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PPG Flat Glass & Fiber Glass


•	 North America: Approximately 40 Flat 
Glass Lines. 

•	 PPG Operates 10 Flat Glass lines at six 
locations. 

•	 All but three of the North American Flat 
Glass lines uses the Siemens Regenerative 
Process. 



Siemens Regenerative Process

400-800 TPD, 3-5 MW, 125-250 MMBTU/hr




PPG Oxy-Fuel Float Glass 

Melter


• 1998 LOF Starts up first Oxy-Fuel Melter.

• 2000 PPG Starts up Fresno 15-2 OFM. 

– Primary driver was to reduce NOX emissions. 
– Increased throughput, quality and efficiency. 

• 2002 PPG Starts up Meadville 8-1 OFM 
– New designed realized further improvements in 

efficiency. 



PPG Oxy-Fuel Melter

Increased TPD, decreased BTU’s, +3-5 MW




Current Technology

Steam-Turbine or Oil-Freon


•	 Current technology is approximately 9% 
efficient in converting waste heat to 
electricity = 1.5 MW. 

•	 Requires significant exhaust re-design and 
potential maintenance issues due to 
condensates 

•	 Pay-back period is 4-8 years




PPG & Industrial Partners

Objectives


• Equal or higher conversion efficiencies

(ideally 25% to supply oxygen plant).


•	 Solid state (direct conversion).

•	 Adaptable to existing and varied exhaust 

systems. 
•	 Lower cost (a payback of less than three 

years). 





Objective
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Thermoelectric Energy ConversionThermoelectric Energy ConversionThermoelectric Energy Conversion

TE Material Parameters 
� Electrical Conductivity ( σ ) 
� Seebeck Coefficient ( S ) 
� Thermal Conductivity (κ ) 

Ideal Conversion Efficiency 
� Can be Written as a Function of ZT 
� ZT is Dimensionless and 

= [ S2 σ/ κ ] T 

Current and Advanced Materials 
� Current Materials: PbTe, Bi2Te3, and 

Others in Bulk Form 
� Advanced Materials: Nanostructure Materials 
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3 Year Program Plan3 Year Program Plan3 Year Program Plan

Tasks 

1.  Energy Conversion 
Syste m Design 

2.  TE Generator Testing & 
In-Plant De monstration 

3. Combustion Emission 
Optimization 

4. Advanced TE Materials 
Development 

FY05 FY06 FY07FY04 

PbTe TEG 

Economic Analysis 

ZT = 2, 
T < 1000º F 

Scale-Up 

Adv Mate rials & Heat Exchange 

Update Econom ic 
Analysis 

TEG Test Bed (PNNL) 

In-Plant Demo At PPG6 % 10 % 20 % 

Condensate Characterization 

Approach for T > 1000º FAdvanced TE Films 



13 

General Schematic of InGeneral Schematic of In--Plant DemonstrationPlant Demonstration

Compressed 
Air EjectorFurnace 

Exhaust 
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Pressure 

Slip 
Stream 

Tem p, Press 
Measurements 

Cooling 
Air 

TE 
GeneratorRepresentative 

In-Plant Conditions: 
• Energy Flow ~ 60 MMBtu/hr 
• Gas Flow ~ 640,000 SCFH 
• Temperature ~ 2600ºF 

x 

Slip Stream 

TH 

TC 

TEG 

Heat 
Transfer 
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Current Technology GeneratorCurrent Technology Generator 
for Initial Studiesfor Initial Studies

� Produced by Global Thermoelectric 
� Utilizes PbTe Thermoelements 
� Readily Available (1000 Units/ Yr) 
� $ 2500 / Unit 
� 350 Watts With TH = 1000°F (535°C) 

TC = 100°F (38°C) 3.4 in 

5.9 in 

6.3 inPN 

Thermoelements In Radial Configuration 
Placed Around the Circumference 
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Energy Balance Across ConverterEnergy Balance Across Converter

Modeling Approach 

Known Information: 
- TEG dimensions 
- P1 and T1 
- Assumed gas is air 
- % Furnace Exhaust 

