

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY **AMMTO & IEDO JOINT PEER REVIEW**

May 16th-18th, 2023

Washington, D.C.

Filament Extension Atomization for High Solids Loading in Energy Efficient Spray Drying Systems | IEDO

David M. Johnson – Palo Alto Research Center (PARC)

DE-EE0009128 | 09/01/2020-03/31/2024

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

- Filament Extension Atomization (FEA) reduces energy load on industrial spray dryers by reducing amount of water needed to be evaporated
- IEDO goal addressed: Food and Beverage "Improve energy efficiency by advancing the electrification of process heating, evaporation, and pasteurization processes"
- Spray drying is responsible for ~2billion lbs of product / year and the least efficient part of the drying process
- Existing spray technologies only allow lower solids concentrations driving high energy usage in spray dryers
- FEA opens up process window by enabling spraying of ultra high solids solutions, 40% increase over state of the art up to 80% solids by mass
- FEA enables:
 - 40% reduction in energy per kg of product
 - 3.5X increase in output
 - Up to **50% reduction in CO₂ emissions**
 - 1.5M tons of CO₂ savings / year if widely adopted
- Significant impact to food & beverage, with potential for impacts across chemical, pharmaceutical and other powder production processes
 - Reduces costs by 40-70% through reduced energy & better capital utilization
 - Reduces carbon intensity
 - Enables smaller spray dryers

ADVANTAGES OF FILAMENT EXTENSION ATOMIZATION (FEA)

Solids Loading	▲ up to 80%				
Powder Production Rate	▲ up to 3.5X				
Cost Reduction	▼ 40-70%				
Energy Savings	▼40%+				
Carbon Intensity	▼ 50%+				
Total Carbon Reduction	▼1.5M tons/year				
NO _x Reductions	▼ 40%				
Liquid pool upstream of nip 1. Nip 4.					

Project Outline

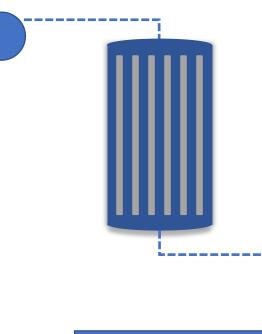
Innovation: Filament Extension Atomization for High Solids Loading in Energy Efficient Spray Drying Systems

Project Lead: Palo Alto Research Center (PARC)

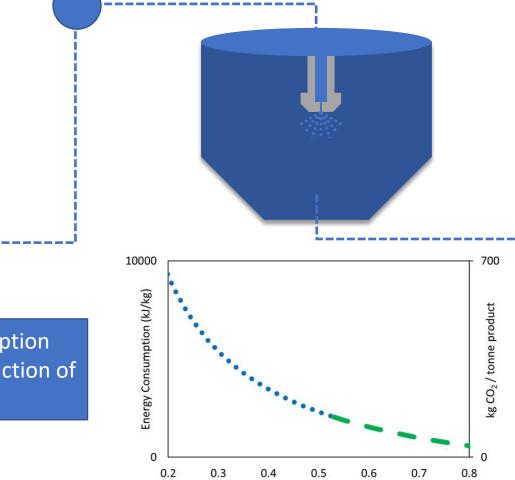
Project Partners: Utah State University, Darigold, Leprino, Tetrapak

Timeline: September 2020 - March 2024; ~66% complete

Budget: \$3,749,817 Total - \$750,000 Cost Share (just finished budget period 2)


	FY20 Costs	FY21 Costs	FY22 Costs	FY23 Costs (Q1)	Total Planned Funding
DOE Funded	\$177,580	\$604,613	\$899,749	\$229,472	\$2,999,817
Project Cost Share	\$34,202	\$161,346	\$224,938	\$57,368	\$750,000

End Project Goal: Demonstrate FEA can be scaled to meet industrial needs by showing FEA total output of 7.5 L/min in 3 unit array, dried powder from 70% solids whey protein products with powder quality equal to powder from industry standard solids loading.

