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Development of Materials Resistant to 
Metal Dusting Degradation (CPS# 16944) 

Goal: Develop metallic alloys and surface engineering of commercial

alloys to mitigate metal dusting degradation and also develop a database 

of metal dusting degradation for chemical and petrochemical industries.


Challenge: Commercial alloys are all susceptible to metal dusting. Data

are insufficient in process environments at high pressures and

temperatures. New materials and mitigating approaches are needed to

minimimize/eliminate metal dusting degradation.


Benefits: Recover high quality heat in the temperature range of 400-

800°C. Increase productivity and reduce operating cost.


Potential End-User Applications: Hydrogen, ammonia, methanol and

syngas; petroleum refineries; heat-treat industry; direct iron-ore reduction

plants.


FY06 Activities: Evaluate/develop alloys in simulated process 

environments; Develop surface engineering and process fixes to mitigate

metal dusting degradation.
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Barrier-Pathway Approach


Critical Metrics Barriers Pathways 
•	 Insufficient metal • Built high pressure test Develop alloys and 

dusting data at high equipment for surface engineering that 
pressure.	 evaluation of materials can perform in metal 

• Spinel is susceptible

to attack by carbon


• How to stop the 
growth of metal 
dusting pits? 

• 

• 

in simulated dusting environments in

environment. the temperature range of


Developed new alloys 400 to 900°C 

to form chromium oxide 
scale 
Process fixes to 
mitigate continued 
degradation 

Benef its (est.) 2020 

Energy Savings 173 trillion Btu 

Cost Savings $220-290 m illion 

Carbon Reduction 2.6 MMTCe 
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Chemical Industry Participants


• Materials Technology Institute of the Chemical Process Industries 
• Air Products and Chemicals Inc. 
• ConocoPhilips 
• Haldor Topsoe 
• DuPont Chemical Company 
• Haynes International 
• Special Metals 
• Krupp VDM 
• Sandvik Steel 
• Spectrum Metals (Rolled Alloys) 
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Outline of Presentation

• Key tasks in the project 
• Materials and Experimental Procedure 
• Performance of Ni-base Alloys at high pressure


•	 Details on degradation of alloys 
- pit size, pit depth, pit distribution 
- pit growth rate 
- correlation between pitting and weight loss 

• Project Summary
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Key Tasks

• Experimentally determine degradation rates (pit size, pit depth, 

pit density, growth rate, etc.) for Fe- and Ni-base alloys in 
simulated metal dusting environments 

• Develop surface engineering approaches for structural alloys to 
minimize coking and to mitigate degradation via metal dusting 

• Establish the key parameters (such as T, P, gas chemistry, alloy 
chemistry etc.) that are responsible for metal dusting initiation 
and propagation 

• Procure weldments of selected Fe- and Ni-base alloys and 
conduct tests on them in simulated metal dusting environments 

• Modify and/or develop alloys with improved resistance to metal 
dusting degradation at temperatures between 400 and 900°C 

Pioneering Office of Science 
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Gas Chemistry and Carbon Activity in

Experimental Runs
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Ni-base alloys selected for tests at high pressure


Alloy Cr Ni Si Mo Al Fe Other 
601 21.9 Bal 0.2 0.1 1.4 14.5 Ti 0.3, Nb 0.1 
690 27.2 Bal 0.1 0.1 0.2 10.2 Ti 0.3 
617 21.6 53.6 0.1 9.5 1.2 0.9 Co 12.5, Ti 0.3 
602CA 25.1 Bal 0.1 - 2.3 9.3 Ti 0.13, Zr 0.19, Y 0.09 
214 15.9 Bal 0.1 0.5 3.7 2.5 Zr 0.01, Y 0.006 
45TM 27.4 46.4 2.7 - - 26.7 RE 0.07 
HR 160 28.0 Bal 2.8 0.1 0.2 4.0 Co 30.0 
693 28.9 Bal 0.04 0.13 3.3 5.9 Ti 0.4, Nb 0.7, Zr 0.03 
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Gas Chemistry Conditions in H2 reformer and in Run 59


Composition in mole % 
Hydrogen 
reformer 

Laboratory-simulated 
environment 

Gas species environment (Run 59) 

CH4 1.1 0 

CO 18 18.4 

5.6 5.7 
52 53.4 

23 22.5 

- -

- -

1685 (918) 

Maximum pressure, 215 (14.6) -
psia (atm) 

Temperature and - 1100°F, 210 psia 
pressure in ANL (593°C, 14.3 atm) 
experiment 

Carbon activity at 30 31 
1100°F, 210 psia 
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System for High Pressure Tests 
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Weight loss of Alloy 601 in gases with similar 
carbon activity but at different pressure 
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Weight loss of Alloy 690 in gases with similar

carbon activity but at different pressure
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Weight loss of Alloy 617 in gases with similar 
carbon activity but at different pressure 
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Weight loss of Alloy 602CA in gases with similar 
carbon activity but at different pressure 
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Weight loss of Alloy 214 in gases with similar 
carbon activity but at different pressure 
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Weight loss of Alloy 45TM in gases with similar 
carbon activity but at different pressure 
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Weight loss of Alloy HR160 in gases with similar 
carbon activity but at different pressure 
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Profile map of Alloy 693 exposed to Gas 10 at 593°C, 210 psi for 9700 h
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Pit depth of Alloy 693 exposed to Gas 10 at 210 psi and 593°C for 9700 h 
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Metal dusting corrosion of Alloy 800 from