Objectives of Modeling: 
- h values that give radial heat 

transfer that match calculated 
values of enthalpy extracted from 
gas stream 

- Tolerable  ∆P 

Tgas = 1450°F 

h 
K 

P1, T1 

P2, T2 

TEG 
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PNNL Test Bed ConfigurationPNNL Test Bed ConfigurationPNNL Test Bed Configuration

TEG 

Design Objectives 

� Provide a Test Bed for Acquiring 
Required Information for In-Plant Testing 
� Allow Simulation of Slip Stream 

Available in PPG Meadville Plant 
� Allow Testing of TEGs Based on 

Advanced Materials 

PNNL Test Bed 

� Utilizes Eclipse Combustion System 
� Fired By Natural Gas Combustion 
� Can Deliver Up To 2 Million BTU/hr (585 kW) 
� Flow Rate Up To 1000 SCFM 
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Comparison of PNNL Test Bed andComparison of PNNL Test Bed and
Meadville PPG InMeadville PPG In--Plant TestPlant Test

PPG In-Plant Study  PNNL Test Bed 

1. Aspirated Flow  Pressurized Flow with Blower 

2.  Off G as with High H2O Content 
and Other Components 

Air and Natural G as Combustion 

3. 1450°F at Entrance of TEG Same 

4.  Need to Manage Condensates None 

5.  Measured Quantities: 
- Current vs Voltage 
- Temperature at Entrance and Exit 
- Pressure at Entrance & Exit 
- Temperature at Cold Surface 
- Temperature difference and Mass 

Flow Rate of Coolant 

Same 

Global T EG With 
Cooling Jacket 

Blower 
Burner 
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Test Bed ResultsTest Bed ResultsTest Bed Results
� Global 7120 TEG produced 260 WE with 323 °C hot junction te mperature 

-- Artifact of water calorimeter that held device below design range 
-- Indicates TEG will achieve design output without water jacket 

� Heat energy intercepted by TEG was 4.7kWT 

� Estimated value of heat transfer from gas to hot junction 212 W/m2-°C 
-- Agrees with theoretical range 200 to 400 W/m2-°C between gas 

and interior of duct only 

� Overall heat-to-electricity conversion efficiency 5.5% 
-- representing ~ 10% above expected, benefit of water jacket 

� Average gas temperature in TEG section 936 °C (1717 °F) 
-- Exceeded theoretical design point of 1450 °F (subject to further 

review) 

� Axial pressure differential in TEG - 8 inches H2O 
-­ Four times theoretical value attr ibutable to mantle design 
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Advanced TE MaterialsAdvanced TE MaterialsAdvanced TE Materials

Boron / Boron Carbide Multilayers 
� Multi-layer films grown by RF magnetron 

sputtering from B4C and B9C Targets 
� Best results require single crystal silicon 

substrates and annealing at 1000ºC 

B4C/B9C Film 

Si 
Si/SiGe Multilayers 
� Multi-layer grown by RF magnetron sputtering 

from Si and SiGe Targets 
� Best results require single crystal silicon 

substrates 

Si/SiGe 

Si 

Metal, Plastic or Glass 

PbTe, AgSbTe2 

PbTe, AgSbTe2 and Alloys 

� Films grown by RF magnetron sputtering from 
two or three targets 
� Films can be deposited on variety of substrates 
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Thermoelectric Materials DevelopmentThermoelectric Materials Development
Substrate 
Holders (2) 

Overspray 
Shield 

Sputtering 
Sources (3) 

6-in Ion Gun 

Target 
Shields (2) 

Optical Monitor 

� Utilize Magnetron Sputtering 

� Can Mix Three Components 

� Substrate temperatures up to 
800ºC 

� Layered Materials Are Grown By 
Rotating Substrates Over Targets 

� Approach Allows Investigation of A 
Broad Spectrum Of Materials In A 
In A Timely Manner 



Temperature (ºK)
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PbTe Based Alloys: Electrical propertiesPbTePbTe Based Alloys: Electrical propertiesBased Alloys: Electrical properties
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PbTe Alloys: Figure of MeritPbTePbTe Alloys: Figure of MeritAlloys: Figure of Merit

