U.S. Department of Energy - Energy Efficiency and Renewable Energy

Advanced Manufacturing Office – Industrial Distributed Energy

Supercomputing Our Way to a Clean Energy Future

August 15, 2012

These days supercomputing isn’t just for niche applications like unlocking the secrets of dark matter, finding the Higgs boson particle, or helping us understand nuclear weapons without explosive testing. With recent strides in technology and a number of high-profile success stories, advanced computing technology is catching the attention of major companies looking to lower their research and development costs while producing more efficient and more powerful energy technology.

Recently at the Workshop on the Grand Challenges of Advanced Computing for Energy Innovation near Washington, D.C., computing specialists from the private sector, national laboratories, and academia met to share best practices, discuss trends, and determine the future of supercomputing in energy technology.

Computer-assisted design software took engineers from the drawing board to the keyboard decades ago, but the bulk of variable testing still takes place with prototype models with sensors that generate a great deal of data that requires analysis. But what if engineers could develop a virtual prototype and test it under every conceivable condition on a system-wide basis? With help from the national laboratories, energy technology companies are doing just that, and recent collaborative projects and programs have benefitted both the labs and companies.

At the workshop, truck manufacturer Navistar reported significant advances in improving airflow to its vehicles, which increases fuel efficiency and durability. Instead of using expensive wind tunnel testing, Navistar used modeling and simulation software from Lawrence Livermore National Laboratory to make improvements for a fraction of traditional research costs. For the complete story, see the Energy Blog.