

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

AMMTO & IEDO JOINT PEER REVIEW

May 16th-18th, 2023

Washington, D.C.

Catalyst Evaluation for Deactivation and Remediation (CEDAR) | IEDO

Rebecca Fushimi, Idaho National Laboratory

DE-FOA-0002252-1775 9/1/21 - 9/30/24

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Addressing **catalyst deactivation** through Dynamic Catalyst Science (DCS) experimental, modeling and simulation tools

- Over 80% of chemical manufacturing processes rely on a heterogeneous catalyst
 - Wide ranging impact across the chemical manufacturing sector
- Progressive loss in catalyst performance reduces productivity and process efficiency
 - Results in waste and increased energy use in downstream separations
- Shutdown and replacement costs due to deactivation
 - Estimated in \$B (billions of dollars)

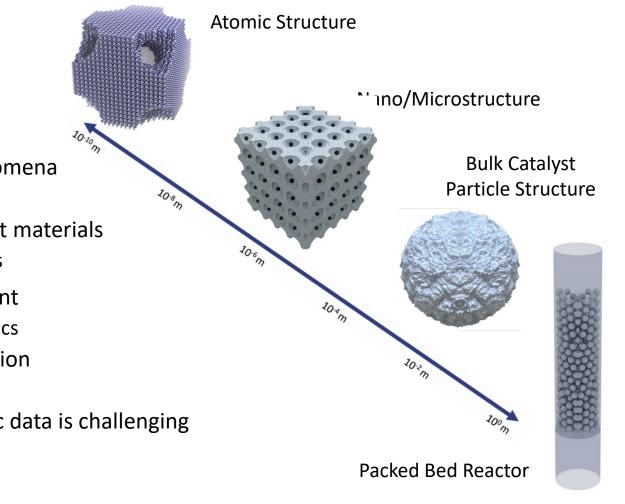
Alignment with IEDO Mission:

- Accelerates innovation in cost-effective technology
 - Reducing catalyst replacement, regeneration, shut down costs
- Increases energy efficiency
 - Reduces nonselective side reactions, reduces energy required for separations
- Reduces greenhouse gas (GHG) emissions
 - Related to regeneration process, i.e., coke removal generating CO₂

IMPACT Space

Energy, Emissions, & Environment:

Reduced waste (catalyst replacement and nonselective side reactions), reduced energy usage for downstream product separations


Technical & Scientific:

Faster development of advanced catalyst formulations, more productive reactor operation

Project Overview

Addressing **catalyst deactivation** through Dynamic Catalyst Science (DCS) experimental, modeling and simulation tools

- Main barriers:
 - Catalyst deactivation takes place on multiple time/length- scales with wide and varying phenomena
 - The lifetime of new catalysts is difficult to predict
 - Industrial catalysts are complex, multicomponent materials
 - Difficult to characterize under working conditions
 - Kinetic tools are based on gas phase measurement
 - Spectroscopic tools do not provide detailed kinetics
 - Dynamic experiments provide powerful information
 - Beyond the current reach of spectroscopy
 - Deterministic (physics based) analysis of dynamic data is challenging

Project Outline

Innovation: New research tools to address catalyst deactivation based on dynamics

Project Lead: Rebecca Fushimi, Idaho National Laboratory

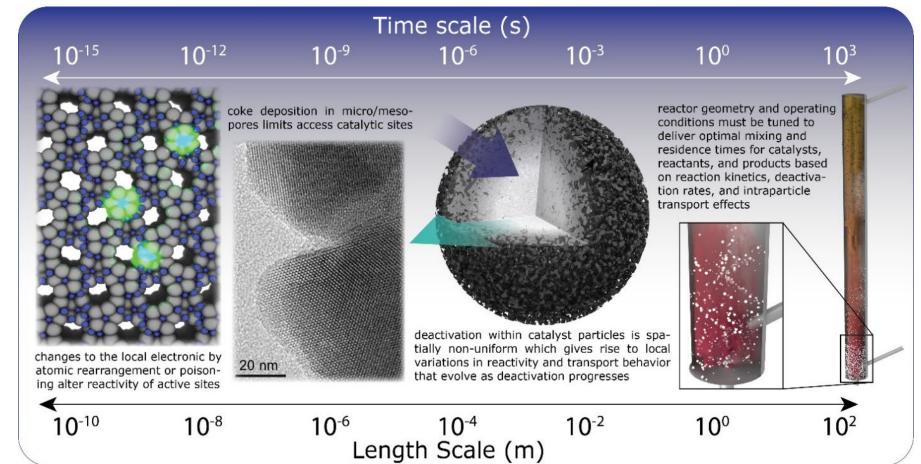
Project Partners: Clariant Corporation, National Renewable Energy Laboratory, Georgia Institute of Technology, University of Houston

