

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY **AMMTO & IEDO JOINT PEER REVIEW**

May 16th-18th, 2023

Washington, D.C.

Integrated AnMBR electro-assisted fermentation for total resource recovery from diverse wastewaters | IEDO

Prathap Parameswaran, Kansas State University

DE-EE00009504 October 2021 – March 2025

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

- Anaerobic Membrane Bioreactor (AnMBR) with electro-assisted fermentation and a holistic process configuration for recovery of organic acids or biogas, nutrient products, and water for reuse
- This research project enables a cross-sector technology platform that enables decarbonization of agricultural (livestock) and municipal wastewater sectors, aligning with IEDO's mission statement

 Energy, Emissions, & Environment: Reduce GHG emissions by 30% for swine wastewater treatment 	 Cost & Competitiveness: Use high value VFAs and nutrients to offset cost of swine wastewater treatment with 20% improvement in cost over current state-of-the- art technology
 Technical & Scientific: Recovery of nutrients and high value VFAs from swine wastewater to lower lifecycle GHG emissions while minimizing energy footprint of the treatment process 	 Other Impacts: Circular bioeconomy for sustainable products and sustainable energy for enhancing rural and agricultural resilience.

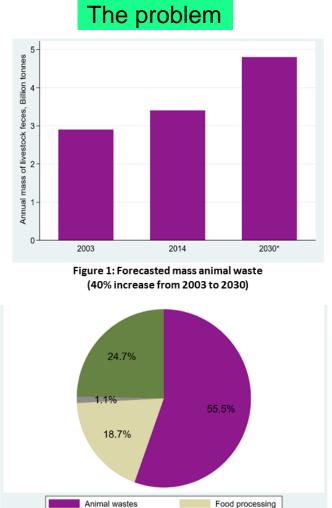
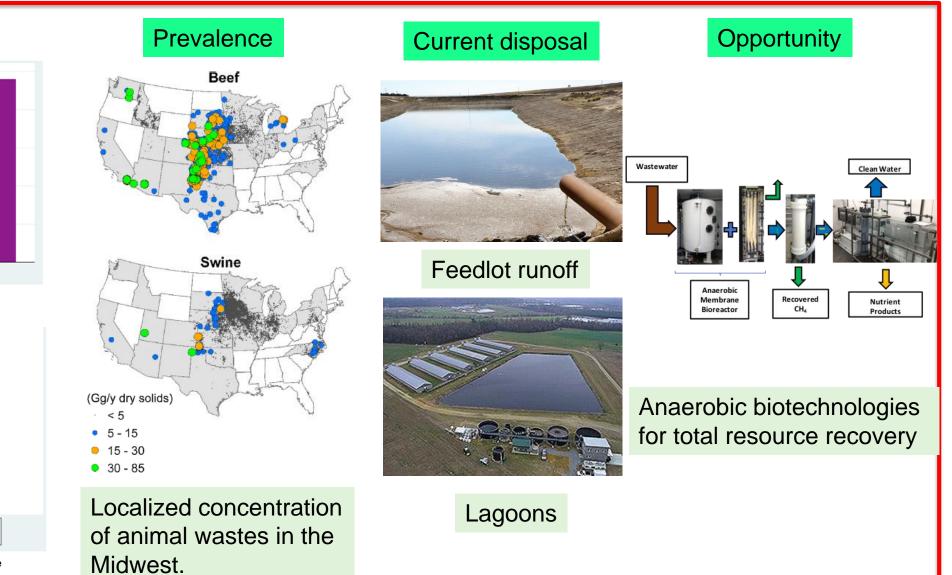
Project Outline

