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Advanced Nanoporous Composite Materials for 
Industrial Heating Applications 

Goal: Develop superior insulating and refractory materials for high 
temperature IPH applications. 

Challenge: Fabricate new nanoporous materials using aerogel 
technology for improved cost/benefit. 

Benefits: Reduced energy consumption by industrial furnaces and heat
treatment equipment. 

FY05 Activities: Process scale up, testing, and design - transfer 
technology. 

Participants: Lawrence Berkeley National Laboratory, Applied 
Sciences Laboratory, insulation/refractory manufacturer. 



Advanced Nanoporous Composite Materials for 
Industrial Heating Applications 

•	 Barriers: 
– Lack of low cost/high performance IPH thermal insulation material. 
–	 Scale-up nanostructured materials to commercial sized blocks. 
–	 Difficulty of high temperature conductivity measurements. 

•	 Pathways: 
–	 Develop nanostructured insulating materials. 
–	 Find inexpensive sol-gel process using bulk chemicals 
–	 Produce powdered material and reform into blocks. 
–	 Increase strength of reformed blocks using fibers. 

•	 Metrics: 
–	 Produce material with lower cost/R-value than existing insulation. 

Estimated energy savings 100 trillion BTU; cost savings $750 
Million. 



Sol-gel Processing for Nanostructured 
Materials 
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Challenges for High Temperature 
Applications 

• Must withstand temperatures of 700-1500 °C 
– Increase sintering resistance 

• Must be chemically inert 
• Must show reduced thermal conductivity 

– Target: 0.01-0.10 W/m-K 
• Block solid, gaseous, and Radiative heat transfer modes 

• Must be affordable 
– Target: $5-20 per board foot 



Production  Issues 

•	 Many types of aerogels require lengthy synthesis, 
aging, and drying times 

• Early Al2O3/ Cr2O3 aerogel preparations required 1
2 weeks of processing 
–	 Rapid gel time achievable with carefully controlled water content 
–	 Lengthy soaking time eliminated due to lower water content 
–	 Rapid supercritical drying practical for powdered aerogel production 

•	 Total process time now reduced to ~1-2 days 



Sol-Gel Synthesis Issues 

•	 Large batches (~5 liter) require increased care to 
yield acceptable product 
– exothermic reaction requires good thermal control with 

large batches 
– Gel time varies considerably (up to 5,000X) with 

reactant concentrations 
•	 Water content of sol found to be key to 

controlling gel time 
– low water gives precipitates, high water yields gel 

times >1 week 



Prototype Block Preparation 

•	 Various forming and firing processes evaluated to 
determine suitability for large-scale production 
–	 Wet-casting gave the best results 

•	 pure water adequate to cast various shapes 
•	 addition of binders was not necessary and has not provided significant 

added strength 
•	 minimal shrinkage or cracking 

•	 6 x 6 x 0.5” panel prepared for thermal testing 
–	 wet-cast into a stainless steel mold and fired at 1000 °C 

•	 Composite structures using fibers should improve strength 
and durability 

•	 Composition with fastest process leads to strongest blocks 



Efforts identified best Electron Micrograph of

Composition and process Al2O3/ Cr2O3 /Si2O3


Thermal properties 
Compound Neat aerogel 450 °C 1000 °C 
Cr2O3 290 13 13 

Al2O3 • 2Cr2O3 270 180 41 

Al2O3 • Cr2O3 260 160 44 

2Al2O3 • Cr2O3 240 170 64 

2(0.94Al2O3 • 0.06SiO2) • Cr2O3 350 ---- 130 

Material Costs

Item Cost/board

foot ($) 
Aluminum trihydroxide 0.23 
CrO3 1.36 
Tetraethylorthosilicate 0.54 
Al2O3 particulate opacifant 0.21 
Total $2.34 



Alternative  Chemistry Explored 

•	 Other alternative compositions and processes 
examined include: 
– sol-gel syntheses using metal salts and epoxides (A. 

Gash, et al., ISA 6,7) 
– Additional redox-type reactions using various metal 

combinations 
– Sonochemical syntheses in liquid CO2of materials 

such as Boron Nitride 
•	 None have matched the combination of physical 

properties and low cost shown by the Al2O3/ 
Cr2O3 aerogel powders 



Thermal Performance ASL 

• Thermal Testing  
– Equipment description 
– Thermal conductivity results 
– Comparisons with competitive materials 

• Future Improvement 
– Performance enhancement by addition of fibers 
– Selection of fiber type and density will utilize validated 

analytical model 



Heat Transfer Apparatus ASL 

• 24” ID x 32”H stainless steel Heat meter apparatus: 
• Ambient to 1E-7 torr • 300 to 1300K 

• k: 0.005 to 1 W/m-K, ±10% uncertainty 
• Specimen size: 15x15x2.5cm 

Inconel Plates 



Test Specimen 

No apparent shrinkage due Specimen (post test) 
to testing from 400 to 
900K. 
–	 Tests initially in vacuum,


followed by GN2 at

atmospheric pressure


–	 Pre-test specimen shows

similar crack pattern.


–	 Cracking increased due to

handling.


15x15x1.05cm 
888 kg/m^3 



Measurements on Al2O3-Cr2O3 Aerogel ASL 

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

0.12 

0.14 

k,
 W

/m
-K

 

k(Aerogel) in vacuum, W/m-K 
k(Aerogel) in 1 atm, W/m-K 

1 Atmo. N2 

Vacuum 

400 500 600 700 800 900 
Temperature, K 

10 00



Comparison with Competitive Materials 
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Comparison with LI900 Shuttle Tile MaterialASL 
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Performance Enhancement by Fibers ASL 
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Analytical Design Tool ASL 

•	 ASL theoretical formalisms accurately predict 
heat transfer through composites of fibers and 
particulates. 
– Model has been validated by experimental data on 

various fiber composites, including fiber-filled aerogels 
•	 Analytical tool will be used to achieve desired 

thermal performance by tailoring the material 
composition: 
– Material, diameter distribution, density, and orientation 

(fibers only) of fibers and particulates 



Future Plans 

•	 FY 05 goals: 
–	 Continue scale up activities 
–	 Improve strength and handle-ability by adding long fibers 

(alumina) 
–	 Optimize thermal performance by utilizing Applied Sciences 

Laboratory analytical design capability 
•	 Tailor the composition by optimal selection of density, fiber 

type, and fiber sizes 
•	 Facing treatments 

–	 Validate thermal performance by heat transfer measurements 
–	 Technology transfer to refractory/insulation manufacture 
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