Overview of Nanomanufacturing Initiative

Ron Ott
March 26, 2009

Nanotechnology: The purposeful engineering of matter at scales of less than 100 nanometers to achieve size-dependent properties and functions. (Lux Research)
Today’s Outline

• ITP R&D Program
• ITP Nanomanufacturing Initiative
• Nanomanufacturing Project examples
• Questions
Industrial Technologies Program (ITP): Mission

Improve our nation’s energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy

Reducing U.S. industrial energy intensity is essential to achieving national energy and carbon goals

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum</td>
<td>38.1%</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>33.3%</td>
</tr>
<tr>
<td>Electricity*</td>
<td>13.5%</td>
</tr>
<tr>
<td>Coal and Coke</td>
<td>8.5%</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>6.6%</td>
</tr>
</tbody>
</table>

Excludes losses

Source: DOE Energy Information Administration, 2005.
U.S. Industry: Key Opportunity in Energy & Emissions

U.S. Industrial Sector

- >200,000 sites
- Nearly 14 million manufacturing jobs
- Over $6 trillion in goods provided
- Over $1 trillion in exports
- Consumes more energy than any other sector of the economy (~32 quads)
- Responsible for ~1,660 MMTCO₂/year from energy consumption
- Manufacturing makes the highest contribution to U.S. GDP (12%)
- Produces nearly 1/4th of world manufacturing output
- Spurs job creation and investment in other sectors
ITP Directly Supports DOE Strategic Goals

DOE Goals include
- Promote America’s energy security
- Increase energy diversity
- Reduce environmental impacts of energy
- Increase energy productivity

EERE Goals include
- Dramatically reduce, or even end, dependence on foreign oil (Goal 1)
- Increase the efficiency/reduce the energy intensity of industry (Goal 6)

ITP Goals
- Reduce industrial energy intensity by 25% in 10 years
- Reduce the projected growth of U.S. carbon emissions between 2006 to 2030 by 70%
- Establish the U.S. as the Global Leader in Energy Management

A recent McKinsey study stated energy efficiency is the most cost-effective near-term carbon reduction option

- **Industry represents 38% of the total global opportunity for reducing carbon through energy efficiency**
The Energy Gap Between U.S. Domestic Production and Consumption Projected to Worsen

We need to act on both supply and demand.

Source: EIA AEO 2006
More Efficient Operating and Maintenance Practices: Best operating practices can be disseminated and implemented rapidly at negligible cost to enhance operating efficiency in manufacturing facilities in the near- to mid-term.

Increased Adoption of State-of-the-Art Technology: Improved energy efficiency through rapid adoption of currently available technology is the best near to mid-term strategy for better balancing energy supply and demand.

Fuel and Feedstock Substitution: Manufacturers need the flexibility to adapt to dynamic energy prices and supply issues.

Development of Advanced Technology: Progress toward long-term national goals for energy and the environment rely on continuous technology innovation. The technologies required to address today’s challenges can require a decade or more to progress from basic science to commercialization.
ITP Delivers Results

- 48 R&D 100 awards between 1991 and 2008
- Over 220 technologies commercialized since program inception
- 5.7 quads of energy saved
- 103 MMTCe avoided
- Since 2006, 625 plant energy assessments completed

Other Accomplishments

- MOU with the NIST Manufacturing Extension Partnership (MEP) to conduct energy assessments at an additional 2,500 manufacturers each year
- MOU with the National Association of Manufacturers to reach 11,000 NAM member companies
- Grants awarded to 19 states to conduct local energy assessments
ITP FY08 Program Areas

17% Industry-Specific
R&D addressing top priorities in America’s most energy-intensive industries, incl. chemicals, steel, and forest products

20% Industrial Technical Assistance
Helping plants save energy today using efficient energy management practices and efficient new technologies

23% Industrial Distributed Energy
Activities to spur widespread commercial use of CHP and other distributed generation solutions

40% Other Crosscut
R&D to develop technologies applicable to multiple industrial subsectors
ITP Delivers Technology Solutions

Energy Efficiency R&D
Develop cross-cutting technologies addressing the top energy savings opportunities across industry.

Fuel and Feedstock Flexibility
Accelerate market penetration of emerging options for alternative fuels and feedstock; also CHP.