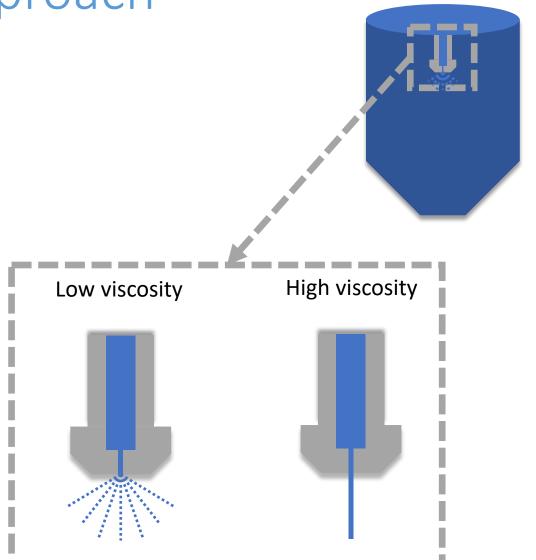

Background & Strategic Approach

- In the food production industry
 - Milk powders
 - Protein powders
 - Colors
 - Fruit and vegetable powders
 - Synthetic / alternative meats
- Spray drying consumes an estimated 20% of all industrial energy
- ~2 billion pounds of whey products annually

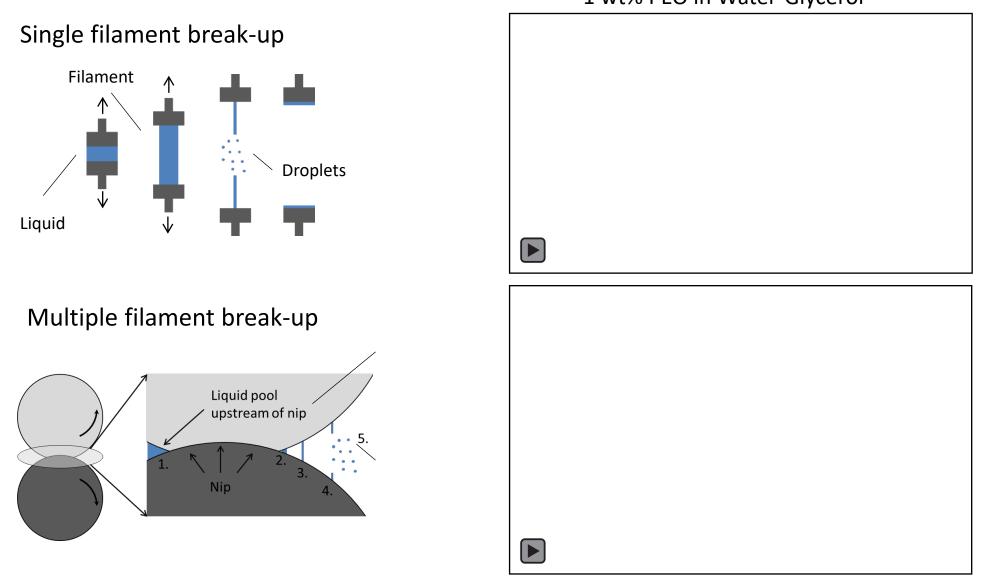
Falling film evaporator or membrane separation concentrates slurries to 20-50% wt.

Energy consumption driven by mass fraction of solids Slurry is atomized and subjected to hot dry air to form powders of 50-200µm

Mass fraction of solids

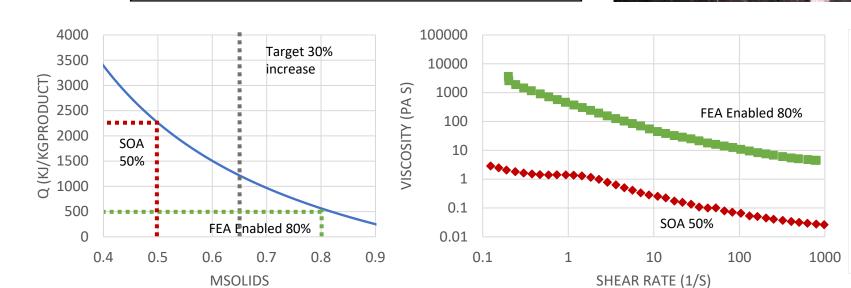

Mujumdar, A. S., 2014, Handbook of Industrial Drying, CRC Press. Cheng et al. E3S Web of Conferences 53, 01031 (2018)

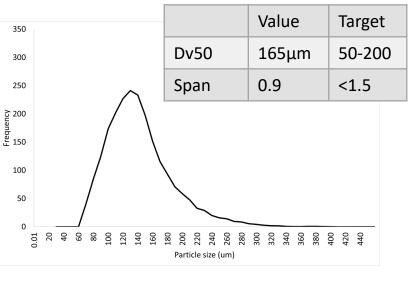
Background & Strategic Approach


- High cost driven by the latent heat of water
- Unable to increase solids content in feed slurry
- Slurry concentration dictated by viscosity limitations of spray nozzles
 - Lactose-driven viscosity

