

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

AMMTO & IEDO JOINT PEER REVIEW

May 16th-18th, 2023

Washington, D.C.

An Innovative Process for the Direct Utilization of CO₂ in Solid Synthetic Pozzolan Production | IEDO

PI: Sada Sahu, Ph.D. – Solidia Technologies; Presenter: Pradeep Ghosh – Solidia Technologies DE-EE0009417 | 7/1/2021 – 3/31/2023

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

 A scalable process to manufacture an engineered, low-carbon pozzolan that can be used as a partial Portland cement replacement in concrete to reduce the U.S. cement industry's massive CO₂ footprint

 Energy, Emissions, & Environment: Reduce CO₂ footprint associated with Portland cement production and use by 60% or more Use and store anthropogenic CO₂ 	 <u>Cost & Competitiveness:</u> Lower cost to produce than Portland cement Target price between fly ash (coal power plant by-product) and slag (iron & steel-making by-product) Comparable / superior performance to traditional SCMs 				
Technical & Scientific:	Other Impacts:				
 At least 15 wt% CO₂ uptake in under 12 hours 	 Leverage existing supply chain (e.g., feedstock), assets 				
 Meet basic concrete performance per ASTM tests (e.g., strength activity index, water demand, ASR) 	(e.g., cement kiln), and waste streams (e.g., cement kiln flue gas)				
 No meaningful effects of CO₂ concentration and impurities on process and SCM performance 	 Minimal disruption to cement plant operations and raw material change cost 				

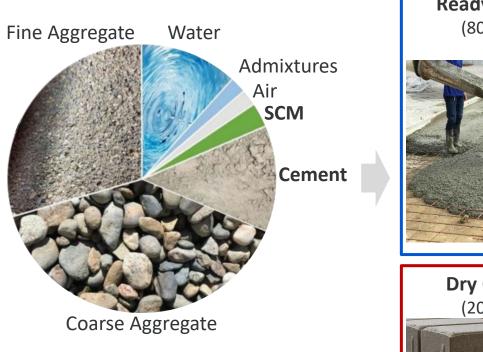
Project Outline

Innovation: An innovative process for direct utilization of CO₂ in solid synthetic pozzolan production

Project Lead: Solidia Technologies, Inc.

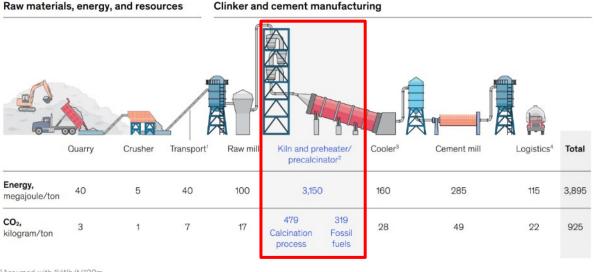
Timeline: July 1, 2021 - March 31, 2023 (100% complete)

Budget:


		Budget Period 1		Budget Period 2						
	FY21		FY22				FY23		Total Planned Funding	
	Jul - Sep	Oct - Dec	Jan - Mar	Apr - Jun	Jul - Sep	Oct - Dec	Jan - Mar	runung		
DOE Funded	\$ 249,41	5 \$ 133,582	\$ 266,803	\$ 215,777	\$ 587,731	\$ 345,459	\$ 268,391	\$	2,100,000	
Solidia Cost Share	\$ 63,13	5 \$ 33,814	\$ 67,537	\$ 54,620	\$ 148,774	\$ 87,447	\$ 67,939	\$	532,626	

End Project Goal:

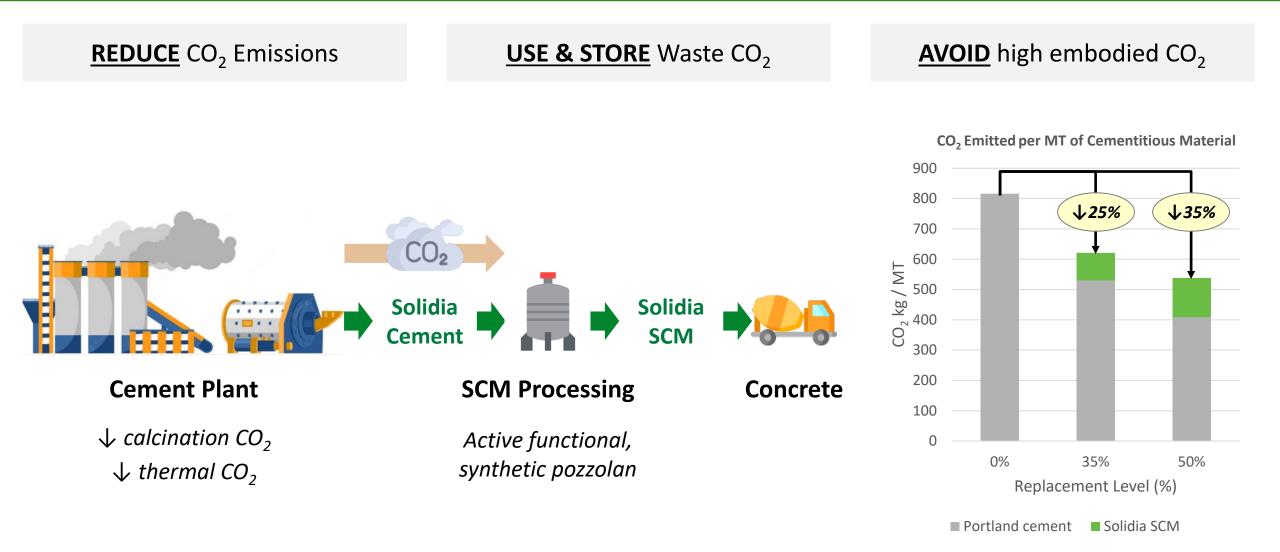
- Develop a process for producing a solid synthetic pozzolan through direct capture, utilization, and storage of CO₂ from the flue gas stream of an operating cement plant through reaction with Solidia Cement[®], a nonhydraulic cement, without any disruption to the clinker production process
- 2. Use the carbonated Solidia Cement as a supplementary cementitious material (SCM) in concrete with comparable or superior performance to concrete with traditional SCMs such as fly ash and slag cement


Background

Concrete is the most consumed man-made material

>85% of CO₂ emissions from manufacturing

Assumed with 1kWh/t/100m


²Assumed global average, data from the Global Cement and Concrete Association, Getting the Numbers Right 2017. ³Assumed reciprocating grate cooler with 5kWh/t clinker. ⁴Assumed lorry transportation for average 200km.

a long transportation for average 200km.

8% of global CO₂ emissions

Sources: McKinsey & Company, CleanTechnica, ClimateWatch, Global Cement and Concrete Association

Strategic Approach

Strategic Approach

Fundamental Process Development

- Examined 7 methods for maximum CO₂ uptake with minimum residence time
- Used scanning electron microscope (SEM) to characterize composition and microstructure
- Determined effect of composition, microstructure, and CO₂ uptake on pozzolanic activity

Product Performance Validation (per ASTM)

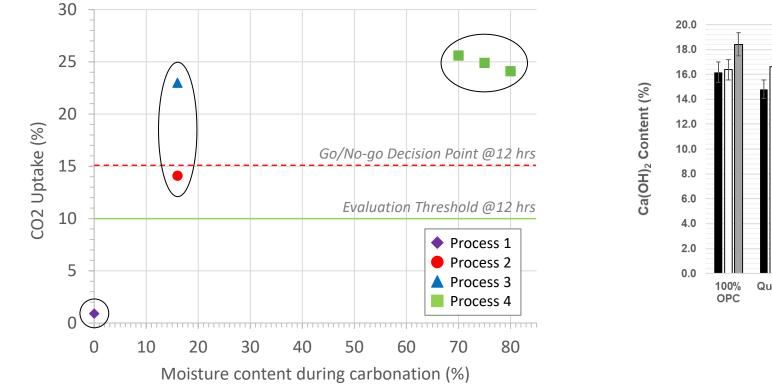
- Third-party lab mortar and concrete tests with varying concrete mix design and replacement levels to evaluate:
 - Slump and slump loss
 - Water demand for placement

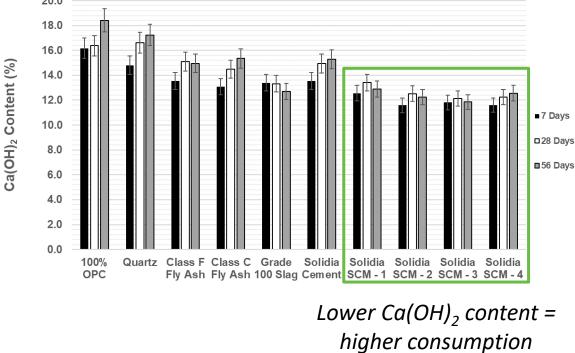
Flue Gas Utilization

Carbonation

- Used thermodynamic computations (e.g., OLI, PHREEQC) to determine effects of impurities in cement kiln flue gas
- Studied effects of CO₂ and SO₂ concentration with simulated flue gas