Technology Delivery
Help plants save energy today by assessing opportunities and facilitating adoption of best energy management practices and efficient new technologies.
Energy Efficiency R&D

• **Industry-specific R&D** to address top priorities in America’s most energy-intensive industries
 – Aluminum
 – Chemicals
 – Forest Products
 – Metal Casting
 – Steel
 – Information Technology and Data Centers

• **Crosscutting R&D** to develop technologies applicable to multiple industrial subsectors
 – Energy Intensive Process R&D
 – Industrial Materials
 – Sensors and Automation
 – Combustion
 – Fuel and Feedstock Flexibility
 – Industrial Distributed Generation
 - Advanced Reciprocating Engines
 - Clean Heat and Power (CHP)
 – Nanomanufacturing
Nanomanufacturing Overview

Integrate science and technology to accelerate the transition from discovery to application

- The projected growth in manufactured goods incorporating nanotechnology is tremendous.

- Global investment in nanotechnology rose to nearly $13.5 billion in 2007.
 - U.S. investment equals ~36% of total
 - The U.S. has the largest revenue from nanotechnology, but Europe is catching up
 - VC investment (not shown) is a lead indicator of potential. Energy investments lead for the first time in 2007

Manufactured Goods Incorporating Nanotechnology

$147 Billion

$3.1 Trillion

Investments in Nanotechnology

Source: Lux Research
Advances in Nanotechnology Can Deliver Diverse Energy Benefits

High-Efficiency Manufacturing
- Low-cost filters
- Advanced sensors
- Effective catalysts for chemical manufacturing
- Highly selective separation membranes

Energy-Efficient Products
- Window coatings
- Efficient insulation
- Solid-state lighting
- Lightweight vehicle materials
- Catalysts to boost engine performance
- Low-friction engine coatings
- Ultra-fast computing
- Better electrostatic protection
- Electronics thermal management

Energy Supply
- Efficient and cost-effective solar cells
- Improved heat transfer
- Magnetic liquid coolants for higher transformer loads
- Improved wind turbine efficiency

Energy Storage
- Improved fuel cells
- Super capacitors
- Novel cathodes to boost battery efficiency
- Reversible hydrogen storage materials
The U.S. government has invested $8.3 billion in nanotechnology over the past seven years – DOE has invested mostly in Basic Research.
Nano Roadmaps – Calling Out the Need for Nanomanufacturing
Nanomanufacturing - Where Did We Start?

Reviewed Technical and Market Analysis by Others

- Estimated Energy Savings and Financial Impacts of Nanomaterials by Design on Selected Applications in the Chemical Industry (LANL, 2006)
- The Nanotech Report (Lux Research, 2006)
- National Nanotechnology Initiative Grand Challenge Workshop (DOE, 2005)

Nano Opportunities Relevant to ITP’s Mission

- Up to 1.1 Quads/yr of total energy saving potential exists on nanotechnology applications in chemical, refining, and maritime industries
- Low-friction surfaces in bearings, gear boxes, seals, etc.
- Application of nano-enabled sensors in combustion control for process heating
ITP worked with industry in developing its program strategy:

- Held Nanomanufacturing for Energy Efficiency Workshop in Baltimore in June 2007. Group identified key challenges in:
 - Nanomaterials production processes
 - Nanotech-enabled product manufacturing
- Hired consultant (Lux) to help identify priorities for ITP:
 - Lux research drew upon their extensive database of technologies, companies and labs working in nanoscale science and engineering, which includes over 1000 entities
 - Evaluated 150 methods used in nanomanufacturing
 - Recommended focus on specific technology issues for five key processes: chemical vapor deposition, supercritical fluid processing, sputtering, printing, and thermal spray
- Engaged industry and business investment experts in R&D solicitation planning and merit review process
Program goals and description

Goal: to obtain comprehensive understanding of new technologies, global markets, trends, and commercialization challenges for nanomaterials and nano-enabled products that have impact on energy efficiency