a hydrogen reformer of Air Products and Chemicals


Gas composition: 43.8 H2-7.2CO-5.7CO2-39.2H2O-4.1CH4 

Exposure Temperature: 1100°F-1200°F 
Exposure Time: >10 years 
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SEM micrograph of Alloy 800 from

a hydrogen reformer of Air Products and Chemicals
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EDX mapping on cross section of Alloy 800 tube
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Weight change for different spinels in

metal dusting environment
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Fe/Cr ratio in the spinel developed on Alloy 800
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Major phase of oxide scale on Alloy 800 is spinel
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Raman spectra indicates that carbon can penetrate 

through the oxide scale on Alloy 800
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Composition of the oxide scale on Ni-base alloys

is low in Fe than observed in the scale on Alloy 800
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Both  chromium oxide and spinel phase were observed in

oxide scale on Alloy 45TM 
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Pit Growth Rates in Alloy 617 at 593°C and 210 psi
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Run 59HP - Pit Depth and Weight Loss Correlation
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Mechanism of the Growth of Metal Dusting Pits
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Mitigation of metal dusting pit growth

by an intermediate oxidation


After 5-day exposure to After an intermediate After 4 days of exposure 
carburizing atmosphere oxidation in H2-2%H2O to the carburizing gas 
at 593ºC. gas mixture at 593ºC mixture at 593ºC. 

for 2 days and subsequent 
2-day exposure to the 
carburizing atmosphere Incubation time of 

at 593ºC. Alloy 800 is ≈ 4days. 
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Effect of intermediate oxidation at 760°C for 6 hours


2 days 4 days 

After oxidation in H2- Subsequent 2-day 
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760ºC for 6 hours atmosphere at 593ºC. 
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Oxidation conditions to mitigate metal dusting corrosion 
Alloy 800 samples with metal dusting pits were exposed in various atmospheres 
with steam and temperatures, and then exposed to a carburizing gas again. 
The pit growth was monitored by SEM. 

Oxidizing T(°C) Time Pit grow or not Pit grow or not Pit grow or not Pit grow or not 
atmosphere (h) after exposed to after exposed to after exposed to after exposed to 

Gas 5 again  for Gas 5 ag ain  for Gas 5 again  for Gas 5 again  for 
2 days 4 days 6 days 10 days 

2%H2O+98%H2 593 48 no yes yes yes 
2%H2O+98%H2 593 24 yes yes yes yes 
2%H2O+98%H2 593 6 yes yes yes yes 
95% H2O+5%H2 593 24 yes yes yes yes 
95% H2O+5%H2 593 6 yes yes yes yes 
100%H2O 593 24 yes yes yes yes 
100%H2O 593 6 yes yes yes yes 
2%H2O+98%H2 760 24 no no no no 
2%H2O+98%H2 760 6 no no no no 
95%H2O+5%H2 760 24 no no no no 
95%H2O+5%H2 760 6 no no no no 
100%H2O 760 24 no no no grew again 
100%H2O 760 6 no grew again grew again grew again 
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Weldment Specimens

•	 Weldment specimens have been procured from several alloy 

manufacturers for evaluation in the current project. 

•	 Alloys selected for weldments: 

Fe-base:	 347ss  - ANL

APMT - Sandvik

310ss - ANL

890 - Special Metals

353MA - ATI


Ni-base:	 601 - Special Metals 
690 - ” 
693 - ” 
230 - Haynes International 
HR-160- ” 
602CA - Krupp VDM 
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Project Summary

•	 There are two major issues of importance in metal dusting. 

First is formation of carbon and subsequent deposition of carbon 
•	    on metallic materials.  Second is the initiation of metal dusting 

degradation of the alloy 

•	 Raman spectra show the existence of spinel, Cr2O3, and 
disordered chromium oxide in the scale grown on Fe-Cr alloys. 
All three phases act as protective layers to prevent alloys from 
metal dusting corrosion 

•	 The spinel phase is not as stable as Cr2O3.  It could be 
reduced, and metal dusting corrosion would initiate from the 
reduced defects 

•	 If the spinel content (with high Fe/Cr ratio) in the oxide scale is 
high, the alloy may be more easily attacked by carbon, leading to 
metal dusting 
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Project Summary (continued) 

•	 We have made a substantial progress in our project on metal 
dusting.  We have conducted a test with candidate Ni-base alloys 
at high pressure in an environment simulating that of an H2 

reformer.  Test was conducted at 593°C (1100°F) and 210 psia 
(14.3 atm) for about 10,000 h 

•	 Specifically, we have examined the Ni-base alloy specimens from 
the standpoint of incubation and pit development (growth, size, 
density, and distribution).  Some typical data are presented in this 
talk and additional information was presented at the steering 
committee and MTI meetings and in ASM and NACE conferences 
and in journal publications 

•	 Additional tests are in progress under more severe reformer 
conditions (carbon activity of 100) and under heat-treat conditions 
(almost no H2O) 
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Project Summary (continued) 

•	 Testing of weldment specimens (procured from several alloy 
manufacturers) is in progress at 593°C and 1 atm 

•	 We have also developed new alloys with improved metal dusting 
resistance and a patent application is submitted.  The alloys have 
accumulated 3,000 h of exposure with no pitting. 
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