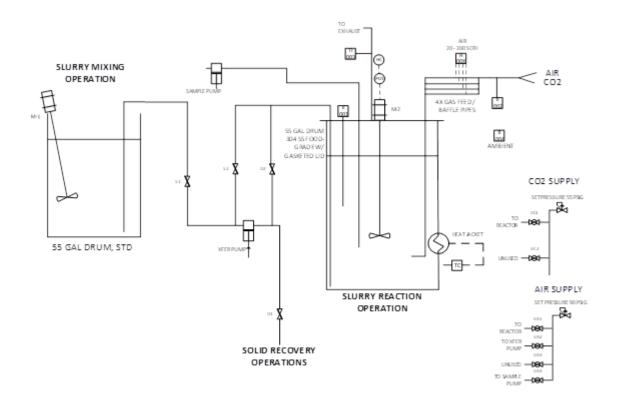
Strength & Durability


Workability


- Third-party lab mortar and concrete tests with varying concrete mix design and replacement levels to evaluate:
 - Compressive strength
 - Strength activity index (SAI)
 - Alkali silica reactivity (ASR)

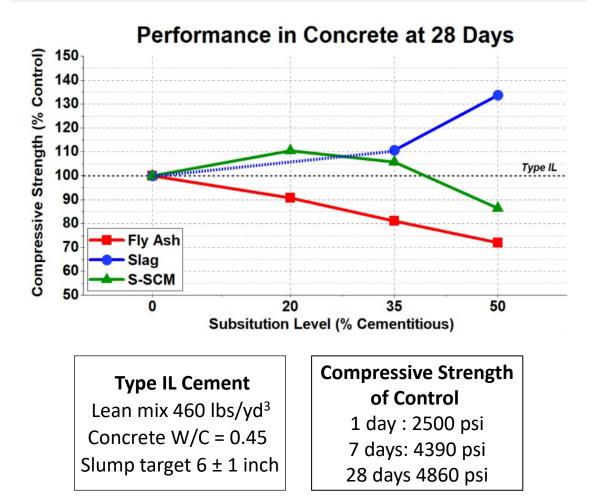
Results and Achievements

Two methods meet CO₂ uptake and time thresholds


The resulting product has high pozzolanic activity

Results and Achievements

Designed a slurry reactor



Built the batch reactor

Results and Achievements

Comparable performance to traditional SCMs

Confidence following suite of ASTM tests

• ASTM C1567: Alkali-Silica Reactivity (ASR)

• ASTM C1202: Chloride Permeability

• ASTM C1157 & C595: Sulfate Expansion

Future Work, Technology Transfer, & Impact

Future Work:

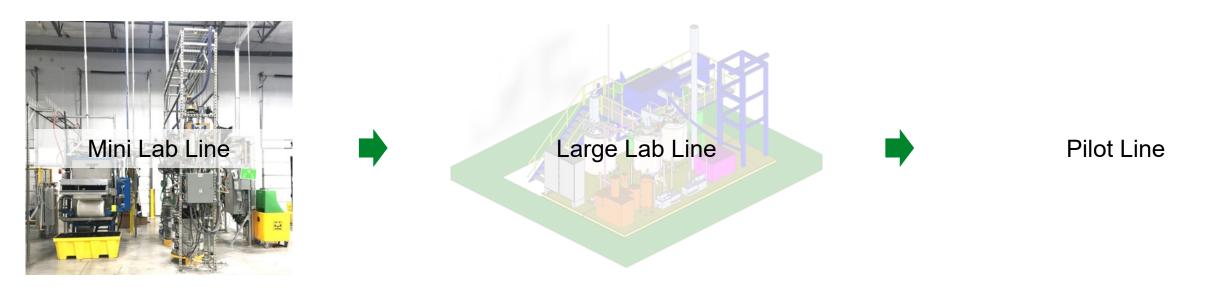
• Commission large lab line at HQ to produce 1,000 MT per year of Solidia SCM to seed market (material qualification and trial pours with DOTs and ready-mix producers)

Technology Transfer:

- Build pilot line at a cement kiln for direct utilization of flue gas CO₂ to produce and deliver Solidia SCM into the market
- Extend technology application to waste streams to reduce CO₂ footprint and expand market access (remove supply chain constraints)

Impact:

- Grant provided access to critical resources (people, equipment, labs) necessary to conduct experiments, measure impact, and develop repeatable process and product
- Accelerated development to prove viability and instilled confidence in next phases of investment


Questions?

An Innovative Process for the Direct Utilization of CO₂ in Solid Synthetic Pozzolan Production | IEDO

Principal Investigator: Sada Sahu, Ph.D. – Solidia Technologies (retired)

Presenter: Pradeep Ghosh – Solidia Technologies

pghosh@solidiatech.com