<table>
<thead>
<tr>
<th>Nanomanufacturing processes</th>
<th>Nanotechnology applications for energy efficiency</th>
<th>Nanomanufacturing challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon nanotubes</td>
<td>Catalysts</td>
<td>Commercialization and manufacturing challenges in nanotechnology</td>
</tr>
<tr>
<td>Graphene</td>
<td>Nanocoatings</td>
<td>Need for a nanomanufacturing center</td>
</tr>
<tr>
<td>Ceramic nanoparticles</td>
<td>Nanocomposites</td>
<td></td>
</tr>
<tr>
<td>Metal nanoparticles</td>
<td>Separation media</td>
<td></td>
</tr>
<tr>
<td>Dendrimers</td>
<td>Renewable energy (solar, wind)</td>
<td></td>
</tr>
<tr>
<td>Fullerene</td>
<td>Energy storage (fuel cells, batteries)</td>
<td></td>
</tr>
<tr>
<td>Nanowires</td>
<td>Solid state lighting</td>
<td></td>
</tr>
<tr>
<td>Quantum dots</td>
<td>Thermoelectrics</td>
<td></td>
</tr>
<tr>
<td>Nanostructured metals</td>
<td>Biopolymers</td>
<td></td>
</tr>
<tr>
<td>Nanoporous materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanoscale encapsulation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

luxresearch
Nanotechnology applications for energy efficiency
Priority: high

Batteries and supercapacitors
- **Market size:** $200 million* in 2007, $4.215 million in 2012
- **Lux Research Take:** Batteries will remain the key component in energy applications, playing in virtually all markets; their commercialization challenges are related to large-scale low-cost manufacturing

Light weight nanocomposites
- **Market size:** $151.9 million in 2007, $520 million in 2012
- **Energy savings:** 360 trillion Btu per year
- **Lux Research Take:** Nanotechnology is expected to greatly improve light weight composites that are important for aerospace, marine and other applications as they can greatly enhance energy efficiency. Performance issues and lack of adequate manufacturing processes need to be solved until they find wide-spread use

Nanocoatings/nanocomposites for thermal management
- **Market size:** $109 million in 2007, $403.5 million in 2012
- **Energy savings:** 240 trillion Btu per year
- **Lux Research Take:** Nanostructured materials can either improve thermal conductivity for efficient heat dissipation or decrease thermal leakage via insulation. Technical advancement in this area can allow higher operating temperatures, increased efficiency and sizeable energy savings.

* Throughout this document, market size numbers are related only to emerging nanotechnology for energy-efficient applications
Nanotechnology applications for energy efficiency
Priority: medium

- **Catalysts for Chemical, Industrial and Automotive applications**
 - **Market size:** $452 million* in 2007, $1,439 in 2012
 - **Energy savings:** 280 trillion Btu per year
 - **Lux Research Take:** Development of environmentally friendly catalysts that can enable more efficient processes are important for chemical industries. Automotive catalysts can increase fuel efficiency of vehicles and minimize harmful emissions. New controlled synthesis technologies are needed to accelerate developments of new catalyst materials.

- **Tribological nanocoatings**
 - **Market size:** $84 million in 2007, $618 million in 2012
 - **Energy savings:** 44 trillion Btu per year
 - **Lux Research Take:** Tribological coatings can provide significant efficiency gains, 5-10% for heavy machinery and other applications. Low-cost materials and processes are required for wide adoption of these technologies.

- **Solid state lighting (LED)**
 - **Market size:** $9.2 million in 2007, $86.2 million in 2012
 - **Energy savings:** 84 trillion Btu per year
 - **Lux Research Take:** Lighting comprises around 20% of electricity usage in the US and wide adoption of LEDs can bring this number down significantly. In addition, there is some overlap in technological challenges that adversely affects other areas, such as solar cells and printed electronics.

* Throughout this document, market size numbers are related only to *emerging* nanotechnology for *energy-efficient* applications
Help transform nanoscience into industrial processes and products

Focus:

- **Enabling Processes for Nanomaterials Production:** Improve reliability and scale up nanomaterials production processes
- **Nanomaterials Utilization in Industrial Processes:** Scale up manufacturing processes for utilization of nanomaterials in energy-related products

Top Priorities for Energy Efficiency (based on Lux analysis)
- Batteries and supercapacitors
- Light weight nanocomposites
- Nanocoatings/nanocomposites for thermal management
- Catalysts for chemical, industrial and automotive applications
- Tribological nanocoatings
- Solid state lighting (LED)
- Solar
- Nanomanufacturing research/commercialization center
Nanomanufacturing R&D Portfolio