Timeline: 9/1/21 – 9/30/24, progress 50%

Budget: \$5,000,000 Federal, \$1,536,062 Cost Share

	FY22 Costs	FY23 Costs	FY24 Costs	Total Planned Funding
DOE Funded	\$1,253,625	\$1,498,550	\$2,247,825	\$5,000,000
Project Cost Share	\$361,844	\$469,687	\$704,531	\$1,536,062

End Project Goals:

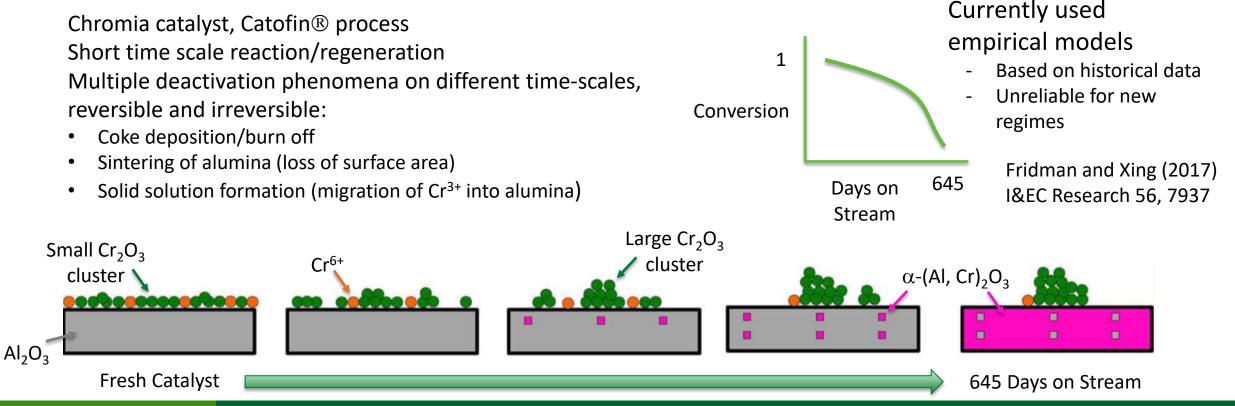

- 1) Demonstrate an <u>experimental method</u> for spectrokinetic analysis on the 10⁻³s time scale,
- 2) Build an <u>analytical tool</u> for converting DCS data to machine-learned kinetic (MLK) models,
- 3) Demonstrate a multiscale process simulation tool that propagates MLK model to industrial time and length scales to reduce the time for predicting catalyst deactivation by 70%

Background & Strategic Approach

Catalyst Deactivation - *loss of activity over time*

- Comprises vast time and length scales
- Wide and varied phenomena
 - Chemical poisoning
 - Carbon accumulation
 - Solid state diffusion
 - Sintering/pore collapse
 - Mechanical/attrition
 - Leaching
 - Fouling
 - Etc.

