu	undamenta	sLBN	NL Ma	nagement				
LBNL		LBNL, PSU	UTC	LA	NL, LBNL		LBNL		ANL	-	
	F	PSU		LANL, 3M		PSU		PSU	LBNL,	3M, PSU	
	1. Cold- t model		egradation odel	Task 3. Stack and cell characterization			. Water aging	Task 5. Model deployment		Task 6. Component characterization	
Sta Simp	dy state artup Ile stack effects		degradation nical stress	Perfori evalu Stack s Failure a	ation tudies		utron ray	Cold- optimi Performa Failure m	zation	Cataly	brane st layer n media

LBNL

- Project management and coordination
- 🌭 Model development
- GDL and membrane characterization including x-ray tomography

LANL

- 🌭 Ex-situ component characterization
- Single-cell durability tests
- Neutron imaging

3M

✤ Material supplier and testing knowledge

UTRC

- Stack and cell parametric studies
- ✤ Identify and characterize failure mechanisms
- Seal-world guidance

PSU

- Help with x-ray studies and traditional catalystlayer diagnostics
- Develop 3-D scaling expressions and mechanical stress model

DOE Cost Share	Recipient Cost Share	TOTAL
\$4,700,000	\$445,273	\$5,145,273
91%	9%	100%

Organization	Year 1 (\$k)	Year 2 (\$k)	Year 3 (\$k)	Year 4 (\$k)	Cumulative (\$k)
LBNL	575	525	475	446	2021
LANL	150	150	300	300	900
UTRC	147	314	336	234	1031
3M	103	133	118	88	443
PSU	187	187	188	188	750

- Material properties and expressions
- Knowledge gained from others examining low and subzero temperature operation
- Discussions on validated modeling approaches, results, and critical needs
 - ✤ Modeling working group?