

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

AMMTO & IEDO JOINT PEER REVIEW

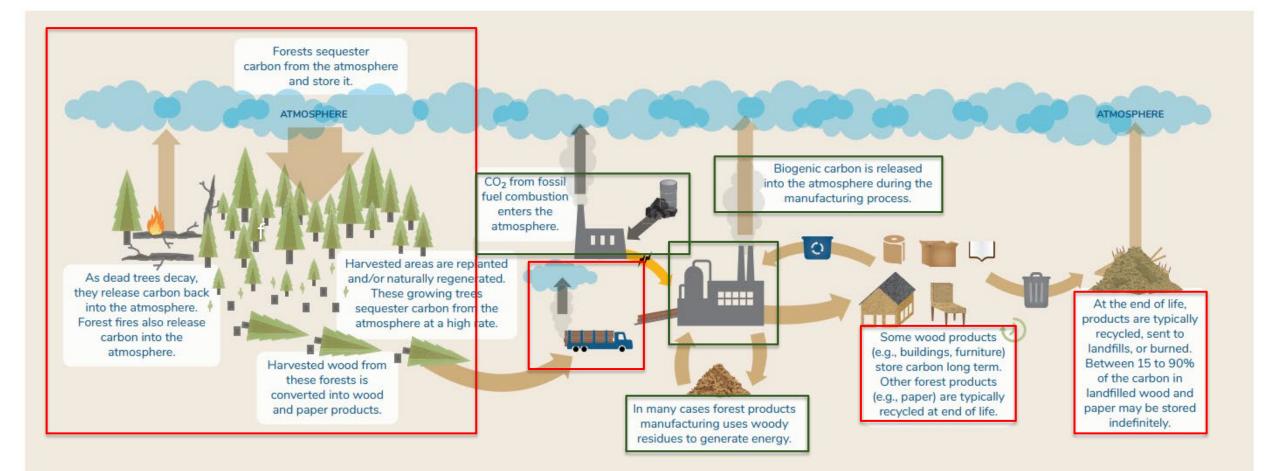

May 16th-18th, 2023

Washington, D.C.

EEII: Forest Products Programmatic Summary

David Turpin, Principal Consultant, Nexight Group, on behalf of Yaroslav Chudnovsky, IEDO Technology Manager

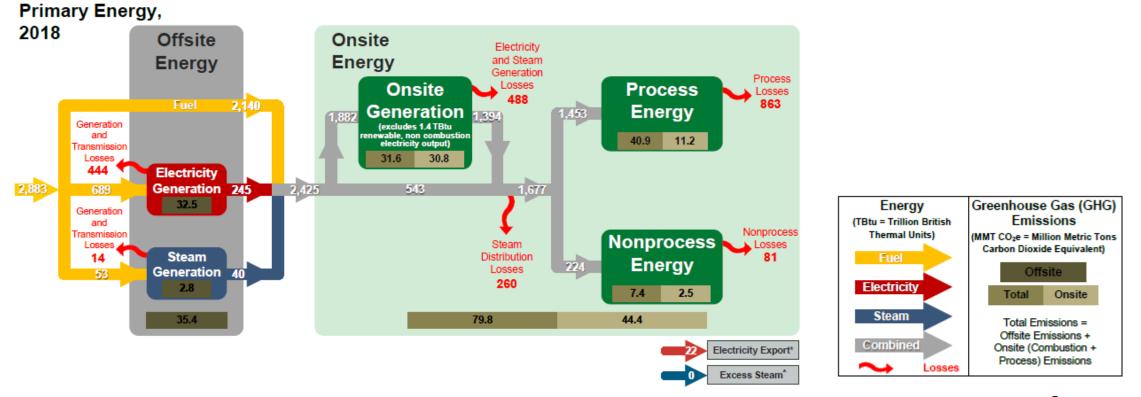
IEDO



- Revenue \$350 billion annually, 5% of US manufacturing GDP
- Employment 925,000 people, payroll of \$65 billion
- Utilize fiber from sustainably managed forests and recycled resources
- Supply 60% of energy needs from biomass waste
- Capital intensive and "energy-intensive, trade-exposed"

