

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

AMMTO & IEDO JOINT PEER REVIEW

May 16th-18th, 2023

Washington, D.C.

Integrated Virtual Blast Furnace for Real-Time Energy Efficiency Improvement | IEDO

Tyamo Okosun, Research Associate Professor Purdue University Northwest, Steel Manufacturing Simulation & Visualization Consortium (SMSVC) EE0009390 | 6/14/2021 – 3/31/2025

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

- **Objective**: To develop the **Integrated Virtual Blast Furnace (IVBF)**, a next-generation, physics-based & data driven industrial operational guidance tool, by combining:
 - Computational fluid dynamics (CFD) with High-Performance Computing (HPC)
 - Machine Learning (ML) & Reduced Order Models (ROMs)
 - Visualization & novel sensor technology
- Issue: Challenging to understand how changes to operating conditions impact Blast Furnace performance
 - Operators often must rely on generic rules of thumb and on-the-job experience (lost with turnover)
- Impact: The IVBF will provide key new guidance for managing blast furnace energy consumption, improving stability, reducing emissions, and enhancing product quality:
 - 1) A physics-based and data-driven BF operation prediction system to guide operators & engineers
 - 2) Rapid 3D visualization of the BF internal state under a wide range of conditions
 - 3) New operational indices to better quantify furnace health and stability and make decisions accordingly
 - 4) New sensor data to provide instantaneous non-invasive measurement of BF hot metal production rate

Energy, Emissions, & Environment:	Cost & Competitiveness:
4.5-10% reduction in energy (coke) consumption, enabling roughly 10% reduction in CO ₂ emissions	\$93M-\$221M in cost savings for U.S. blast furnaces through improved iron quality and reduced coke rate
Technical & Scientific: Enable use of new, low-carbon injected fuels (Syngas, H ₂) through better understanding of chemical reactions	Other Impacts: Directly aid steel workforce development with training and education to ensure industry stability

Project Outline

Innovation: An Integrated Virtual Blast Furnace for rapid process guidance, internal-state visualization, performance and stability improvement, and workforce training
Project Lead: Purdue University Northwest, SMSVC
Project Partners: Cleveland-Cliffs, Linde, Oak Ridge Nat'l Lab, Purdue University, U. S. Steel
Timeline: 06/14/2021 – 03/31/2025, Progress: 33%

Budget:		FY21 Costs (BP1)	FY22 Costs (BP1)	FY23 Costs (BP1)	Total Planned Funding (BP1, BP2, BP3)
	DOE Funded	\$16,707.07	\$1,325,972.82	\$340,332.08	\$7,048,122
	Project Cost Share	\$3,376.69	\$315,674.05	\$327,337.60	\$1,864,972

End Project Goal:

- Develop physics-based and data-driven ROMs for rapid prediction of blast furnace performance. Validate against industry data and CFD to within 10% of industrial values.
- 2. Design, build, and install a prototype casting-rate imaging sensor at a site blast furnace. Integrate the system with existing network and control room, accounting for on-site restrictions and limitations.
- 3. Validate use of IVBF implementation at an industry blast furnace site for a target of ~450 kBtu/nthm in energy savings through identification of new operating conditions and stability/product quality improvement.

Background & Strategic Approach

- +26M tons of pig iron from U.S. BFs annually
 - Needed for high purity ironmaking!
- 65% of energy consumed in an integrated mill
- Extremely difficult to take measurements inside the furnace (>1500°C)
- State-of-the-art smart manufacturing approach used to enable higher performance and lower CO₂ emissions with BF ironmaking process
- Uniqueness: Integration of world-class ironmaking CFD modeling, novel non-invasive imaging sensors, ML-based ROMs, and AI data analytics to provide guidance for BF operation
- Team Members:
 - U.S. Blast Furnace Operators: Cleveland-Cliffs, U.S. Steel
 - CFD Modeling Expertise: PNW
 - Reduced Order Model Expertise: ORNL
 - Flow Imaging Expertise: Purdue University
 - Gas Combustion Expertise: Linde

Results and Achievements

ML & CFD-based ROM

- Based on ~900 CFD simulation scenarios
- Current model predicts BF operation to within 2% of CFD models
- CFD runtime: ~2 weeks; ROM runtime: <1 second

IVBF IMPACTS TO OPERATION

- Understanding and enabling new (low carbon) operation
 - Auxiliary fuel injection (H₂, Syngas, Waste Plastic)
 - Reduced coke rate & CO₂ emissions
- Improving furnace performance
 - Identify methods to maintain furnace stability
 - Maximize energy efficiency & productivity
 - Quick response to changes in raw materials
- Visualizing BF internal state with CFD modeling & sensor data
- Process troubleshooting: slips/hangs, channeling, etc.

Validated CFD Model of Industrial Blast Furnace

Approach	Coke Rt. [lbs/thm]	Top gas T [K]	ΔP [KPa]	η _{со}	HM Temp. [K]
CFD	462.7	391.9	108.6	47.2	1,797
Industry data	~463	~370	~115	46.8	1,786
% Difference	0.06%	~6%	~5%	0.85%	0.62%

Results and Achievements pg. 2

- ROMs used to identify stable scenarios with low CO₂ emissions
- Competing impacts of fuel injection, O₂ enrichment, production, & more
- Interactive UI for operators and engineers to input and extract data quickly and efficiently Answer questions faster!

Future Work, Technology Transfer, & Impact

Future Work:

- Several tasks ahead of schedule: CFD model validation, ROM development, and the prototype casting rate imaging sensor
- Expansion of ROM training database for to include additional CO₂ mitigating technologies
 - Syngas injection, waste plastics injection, hot blast superheating
- Further ROM validation against industrial conditions, followed by optimization trials utilizing these ROMs
- Development of indices quantifying blast furnace stability, thermal state, and deadman conditions
- Calibration of casting rate imaging sensor and implement at a site furnace, integrated with their control room
- Integration of IVBF component modules into a single UI, solicit feedback from industry, and deploy on-site for trials and evaluation

Technology Transfer:

- The completed and validated IVBF will be deployed at SMSVC member blast furnaces (all U.S. BF operators are current members) through the work of the Ironmaking Project Technical Committee
- The SMSVC will support the IVBF with CFD models for ROM training, site-specific health indices, and design and installation of casting rate imaging sensors for viable locations

Impact:

- Blast Furnaces remain a critical piece of America's steelmaking infrastructure
- The operational guidance provided by the IVBF will be key to minimizing BF energy consumption and reducing CO₂ emissions, while maintaining productivity and strengthening a critical portion of the U.S. steel industry

Integrated Virtual Blast Furnace For Energy Efficiency Improvement | IEDO

Tyamo Okosun, Research Associate Professor

Purdue University Northwest

tokosun@pnw.edu