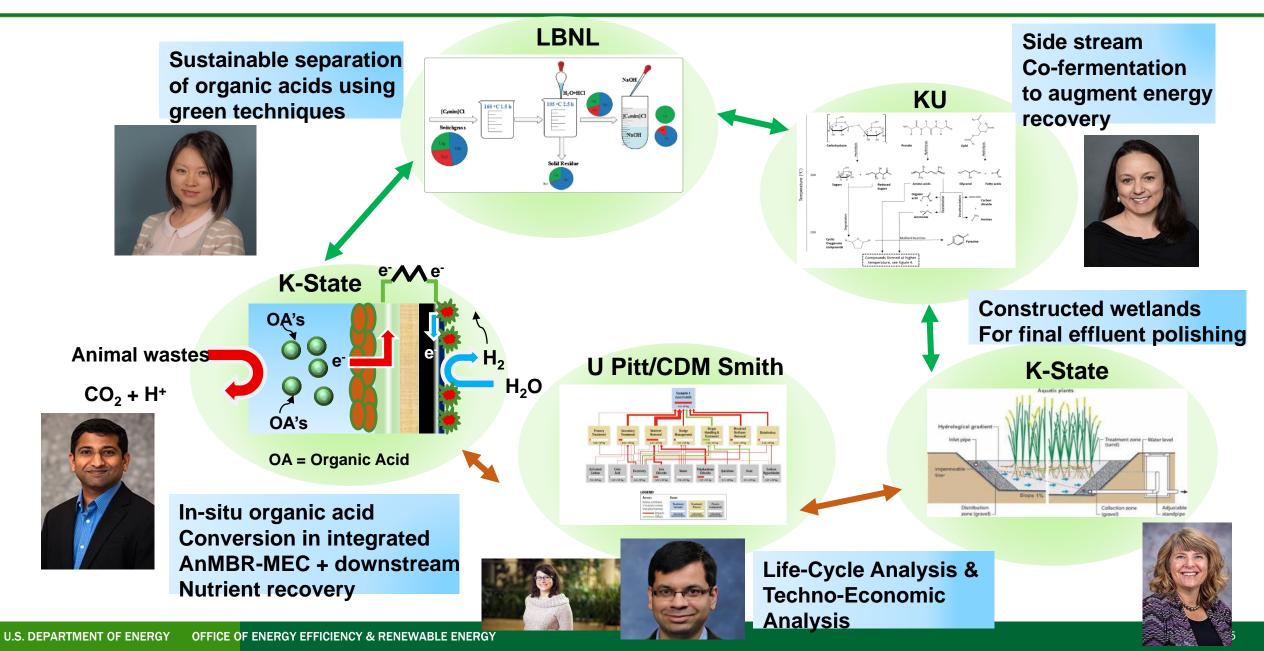
Innovation: Valorization of livestock waste to resources in an integrated AnMBR platform
Project Lead: Dr. Prathap Parameswaran, Kansas State University
Project Partners: University of Kansas; University of Pittsburgh; Lawrence Berkeley National Lab
Timeline: October 2021 – March 2025, progress 35%
Budget:

	BP1 (Oct 21 – Sep 23)	BP2 (Oct 23 – Sep 24)	BP3 (Oct 24 – March 25)	Total Planned Funding
DOE Funded	\$627,055	\$511,697	\$361,165	\$1,499,917
Project Cost Share	\$123,845	\$92,637	\$47,658	\$264,140

End Project Goal: Demonstrate in the pilot scale integrated ANMBR system >50% Carbon conversion efficiency as methane, coupled with >30 g NH₄-N/kg clay and >90% P sequestration efficiency as well as greater than 50% reduction in fouling net energy requirement and enhanced energy generation (>0.6 KWh/m³) through side stream co-fermentation along with final water meeting or exceeding discharge standards.

Background & Strategic Approach

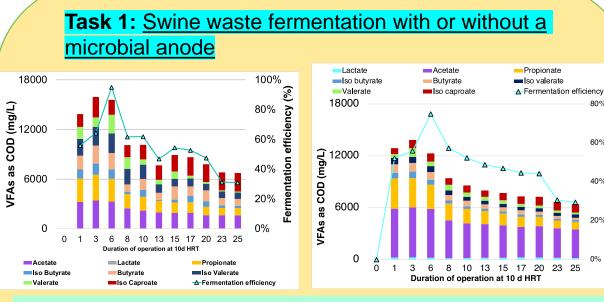

Figure 2: Biomass waste category by each source

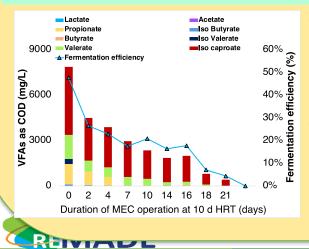
Municipal waste water

Pulp and paper

Background & Strategic Approach

Background & Strategic Approach


Pilot AnMBR unit at K-State (1000 gpd)