	Employment	Manufacturing Output (Billion)	Annual Compensation (Billion)	Facilities
Forestry & Logging	117,900		\$3.6	
Wood Products	452,900	\$154	\$28	775
Pulp & Paper	355,000	\$198	\$32	319 Mills / 3,440 Plants

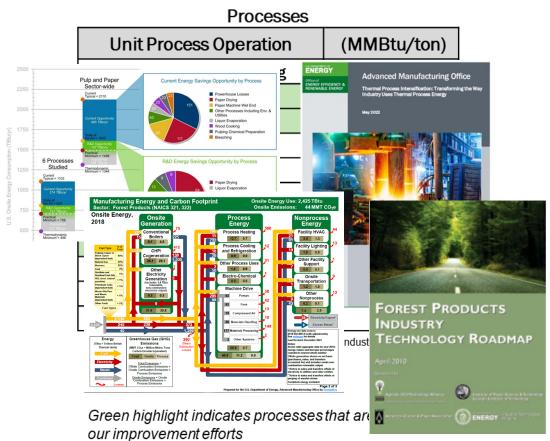
1. American Forest & Paper Association <u>https://www.afandpa.org/about-afpa</u> data from Bureau of Economic Analysis



National Council for Air and Stream Improvement, Inc. https://www.ncasi.org/resource/biomass-carbon-cycle-diagram/ IEDO Primary focus

Energy and Carbon Footprint

Primary Energy Use: 2,883 TBtu Total GHG Emissions: 80 MMT CO₂e



Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics

		Black Liquor	Natural Gas	Biomass	Coal, other
Onsite Fuel	2,140 TBtu	40%	30%	25%	5%
Onsite Emissions (fossil)	44.5 M mt CO_2		82%		18%

Strategy (Forest Products Industry)

- Accelerate, through focused RD&D investments, the readiness of emerging, technologies to reduce energy use and carbon emissions from the forest products manufacturing Industry Benchmarks for Pulp and Paper
- Approach
 - Understand current state (energy use, emissions, fuel sources)
 - Identify best available technology and technical challenges
 - Fund development of next-generation concepts and emerging low carbon technologies to reduce process energy use in high energy demand operations

Technology Approaches to Net Zero scope 1 fossil emissions only

	Emissions Reduction Approaches					
	Improve operational and energy efficiencies with cost-effective commercially available technologies	须 食				
Mfg. Process	Develop technology upgrades and new breakthrough technologies to reduce process energy use in high energy-demand operations					
	Convert natural gas/oil to alternative fuels for lime kiln (biogas or pulverized wood), Oxy- fuel combustion with carbon capture and sequestration, electric kiln					
	Low carbon fuel in direct fired process heating/drying applications					
	Increase the portion of energy generated from biomass combustion	*				
Energy Generation	Utilization of other low carbon fuels or renewable electricity to generate steam					
	Post-combustion carbon capture and sequestration from fossil fuel boilers					

<u>Green – Industry can do - technical assistance</u> <u>Orange – RD&D needed</u>

Low-Carbon Fuels, Feedstocks, and Energy Sources

Carbon Capture Utilization and Storage

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

FPI Program Priorities

Objective: Develop technology upgrades and new breakthrough technologies to reduce process energy use in high energy demand operations Target: 20% reduction in fossil emissions, 6.8 M mt CO₂e

Key Activity	FY23 Focus	Future Focus
Innovative Paper- Forming and Novel Dewatering / Drying Technologies	 Increasing press solids Drying thermal efficiency Alternate energy sources Waste heat recovery 	 Beginning to build portfolio Future priorities to be determined based on
Innovative Fiber Preparation, Pulping, and Chemical Recovery Processes	 Lower-energy refining approaches Reducing energy/emissions in preparation of pulping chemicals Reducing energy use in pulping Reducing energy use and improving quality of recycled fiber 	 project portfolio success Technical feasibility Economic viability Scale-up barriers New issues identified

Stakeholder and Collaborator Engagement

- Stakeholder workshop September 2023 Explore opportunities for collaboration with industry and particularly with OEMs
 - To inform IEDO's priority RD&D goals and metrics.
 - To identify the barriers and challenges
 - To identify opportunities to provide technical assistance that will support the sector.
- DOE-wide initiatives, portfolio analysis, technology assessments, and stakeholder technical workshops will continue to refine and inform future priorities.
- Collaboration with offices across DOE (BETO, OCED, FECM, etc.) and participation in inter-office working groups will further inform priorities and coordinate activities.

