PULVERIZED COAL INJECTION (PCI) COAL COMBUSTION BEHAVIOR AND RESIDUAL COAL CHAR CARRYOVER IN THE BLAST FURNACE DURING PCI AT HIGH RATES

ASSESSMENT OF COAL AND BLAST FURNACE PERFORMANCE DURING PULVERIZED COAL INJECTION WILL BENEFIT THE STEEL INDUSTRY IN TERMS OF COST SAVINGS AND ENERGY EFFICIENCY IMPROVEMENT

In the last decade, fuel injection techniques, such as pulverized coal injection, have been optimized on many aspects, but further understanding on some fundamental issues is still needed before the optimum operating conditions of the blast furnace could be maintained.

During pulverized coal injection in a blast furnace, the unburnt char could accumulate in the raceway region. Such an accumulation of char would eventually be entrained into the gas flow and carried up to the blast furnace stack, and therefore could impact burden permeability. Char consumption in the blast furnace involves the reaction between char and slag, gas, and hot metal. The investigation of char combustion behavior is a necessity for the fundamental understanding of the pulverized coal injection operation. On the other hand, the extent of unburnt char carryover in the off gas can be used to determine constraints on an operating furnace. Knowledge of the char portion will assist with the selection of coal type and optimum pulverized coal injection practice.

This project by the American Iron and Steel Institute (AISI) Technology Roadmap Program is based upon the ongoing trend to reduce the consumption of coke in steel companies due to economic, environmental, and raw material constraints. The aim is to assist the steel industry with the assessment of coal and blast furnace performance during pulverized coal injection.
Project Description

Goal: To assist the steel industry with assessment of coal and blast furnace performance during pulverized coal injection. The work will be conducted using the newly developed approach at the University of New South Wales (UNSW) in Australia. By using this approach, project partners will analyze the actual blast furnace samples captured during pulverized coal injection -- samples include blast furnace dust and sludge samples to determine the proportion of residual char. The investigation will also determine the combustion performance of the coals. This will be the first time that a parallel investigation of coal combustion in a laboratory and actual blast furnace sample analysis will be conducted.

Progress and Milestones

Specifically, the program will include the following tasks:

- **Project start date, May 2001.**
- **May 2001 -- May 2002:** Investigate the thermal annealing effects on char and coke structure. Analyze coal combustion and char carryover of a set of blast furnace samples, including PCI coal, coke, sludge, and flue dust from each company.
- **May 2002 -- May 2003:** Analyze and study blast furnace samples obtained under new operation conditions and/or new raw materials, another set of PCI coal, coke, sludge, and flue dust samples from each company. Both coal combustion and char carryover analysis will be conducted at UNSW. Investigate the reactivity of char and coke provided by American companies.
- **Project completion date, May 2003.**

Project Partners

University of New South Wales
Sydney, Australia
(Principal Investigator)

American Iron and Steel Institute
Washington, DC
(Project Manager)

Bethlehem Steel Corporation
Bethlehem, PA

Ispat Inland Inc.
East Chicago, IN

United States Steel Research and Technology Center
Monroeville, PA

For additional information, please contact:

Gobind Jagtiani
Office of Industrial Technologies
Phone: (202) 586-1826
Fax: (202) 586-3237
gobind.jagtiani@ee.doe.gov
http://www.oit.doe.gov/steel

Please send any comments, questions, or suggestions to webmaster.oit@ee.doe.gov.

Visit our home page at www.oit.doe.gov

Office of Industrial Technologies
Energy Efficiency and Renewable Energy
U.S. Department of Energy
Washington, D.C. 20585

January 2002