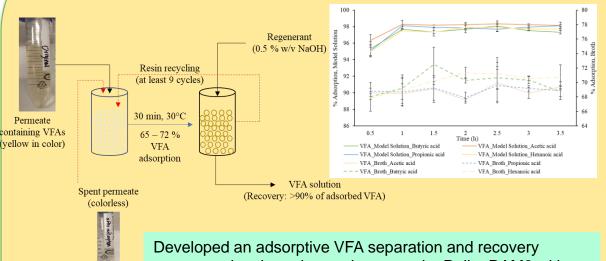

Lab AnMBR (~110 L) The PI was an integral part of an ESTCP project (ER-201434 – Anaerobic Membrane Bioreactor (AnMBR) for sustainable wastewater treatment) which was operated for >400 days at Ft. Riley, KS, treating municipal wastewater. Key accomplishments are summarized below:

Parameter	Goal	Gas-Sparged
Effluent BOD ₅ (mg/L)	≤ 30/10*	24±14
Effluent COD (mg/L)	<mark><</mark> 60	53±16
HRT (h)	<mark>_</mark> ≦20	13±8
COD Loading (kg-COD m ⁻³ d ⁻¹)	≥ 0.6	1.3±0.7
Energy Produced/Consumed	≥ 100%	74
Biosolids (g-VSS/g-COD _{loaded})	≤ 0.2	0.07±0.07
Net Flux (L m ⁻² h ⁻¹)	≥6	7.4±2.0
TMP (kPa)	<mark>.</mark> ≤ 30	13±9
Sulfide (mg/L)	<mark>_</mark> ≦0.1	< 0.14±0.08
Ammonia Removal (%)	≥90	99.8±0.2
Total Phosphorus Removal (%)	≥90	90±1
Dissolved Methane Removal (%)	≥90	6

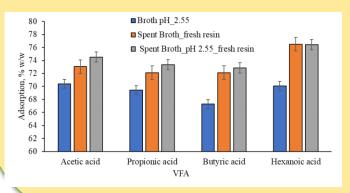
Results and Achievements

pH 5 & 9 fermentation profiles and carbon conversion efficiency

Fermentation efficiency > 50% was achieved for both pH 5 & 9 with swine wastewater as feedstock.

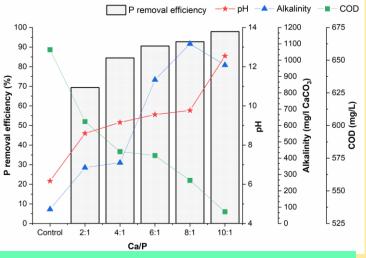

80%

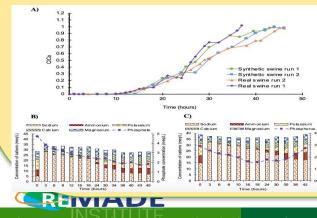
%)


60% 40% 20% Etimentation efficiency

Higher VFAs selectively accumulated during MEC fermentation (iso-caproate was highest), albeit with loss of acetate leading to a lower fermentation efficiency.

Task 2: Volatile Fatty Acids (VFA) separation


process using the anion exchange resin: Relite RAM2 with a tertiary amine functional group


- VFAs' adsorption depends strongly on the pH of the substrate
- 65-72% VFAs were adsorbed from fermentation broth using the selected resin
- The resin was recycled for 9 successive adsorption/ desorption cycles without a loss of efficiency

Results and Achievements

Task 3: Nutrient Recovery (ammonia-N and Phosphorus) from swine permeate

CO₂ redistribution from permeate greatly aids with efficient P removal and capture.