- **Concept definition studies**
 - Projects focusing on technical and economic feasibility analyses as well as a complete lifecycle analysis for a proposed nanotechnology, from synthesis to disposal
 - One year

- **Process development**
 - Projects focusing on enabling processes for nanomaterials production or nanomaterial use in industrial processes
 - Up to 3 years
Active Projects in FY09: Concept Definitions

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Partners</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave and Beam Activities of Nanostructured Catalysts for Crude</td>
<td>Oak Ridge National Lab, Mach I</td>
<td>1 Year Stage 2</td>
</tr>
<tr>
<td>Highly Dispersed Metal Catalyst for Fuel Cell Electrodes</td>
<td>Savannah River National Lab</td>
<td>1 Year Stage 2</td>
</tr>
<tr>
<td>Nanoscale Interpenetrating Phase Composites for Industrial and Vehicle Applications</td>
<td>Oak Ridge National Lab, Fireline TCON</td>
<td>1 Year Stage 2</td>
</tr>
<tr>
<td>Nanoscale Electrodeposition Process for Manufacturing High Selectivity Catalysts</td>
<td>Argonne National Lab</td>
<td>1 Year Stage 2</td>
</tr>
<tr>
<td>High Power Impulse Magetron Sputtering of Ultra-Hard and Low Friction Nanocomposite Coatings for Improved energy Efficiency and Durability in Demanding Industrial Applications</td>
<td>Argonne National Lab</td>
<td>1 Year Stage 2</td>
</tr>
<tr>
<td>Development of an Advanced Technology to Manufacture surfaces with Nano-and Micro-Scale Features</td>
<td>Idaho National Lab, GE Global Research</td>
<td>PEP- 3 Years; Stage 3</td>
</tr>
<tr>
<td>Hydrogen and Wear Resistant Nanolaminate Coatings</td>
<td>Pacific Northwest National Lab</td>
<td>1 Year Stage 2</td>
</tr>
<tr>
<td>Large Scale Nanofermentation of Quantum Dots</td>
<td>Oak Ridge National Lab</td>
<td>1 Year Stage 2</td>
</tr>
<tr>
<td>Transformational Fabrication of Nanostructured Materials Using Plasma Arc Lamps</td>
<td>Oak Ridge National Lab</td>
<td>1 Year Stage 2</td>
</tr>
</tbody>
</table>
Active Projects in FY09: Process/Prototype Development

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Partners</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microchannel Assisted Nanomaterial Deposition Technology for Photovoltaic Material Production</td>
<td>PNNL, Oregon State U., CH2M Hill, Voxel</td>
<td>3 Year Stage 3</td>
</tr>
<tr>
<td>Nanostructured Superhydrophobic Coatings for Breakthrough Energy Savings</td>
<td>ORNL, Stevens Institute of Tech., Ross Technology</td>
<td>3 Year Stage 3</td>
</tr>
<tr>
<td>Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment</td>
<td>ORNL, Campbell Applied Physics, Honeywell</td>
<td>3 Year Stage 3</td>
</tr>
<tr>
<td>Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbines</td>
<td>NETL, MDS-PRAD Tech., DELTA Tech Ops., Calpine, U. of Cincinnati</td>
<td>1 Year Stage 4</td>
</tr>
<tr>
<td>Accelerated Deployment of Nanostructured Hydrotreating Catalysts</td>
<td>ANL, Evergreen Oil, Universal Lubricants</td>
<td>2 Year Stage 3</td>
</tr>
<tr>
<td>Development, Characterization, Production and Demonstration of Nano Fluids for Industrial Cooling Applications</td>
<td>ANL, Michelin, Saint-Gobain</td>
<td>3 Year Stage 3</td>
</tr>
<tr>
<td>Nano Catalysts for Diesel Engine Emission Remediation</td>
<td>ORNL, John Deere</td>
<td>3 Year Stage 3</td>
</tr>
<tr>
<td>Nano Particle Technology for Biorefinery of Non-Food Source Feed Stocks</td>
<td>Ames Lab., Catilin, Institute for Physical Research & Tech.</td>
<td>3 Year Stage 3</td>
</tr>
<tr>
<td>Ultratough TSP Diamond/SIC Nanocomposites for Drill Bits</td>
<td>Los Alamos National Lab</td>
<td>3 Year Stage 3</td>
</tr>
<tr>
<td>Application of Wear-Resistant, Nano Composite Coatings Produced from IRON-Based Glassy Powders</td>
<td>ORNL, Carpenter Power Products</td>
<td>3 Year Stage 3</td>
</tr>
<tr>
<td>Large-Scale Manufacturing of Nanoparticulated-Based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions</td>
<td>ANL, Valvoline, Primet Precision Materials</td>
<td>3 Year Stage 3</td>
</tr>
</tbody>
</table>
Active Projects Mid FY09: Concept Definitions