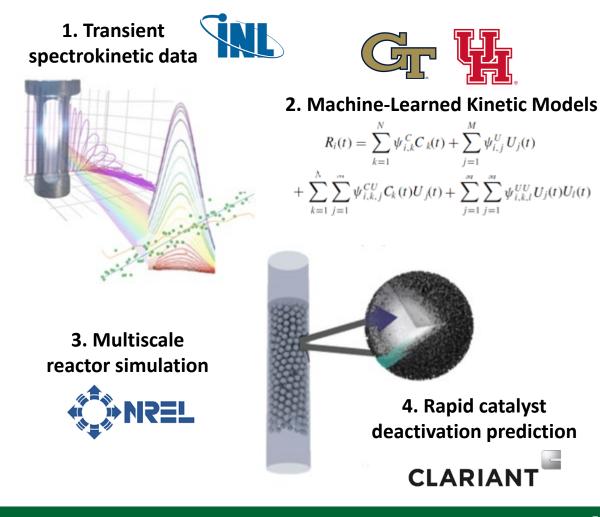
No reliable methods to predict long-term deactivation



Background & Strategic Approach

Propane Dehydrogenation (PDH)

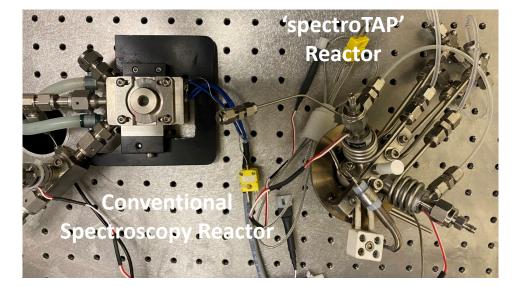
- 'On purpose' propylene = 2 Mt/yr U.S., 1.7 MMBtu/ton
- Significant energy savings compared to cracking
- Precursor for polypropylene (consumer products: packaging, bottles, textiles, etc.), acrylonitrile, acrylic acid, etc.


Background & Strategic Approach

Our Approach: Dynamic Catalyst Science (DCS) – The use of T, C or P transients to perturb the state of a chemical system, response or relaxation indicates how the system works.

- 1. Develop dispersive-mode transient spectrokinetic method to improve the time-resolution of *operando* spectroscopy.
 - Current State-of-the-art $10^0 s \Longrightarrow$ need $10^{-3} s$
- 2. High-volume transient spectrokinetic data is used to build Machine-Learned Kinetic (MLK) Models.

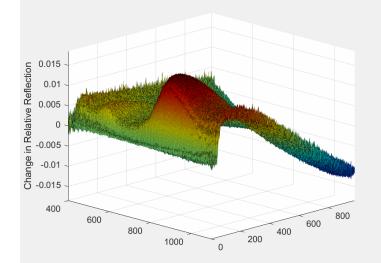
Hypothesis: Short time-scale chemical kinetic phenomena is predictive of long-term deactivation behavior.


- 3. Propagate MLK model through time- and lengthscales using multiscale reactor simulation
- 4. Predict catalyst deactivation and developed advanced operational strategies.

Results and Achievements

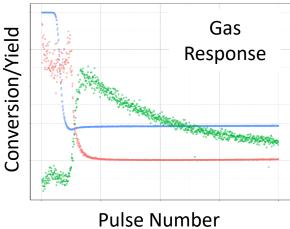
Advanced Transient Spectrokinetic Tool Demonstrated

갓


SpectroTAP Advantages:

- No dead volume
- Isothermal measurement (850 °C)
- Well-defined transport
- Separation of transport/kinetics
- Transient experiments
- 10⁻³ millisecond time-resolution

Custom built dispersion detector (not shown) with fast photodiodes enables high time resolution