Product Ca : P

dose ratio

2:1

4:1

6:1

8:1

10:1

2% Citric acid

10.9

11.4

9.3

10.4

2.1

solubility

(% total P)

Total P

(%)

11.8

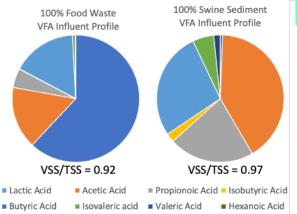
10.9

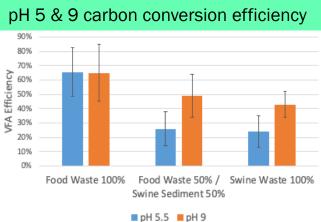
11.2

10.6

7.5

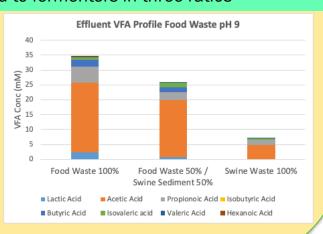
CaP product

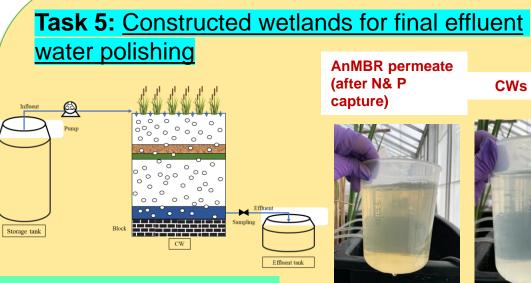

recovery. Provisional


patent submitted

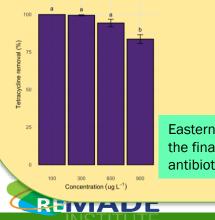
(63/407.936)

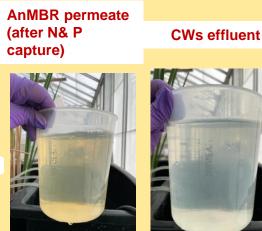
Plant N uptake with 80% urea + 20% swine recovered ammonia was on par with the urea treatment


Task 4: Side-stream cofermentation of swinesediments with food waste


Food waste and swine sediment fed to fermenters in three ratios

- Fermentation efficiency > 65% for both pH 5.5 & 9 with food waste as feed.
- Fermentation efficiency > 43% achieved with swine sediment feedstock at pH 9
- Swine sediment feedstock reduced conversion efficiency





Results and Achievements

Constructed wetland design with cattail as the primary plant species

Permeate quality after N & P capture

Parameter	Value
Total N (mg N/L)	17.7
Total P (mg P/L	1.99
Total coliforms (CFU/mL)	2.19 x 10 ⁵ ± 30,500
Fecal coliforms (CFU/mL)	0

Eastern red cedar biochar (incorporated in the CWs) sorption of the final water indicated removal of Tetracycline; a common antibiotic used in swine nutrition

Task 3: Life Cycle Assessment and Techno-Economic analyses of the integrated AnMBR

Scenario 1: Degasser with CH₄ for electricity. Scenario 2: Degasser with CH₄ for flaring Scenario 3: No dissolved CH₄ recovery.

Initial LCA results show that in scenarios including degassing the GHG emissions are reduced to more than 30% compared to baseline treatment

Initial TEA results show cost of influent swine wastewater AnMBR treatment is comparable to treatment cost of municipal wastewater

Future Work, Technology Transfer, & Impact

Future Work:

- Integrated AnMBR-MEC experiments at pH 9 to maximize selective higher organic acids generation, with a targeted fermentation efficiency > 50%
- Optimization of VFA separation with real AnMBR swine permeate from electro-assisted MEC operation.
- Greater fouling control on the AnMBRs with proactive solids wasting based on colloidal organics and smart sparging through bubble dynamics control, with a target of lowering energy requirement to < 0.6 KWh/m³
- Prepare pilot AnMBR for operation under methanogenic mode with nutrient recovery and water for reuse.

Technology Transfer:

- Patent follow up and filing for nutrient recovery applications (brushite and struvite recovery) and work with interested entities (Carollo, Monsanto, ADM)
- Membrane fouling control novel method development with modified cleaning protocol with wastewater derived peroxide (Veolia)
- Microbial chain elongation at pH 9 in the integrated AnMBR-MEC using a novel microbial consortium (proof of concept stage)

Impact:

• The AnMBR platform presents a viable opportunity for resource recovery from livestock, other agricultural, and municipal waste streams towards a circular bioeconomy, with the product portfolio ranging from organic acids, biogas, fertilizer products, and water for reuse.

Questions?

- Integrated AnMBR electro-assisted fermentation for total resource recovery from diverse wastewaters | IEDO
- Prathap Parameswaran, Kansas State University
- Contact: prathapp@ksu.edu