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Partners</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Assembled Biomimetic Nanostructured Anti-Reflection coatings for Highly Efficient Crystalline Silicon Solar Cells</td>
<td>Savannah River National Lab</td>
<td>1 year</td>
</tr>
<tr>
<td>Synthesis of Highly Ordered TiO2 Nanotubes Using ionic Liquids for Photovoltaics</td>
<td>Oak Ridge National Lab</td>
<td>1 year</td>
</tr>
<tr>
<td>Pulsed Thermal Processing of Self-Assembled Quantum Dot Structures</td>
<td>Oak Ridge National Lab</td>
<td>1 year</td>
</tr>
<tr>
<td>Mesoporous Carbon Membranes for Selective Gas Separations</td>
<td>Oak Ridge National Lab</td>
<td>1 year</td>
</tr>
<tr>
<td>Nanocatalytic Conversion of Biomass into Second-Generation Biofuels</td>
<td>Oak Ridge National Lab</td>
<td>1 year</td>
</tr>
<tr>
<td>Oxide-Nanoparticle Containing Coatings for High Temperature Alloys</td>
<td>Oak Ridge National Lab</td>
<td>1 year</td>
</tr>
<tr>
<td>Nanocrystallization of LiCoO2 Cathodes for Thin Film Batteries</td>
<td>Oak Ridge National Lab</td>
<td>1 year</td>
</tr>
<tr>
<td>Architectured Nanomembranes for In-Situ Energy Conversion</td>
<td>Oak Ridge National Lab</td>
<td>1 year</td>
</tr>
<tr>
<td>Filled Carbon Nanotubes: Superior Latent Heat Storage Enhancers</td>
<td>Argonne National Lab</td>
<td>1 year</td>
</tr>
</tbody>
</table>
Active Projects Mid FY09: Process/Prototype Development

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Partners</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular Hybrid Plasma Reactor and Process for Low Cost Nanoparticle Production</td>
<td>Idaho National Lab</td>
<td>3 years</td>
</tr>
<tr>
<td>Infrared Absorbing Nanoparticles for Reducing Cure Temperatures in Industrial Coatings</td>
<td>National Energy Technology Lab</td>
<td>3 years</td>
</tr>
<tr>
<td>Development and Application of Processing for Nano-Composite Materials for Lithium Ion Batteries</td>
<td>Oak Ridge National Lab</td>
<td>3 year</td>
</tr>
<tr>
<td>Process Development for Nanostructured Photovoltaics</td>
<td>Argonne National Lab</td>
<td>3 year</td>
</tr>
</tbody>
</table>
Nanofermentation uses bacteria to synthesize nanomaterials

Motivation

- Important materials for many applications
 - Photovoltaics (copper-indium-gallium-diselenide: CIGS)
 - Solid state lighting (CdS)
 - Thermoelectrics
- Scalable process
 - 50,000 gallon fermentor provides 500 kg/month
 - Equivalent to 10.8 MW of PV material/year at 10% efficiency
- Energy efficient process
 - Nanofermentation occurs between 10°C to 60°C
- Environmentally friendly
 - Naturally occurring phenomenon
- Highly refined product
 - Nanofermentation combines (in-situ) particle synthesis with surfactant reducing lengthy and costly dispersion techniques
Background: Bio-Synthesis of Magnetic Nanoparticles