Forest Products Industry – Program Summary

David Turpin, Principal Consultant, Nexight Group

IEDO

Technology Development Approaches – Process

Approach (Energy MM Btu/ton, %)	Efficiency		Electrification
Reduce CO ₂ emissions arising from energy use in drying of paper and wood products (4.6, 17%)	Eliminate rewet, increase press solids, increase drying efficiency, reduce water retention	H2 to replace natural gas in direct fired driers	Electric drying technologies RF, US, IR, MW. Waste heat recovery, high-lift heat pumps. novel heat pump systems (absorption, etc.)
Reduce energy use to reduce carbon emissions associated with black liquor concentration (3.5, 13%)			Graphene Oxide membrane materials and systems
Increase fiber yield and reduce energy use in pulping to reduce CO2 emissions (2.6, 9%)	Kraft alternatives (Deep Eutectic Solvents DES); Kraft improvements (pre-treatments, DES, catalysts)		
Reduce energy use to reduce CO ₂ emissions from wet end operations (2.1, 8%)	Refining efficiency improvements, refining alternatives, less water in forming		

Challenges and Barriers – Process Approaches

Reduce carbon emissions (direct and indirect) resulting from paper drying (4.6 MMBTU/ton) and wood products drying.

Approach	Barriers	Technical Challenges / R&D Needs	Technology Metrics	Priority
Increase the solids content of the paper web exiting the press section by ~20% (45-55% up to 65% solids)	Fiber damage, delamination, densification, hydrogen bonding	 New approaches to optimize pressing process variables to improve paper dewatering and reduce rewet Radically improved advanced pressing technology, like shoe press is or like impulse drying was supposed to be. Increase the dewatering and drying rate of the paper while maintaining performance parameters such as strength. 	Solids content, Drying energy intensity ($Ib H_2O/ft^2$ -hr, Ib steam/ $Ib prod$)	High
Increase thermal efficiency of the traditional multi- cylinder paper machine dryer section and wood drying kilns.	Operational risk, downtime to install, 185C steam temp,	 Develop more energy efficient thermal drying equipment. Develop approaches to utilize alternate mechanisms of energy transfer for drying such as ultrasonic energy, radio frequency radiation, infrared radiation, etc. Develop processes to cost-effectively capture energy lost from the paper and wood drying processes and reuse the energy. (e.g., high-lift heat pump, absorption heat pump) Evaluate, revisit the feasibility of superheated steam drying 	Drying energy intensity (Ib H ₂ 0/ft ² -hr, Ib steam/Ib prod)	High
Eliminate fossil fuels in direct fired dryer applications (coating, tissue)	Natural gas readily available and low cost; H2 availability?, Burner performance, safety	• Develop burner technologies to safely utilize non-fossil sources of energy (e.g., H2) in direct fuel applications.	Emissions ~ 5 M mt CO2e, 6 % of fossil fuel use	Medium

Innovation Approaches – Process / Energy Generation

П	
7	

	Targeted Emissions Reductions from:				
Approach	Efficiency		Electrification	CCUS	
Eliminate CO ₂ emissions from fossil fuel use in lime kiln		Biogas, Pulverized Wood	Electric Kiln	Oxy-fuel combustion with CCS	
Eliminate/reduce CO ₂ emissions from fossil fuels used in steam generation	Improve heat integration via process intensification	Fuel switching – (1st) coal to natural gas, (2nd) NG to Biomass. H ₂ , RNG	Electric boilers	CCS power boilers	
Reduce/eliminate CO2 associated with purchased electricity		Reduce purchased electricity by using more biomass for electricity generation*			
Eliminate CO2 emissions from recovery boiler / wood waste boilers				CCS from recovery boiler / wood waste boiler	

*What opportunity exists for the industry to provide renewable electricity to the grid from biomass?

