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Summary

•	 Goal: Develop a software tool for predicting localized corrosion 

of process equipment including fabricated components as well as 
base alloys Participants: 

•	 Challenge: There is no generally accepted basis for judging the • OLI Systems 
corrosion performance of materials in process environments • Southwest 
without performing specific tests. Recently developed prediction Research Institute 
methods need to be parameterized for complex environments 
and extended to fabricated materials. • Haynes 

•	 Benefits: Allow process designers and operators to evaluate International 
materials in realistically modeled chemical environments, identify • Bechtel-Bettis 
process changes, inhibition strategies; energy savings of 8.8e13 • ChevronTexaco 
Btu/year 

• DuPont 
•	 Potential End-User Applications: In chemical process 

industries, designing/optimizing/revamping processes to • Shell 
eliminate/reduce aqueous corrosion problems; predicting useful • Mitsubishi 
life of existing equipment Chemical 

•	 FY05 activities: Development of microchemistry database and • Toyo Engineering 
electrochemical parameter database, parameterization of 
models, relating electrochemical parameters to alloy composition 



Barrier - Pathway Approach 
Barriers Pathways: Metrics: 
•	 Lack of tools to • Quantitatively relate localized • Quantitatively validate the 

evaluate corrosion parameters to solution accuracy of prediction of 
performance of chemistry based on sound corrosion and repassivation 

potentials as functions of metals prior to theory


placing them in • Relate local composition of

service alloys with parameters that


govern localized corrosion 
(corrosion and repassivation 
potentials) 

environment 
•	 Quantitatively verify the 

agreement of the model with 
standard tests for base alloys 
and fabricated materials 

•	 Develop a model for predicting • Verify the validity of methods 
remaining life based on short- for predicting remaining life 
term data 

• Encapsulate the model in 
software – a virtual testing Energy savings 8.8e13 Btu/year 
laboratory 

Cost savings - design $400 million 

Cost savings-operations $300 - $600 million 

Carbon reduction 0.87 MMTCe 



Project Team
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• Technical Contacts: 
• Andre Anderko (OLI), aanderko@olisystems.com 
• Narasi Sridhar (SwRI), nsridhar@swri.edu 



Basis for Overall Approach
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• Initiation of stable 
localized corrosion is 
crucial for 
engineering 
structures 

• Separation of 
problem into two 
components is valid 
at initiation 
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Validity of Repassivation Potential


• Localized corrosion 
initiates when E isrp
exceeded 

•	 For industrial 
components, it is a 
good parameter for 
prediction when 
localized corrosion is 
likely to occur 

Dunn et al., Corrosion/2005




Modeling Heat Treatment Effects –


d 

Cr 

A Conceptual Approach 

Affects area-averaged 
dissolution and oxide rate 
parameters 



Effect of Heat Treatment on Microchemistry


Alloy 825: Pan et al., Met. Trans. (2000)




Effect of Heat Treatment on Corrosion


E correlates withrp 
volume - averaged 
Cr level 



Experimental Plan

•	 Repassivation potential 

•	 Effect of environmental 
variables 

•	 Effect of thermomechanical 
treatments 

•	 Corrosion potential 
•	 Effect of environmental 

variables 
•	 Microchemistry data 
•	 Pit propagation experiments 
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Effect of Heat Treatment
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Summary of Experimental Database


•	 Protection potentials established for multiple alloys 
•	 Effects of heat treatments examined 
•	 Corrosion potential measured as a function of oxygen 

concentration for two alloys 
•	 Significant gaps and uncertainties in the data – need for 

further data generation 



Structure of simulation technology for

aqueous corrosion
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Predicting the repassivation potential:

Physical background of the model 

•	 A closed-form solution can be found in the limit of repassivation 
•	 It makes it possible to relate Erp to solution chemistry and 

temperature 
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Generalized correlation for the repassivation

potential of Fe-Ni-Cr-Mo-W alloys
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• Prediction of the 
inhibition effect 

0.8 
of NO3 in Cl

-0.6 +NO3 mixtures 
at various 

0.4 temperatures 
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0.0 

-0.2 Results for alloys C-22, 690, 
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Prediction of general corrosion in mixed acids:

Alloy C-276 in H2SO4 + HNO3
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Verification of predictions against standard tests:

Predicting critical crevice temperature for alloy C-22 in 6% 
FeCl3 solutions 
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Extreme value statistics:

Predicting corrosion damage


•	 Problem: Corrosion is observed in an existing 
installation. What is the probability of failure? How can 
we predict the useful lifetime of equipment? 

•	 Approach: Combine extreme value statistics with 
fundamental corrosion models 

•	 Benefit: Based on inspection data from short-term 
experiments, corrosion damage in the future can be 
predicted 



3-parameters fitting

Extreme pit depth versus exposure time for pitting

Aluminum in Tap Water 
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Vision of localized corrosion software after three years
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Major milestones to date

•	 A model has been established for predicting the occurrence of


localized corrosion as a function of environment chemistry and 

temperature


•	 An experimental database has been established to elucidate the 

effects of aggressive and inhibitive species on localized corrosion


•	 The model has been comprehensively parameterized for both 
general and localized corrosion for alloys 22, 276, 625, 825, 600 and 
690 in various aqueous environments (acids, bases, oxidizing 
species, inorganic inhibitors, etc.) 

•	 A probabilistic model has been developed to predict long-term

damage due to localized corrosion


•	 An interim version of CorrosionAnalyzer has been released 
(covering the six Ni-base alloys, carbon steel, Al, and four stainless 
steels (304, 316, 13%Cr and 254SMO) 



Future plans (for the period 6/05 – 11/06)

•	 Completion of experimental database 

•	 Thermomechanical effects 
• Generate microchemistry data (collaboration with ORNL) 

•	 Other materials: G-35, Monel, 70-30, 90-10, exp. alloys 
•	 Pit growth studies 

•	 Extensions of modeling framework 
•	 Development of a quantitative model for correlating electrochemical 

parameters with microchemistry, including heat treatment effects 
•	 Comprehensive treatment of inorganic inhibitors 
•	 Extension of electrochemical model to Cu-Ni alloys, Cu, Ni, duplex 

stainless steels 
•	 Extension of probabilistic prediction of corrosion damage (SCC) 

•	 Release of a fully commercial version of

CorrosionAnalyzer




Commercialization


•	 Primary vehicle for commercialization: 
CorrosionAnalyzer software 
•	 Currently used, in a preliminary form, by 32 software 

lessees (6 steering group members, 20 industrial users 
outside the steering group, 6 academic and research 
institutions) 

•	 Its capabilities will be dramatically enhanced as a result of 
this project 



Commercialization pathways and risks

•	 Establishing an effective channel to the market 

•	 Existing worldwide network of agents and marketing partners 
•	 Existing client relationships with more than 80 companies in 

the chemical process industry 
•	 Technology transfer through industry groups, technical papers, 

professional association meetings 
•	 Establishment of software training courses and dedicated 

customer technical support 
•	 Application-specific projects, consulting and technical service 
•	 Primary risks 

•	 Crossing the education/information dissemination threshold 
•	 Proving value of corrosion simulation 


	Prediction of Corrosion of Advanced Materials & Fabricated Components
	Summary
	Project Team
	Basis for Overall Approach
	Experimental Plan
	Summary of Experimental Database
	Structure of simulation technology for aqueous corrosion
	Predicting corrosion damage
	Extreme pit depth versus exposure time for pitting
	Vision of localized corrosion software
	Major milestones
	Future plans
	Commercialization
	Commercialization pathways and risks