- Bacteria first discovered in oil and gas deposits in 1992
 - Geologically isolated (>1000 m below ground) for 100 to 140 million years
 - Strains of the bacteria produce nanocrystals of magnetite
 - 3 nm to 300 nm
 - Low cost (~$60/kg, at 30 nm) compared to $570/kg (98%, 50 nm) and $1340/kg (99.5%, 25 nm) magnetite
 - Bacteria available to public
- Able to control size and shape
- Until recently, focus of nanofermentation was on magnetic materials
 - Realized bacteria able to facilitate production of other nanomaterials
- Evaluating different strains of the bacteria for the production of other nanomaterials to use in such applications as:
 - Photovoltaics, thermoelectrics, and solid state lighting
- Possible to achieve low-cost high-quality nanoparticles for a multitude of applications
Nanostructured Superhydrophobic Coatings for Breakthrough Energy Savings

Process Development

• Project Objective:
 – Produce Commercially-Viable, General-Purpose, Powder-Based Coatings With Extreme Water-Repellent Properties
 • Reduced drag at water / solid interfaces
 – Less energy required to pump water through pipes
 – Less energy required to move watercraft
 • Reduced corrosion of metals in wet environments
 • Reduced biofouling of surfaces in seawater

• Basis for the energy savings potential:
 – Extreme water-repellant nano-patterned powder coatings
 – Hydrophobicity amplified by nano-scale texturing

• Nanomanufacturing solution to the problem:
 – Fabrication of nano-patterned superhydrophobic powders in large volumes at low costs used to create well bonded superhydrophobic coatings
Technology Basis: Nanostructured Silica Powder Phased-Separated Spinodal Superhydrophobic Glass Powder

Phase Separating Glass

Heat Treatment

Phase-Separated Spinodal Structure

Crush Glass Powder

Acid Etch Powder

Apply (SAM) Self Assembled Monolayer

Superhydrophobic Glass Powder Coating
Superhydrophobic Nano-textured Glass Powder
Contact Angle Images Using 1 µL Water Droplets

Uncoated Glass Plate

Teflon Coated Glass Plate

Superhydrophobic Powder Coated Surface
Required Nanomanufacturing Advancements

• Optimize Powder Size and Binders to Produce Large, Uniform, and Durably Coated Areas for Various Substrates (esp. plastics and metals)

• Tailor Coatings for Drag Reduction and Corrosion Resistance

• Test Coated Surfaces for Hydrodynamic Response, Corrosion Resistance, and Durability

• Evaluate Prototype Performance
 – Pipes
 – Pumps
 – Boat Hulls
Large-scale Manufacturing of Nano-particulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

Ali Erdemir
Argonne National Laboratory
Energy Systems Division
Argonne, IL
Large-scale Manufacturing of Nano-particulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

Process Development

- **Objective:**
 - This project addresses the increasing needs for advanced lubrication additives
 - Reduce friction and wear
 - Save energy and environment
 - Increase component reliability in transportation and manufacturing systems

- **Boron-based nano-lubrication additives**
 - Reducing friction by as much as 80%
 - Virtually eliminating wear
 - Displacing current lubrication additives that are harmful to the environment
 - Overcoming barriers for large-scale nano-powder manufacturing
Project Description and Benefits

- **Goal:** Scale-up and commercialize boron-based nano-colloidal lubrication additives and confirm their energy saving, emission reduction, and component reliability benefits in transportation and manufacturing fields.

- **Industrial Applications and Market Potential:**
 - Applicable to many industrial sectors including transportation and manufacturing.

Benefits

- Nano-lubrication technology saves energy by reducing friction
- Increases component durability/reliability by reducing wear
- Potential energy savings are estimated to be 1,000,000 barrels of petroleum per day in transportation alone
- Since less petroleum is used, less carbon emission is generated
- Additional environmental benefits
 - Reduction and/or elimination of carcinogenic additives from current lubricants that are detrimental to the after-treatment devices and catalysts in engines
Research Tasks

• Feasibility of producing and blending of nano-powders with lubricants
 – Validation of nanomanufacturing process

• Pilot-scale production, fuel efficiency and no-harm engine studies
 – Validation of process/product reliability and demonstration of efficiency in engines

• Large-scale production, fleet testing, certification/approval and initial commercial offer
 – Validation of scalability, cost competitiveness, energy efficiency, and reduced emissions
Thank You

- Contacts:
 - ITP HQ Lead: Gideon Varga
 - NETL Contact: Joseph Renk
 - ITP Technical Support: Ronald Ott

- Questions