spectroTAP: Pulsing Propane over an Oxidized CrO_v Catalyst

Surface Change and Gas Response during Oxidation

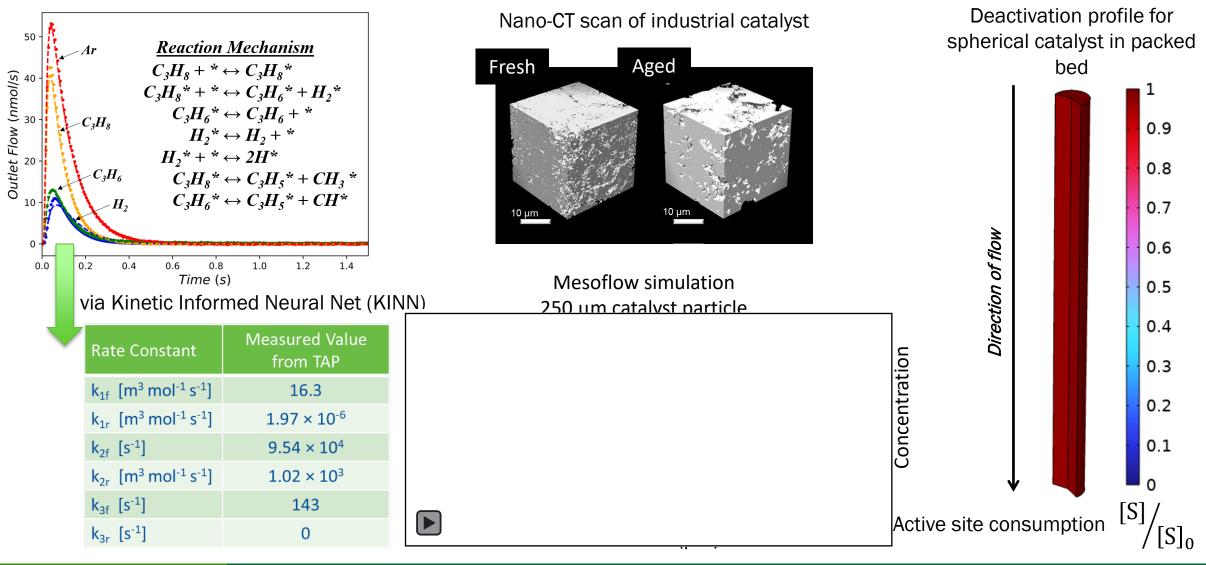
Wavelength

Conversion O_2 Yield $CO_2 H_2O$

New Catalyst Information

Propane pulsing:

 Kinetics of coke accumulation separated from propylene formation


Oxygen pulsing:

 Kinetics of coke oxidation separated from catalyst reoxidation

Results and Achievements

From TAP Pulses to Pellets to Packed Beds...

1 of 10,000 TAP pulse response cycles

Future Work, Technology Transfer, & Impact

Future Work:

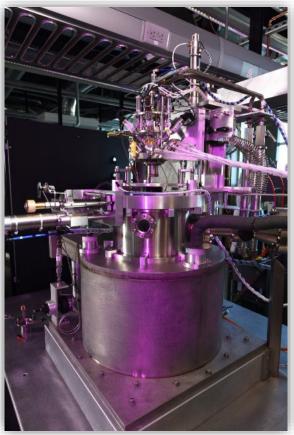
- Catalyst testing, compare kinetics and deactivation predictions for different compositions
- Advance neural net method for 10k pulse response analysis, Machine Learned Kinetic Models
- Connect TAP kinetics to industrial scale

Technology Transfer:

- Patent for analytical device and methodology, Copyright assertion on software tools
- Identify other catalyst deactivation challenges
 - E.g., Oleflex PDH, selective hydrogenation, methanol synthesis, selective oxidations, Fischer-Tropsch, alcohol dehydration, biomass/waste plastic fast pyrolysis, etc.
 - Adapt tools for customers (industrial catalyst developers, chemical manufacturers)
 - Enable access to tools/expertise

Impact:

- DCS tool investment broadly supports development of catalyst technology in other areas, e.g.,
 - ForgeNano, UOP, 'Catalyst active site design by atomic layer deposition for advanced chemical manufacturing'
 - University of Houston, INEOS, 'Resilient ammoxidation of small hydrocarbons using forced dynamic operation'


Reducing costs:	Faster assessment of improved catalyst stability, more productive reactor operation models		
Increasing energy efficiency:	Reduces waste (catalyst replacement), maximizes selectivity, decreases energy load in downstream separations		
Reducing GHG emissions:	Avoiding CO ₂ emissions associated with catalyst regeneration		

Catalyst Evaluation for Deactivation and Remediation (CEDAR) | IEDO

Rebecca Fushimi, Idaho National Laboratory

rebecca.fushimi@inl.gov