Challenges and Barriers – Process Approaches

Increase fiber yield and reduce energy use in wood delignification in order to reduce CO_2 emissions (2.56 MMBTU/ton)

Approach	Barriers	Technical Challenges / R&D Needs	Technology Metrics	Priority
Develop more energy efficient and environmentally friendly alternatives to the kraft process for delignification	Strength, solvent recovery, lignin isolation and recovery, capital cost, integration, lowers bioenergy production	 Investigate deep eutectic solvents for selective extraction of lignin and total replacement for kraft pulping 	Energy intensity reduction, solvent recovery, fiber strength	High
Improvements in kraft pulping	Strength, solvent recovery, lignin isolation and recovery, electrical energy demand for microwave	 Deep eutectic solvents and others for selective extraction of lignin and partial replacement for kraft Develop pretreatments or additives that reduce the impact of the peeling reaction on yield Develop strategies or additives that increase the rate of delignification, preserving polysaccharide yield Identify economical pulping or oxygen delignification catalysts. Develop cost-effective strategies and/or additives that enable production of higher yield pulps Revisit microwave pretreatment 	Energy intensity reduction, solvent recovery, fiber strength	High

Challenges and Barriers – Process Approaches

Reduce energy use **to reduce** carbon emissions arising from paper machine wet end operations (2.07 MMBTU/ton)

Approach	Barrier	Technical Challenges / R&D Needs	Technology Metrics	Priority
Reduce energy use to reduce CO ₂ emissions from refining paper stock.	Refining is critical operation to achieve performance parameters (strength, etc.)	• Develop more efficient mechanical refining devices, or alternative physical or chemical approaches to fiber development. Approaches could include higher consistency refining, more energy efficient refiners, hybrid conical refiners and refining alternatives e.g., enzymes, chemicals. (refining and drying closely related)	Energy Use	Medium
Reduce energy use to reduce CO_2 emissions associated with paper forming.	Most approaches can't be easily integrated into existing operations	 Develop techniques to use less water in paper forming such as higher consistency forming and multi-phase forming. 	Total Process Energy Use, Water Use,	Medium

Project Portfolio (IEDO Cross-cutting – Paper Products)

Project	Title	Goals	Innovations
9396 Georgia Tech	Advanced Multiphase (MP) forming for enhanced efficiency of drying paper, tissue and other fiber composite products	 8% pt ↑ solids 30% ↓ drying energy 	 water replaced with high- density (HD) foam in paper forming
9395 University of Minnesota	Integrated Radio Frequency and Ultrasonics with Conventional Processes for Efficient Water Removal in Biomaterial Applications	 20-30% ↑ drying rate 20-30% ↓ energy 25-50% ↓ carbon 20-30% ↓ cost 	 integrate directed radio frequency (RF) and ultrasonic (US) energy approaches in drying processes
9125 Worcester Polytechnic Institute	Novel Energy-Efficient Drying Technologies for Food, Pulp and Paper, and other Energy Intensive Manufacturing Industries	1. 25-35% ↓ energy	 novel drying technologies smart sensors physics-based artificial intelligence methodology
10200 UT - Dallas	Non-Evaporative Drying of Porous Materials Using Thermo-Responsive Polymer/Felt Composites	 20% pt ↑ solids 30% ↓ drying energy 25% ↓ carbon 	 Non-evaporative drying technology using thermo- responsive polymer/felt composites

Project Portfolio (IEDO Cross-cutting – Wood Products)

Project	Title	Goals	Innovations
10201 Texas A&M	Efficient Drying Processes of High-Quality Wood through Intelligent Desiccant Assisted Heat Pump System Innovations	 25-30% ↓ energy 40-50% ↓ carbon 25% ↓ oper. cost 	 Material innovations for heat pump application Artificial Intelligence and Machine Learning