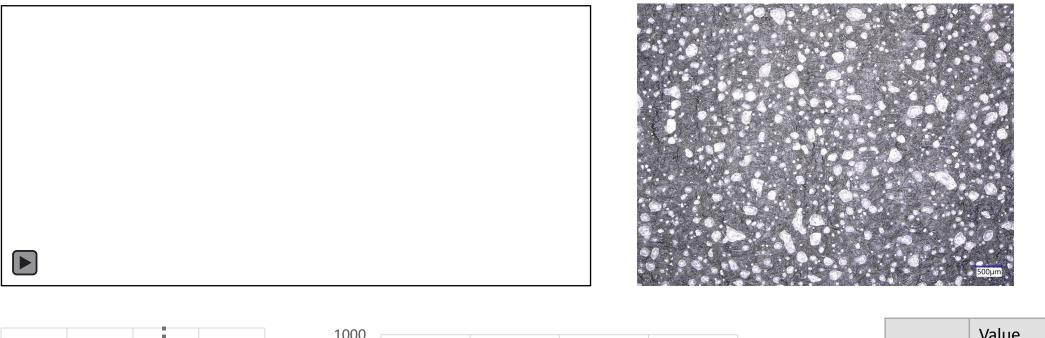
viscosity

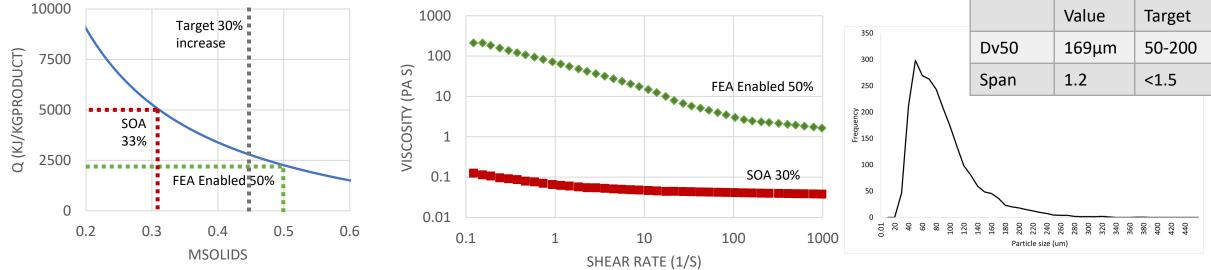
- Sweet Dry whey ~50% wt.
- Whey protein concentrate ~30% wt.
- Micellar casein concentrate ~20%
 wt.

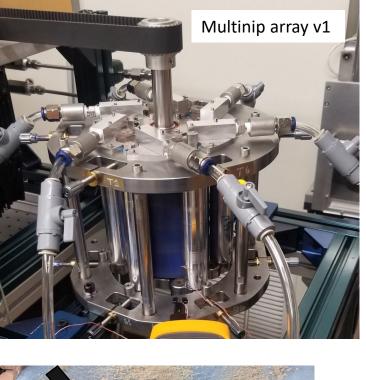

Background & Strategic Approach - FEA

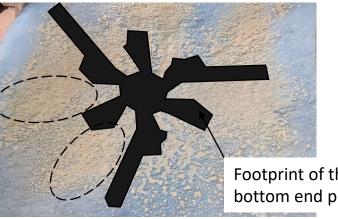


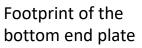
1 wt% PEO in Water-Glycerol


Results and Achievements – Spraying Dry Whey




Results and Achievements – Spraying WPC-80





Results and Achievements

- Multinip array commissioned in 2022
- System has 6 total nips, controlled by a single motor
- Spray is harvested downward or outward into spray dryer
- Achievements
 - 72 hours of runtime (target 72)
 - Sprayed 4.7 L/min of whey product (target 2.5)
 - Harvested at 2.5 L/min of whey product (target 2.5)

Future Work, Technology Transfer, & Impact

Future Work:

- Next budget period is focused on further scaling spray system and integration with dryer
- Spray system: Further scale to 7.5 L/min of spray output
- Drying: Integrate FEA system with 10L/hour water removal spray dryer from Tetrapak
- Evaluate powder properties, assess cleanability of system, finalize technoeconomic analysis **Technology Transfer:**
- Next steps would be to create larger scale demonstrations with FEA
- Needs to be integrated with upstream water removal
- Commercialization would be either through licensing, joint venture, or PARC spinout. Options currently being evaluated.

Impact:

• FEA will improve spray drying energy intensity by 40%, cut carbon emissions by 50% and increase output by 3.5X for production of whey products in the food and beverage sector

Questions?

Filament Extension Atomization for High Solids Loading in Energy Efficient Spray Drying Systems | IEDO

David M. Johnson, Palo Alto Research Center (PARC)

dmj@parc.com