Efficiency = fct ( ZT) 

ZT =  S2 T/( ρк ) 

[ S2T/ ρ ]
= к 

К =  .01  W/cm/ºC 
And .015 W/cm/ºC 

ZT Values Assume 

Results for Ag-PbTe Films 
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Application of TE Thin FilmsApplication of TE Thin FilmsApplication of TE Thin Films

Key Issues 
• Films must be > 1000 µm thick 
• Contact resistance must be very low 
• Scaling up film deposition must 

allow economic growth of relatively 
thick films 

ZT 

Temperature 

2 

1 

Segmented Thermoelements 
• Utilize one alloy composition over 

100ºC to 200ºC Temperature Interval 
• Stack several elements in series to 

cover complete temperature range 

+ 

-

Heat Flow 

N-Type Thermoelement 

Individual 
Component 

Substrate 
Film 
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Approach To Scale-UpApproach To ScaleApproach To Scale--UpUp

Approach will depend on 
material, substrates and configuration 

Films on Flexible Substrates 
� Large Sputtering system 
� Roll Coater 

Thick Films on Metal Discs 

� Large Sputtering System 
� Triode Sputtering 
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Cost/Benefit AnalysisCost/Benefit Analysis

Years of Service 

Assumed Future Capabilities 
� Assumed Thermal Energy Available: 

58.3 MMBTU/hr =  17 x 106 WT 

� TEG’s Intercept  50 % Of Thermal 
Energy in Off-gas Stream 

� Converter Efficiency = 20 % 

� Utilize 1000 TEGs, Each Producing
1.7 kWE to Generate 1.7 M WE 

� Unit Cost assumed to be $1000 

Calculated Net Present Value 
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Years to Pay-back 

� Capital Investment ($ 1 Million) 1st Yr 
� NPV Based on 6% Discount Rate 
� No Maintenance and Repair 
� NPV = Present Value - $ 1 M 
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Accomplishments To DateAccomplishments To DateAccomplishments To Date

� Achieved excellent TE properties with sputtered Ag/PbTe films 
indicating possible ZT values > 2 

� Established industry collaboration through monthly teleconferences 
and meeting held at Meadville PPG plant to discuss in-plant 
demonstration 

� Constructed test bed at PNNL that simulates conditions at Meadville 
for up to 4% of furnace exhaust flow -- will be used to acquire data 
relevant to in-plant demonstrations, test modeling calculations and 
to test TEGs based on advanced materials 

� Completed simple NPV analysis that shows future cost-effectiveness 
of power conversion and early capital payback when value of electricity 
produced is in the range 2 to 10 ¢/kWh and above 
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3 Year Program Plan3 Year Program Plan3 Year Program Plan

Tasks 

1.  Energy Conversion 
Syste m Design 

2.  TE Generator Testing & 
In-Plant De monstration 

3. Combustion Emission 
Optimization 

4. Advanced TE Materials 
Development 

FY05 FY06 FY07FY04 

PbTe TEG 

Economic Analysis 

ZT = 2, 
T < 1000º F 

Scale-Up 

Adv Mate rials & Heat Exchange 

Update Econom ic 
Analysis 

TEG Test Bed (PNNL) 

In-Plant Demo At PPG6 % 10 % 20 % 

Condensate Characterization 

Approach for T > 1000º FAdvanced TE Films 



28 

Technology Approach To Achieve 
Long Term Goals 

Technology Approach To AchieveTechnology Approach To Achieve
Long Term GoalsLong Term Goals

Capture Of 50 % Of Thermal Energy 

� Develop Heat Exchanger Based On 
Heat Pipe Technology 

� Will Allow Most Effective Coupling To 
TEG Units (Isothermal delivery of Heat) 

Achieving 20 % Conversion Efficiency 

� Develop Advanced TE Materials with 
ZT > 2 for 100ºF to 1000ºF ( 40ºC to 540ºC) 

� Performance Could Exceed 20% with TE 
Materials Operating Above 1000ºF 

Heat Pipe / Converter Assembly 

Exhaust 

N Units 

Multiple 
Stages 

Heat Pipe/Converter 
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