Inverter Performance Certification:
Does it make sense?

Chuck Whitaker
Behnke, Erdman, and Whitaker Engineering, Inc.
Endecon Engineering

DOE High-Tech Inverter Workshop
Baltimore, MD
October 13-14, 2004
Certification...

...is not a four-letter word
Types of Certification

- Safety
- Consumer Confidence
- Reliability
- Performance
Formal Product Certification

Certifying Body

Certified Program

Consensus Test Procedures

Accredited Laboratory
Why Do We Need Another Certification?

- To establish/verify key product characteristics
- UL (ETL, others) do just that for product safety—“May not work, but it’s safe”
- PowerMark certifies PV Modules, but not inverters... yet.
- Do you know how each mfg measures and specifies inverter performance? Do you trust their numbers?
- Do you want to compare the performance of different inverters?
- Do you need an accurate estimate of how your system will perform?
"THAT'S OK....I CAN HOOK IT UP MYSELF!"
It’s on the Internet. It **MUST** be true!
What is Your Inverter Efficiency?

Efficiency vs. Percent of Rated Power graph

- 80%
- 85%
- 90%
- 95%
- 100%

Percent of Rated Power

BEW Engineering, Inc.
Concerns about Instituting Another Product Certification

- Added cost
 - May disproportionately impact small manufacturers
- Delayed product introduction
- Delayed minor product improvements
- Restricted innovation/flexibility/customization
- Problems exacerbated by multiple jurisdictions with different requirements
- Problems relieved by more self-certification, less third-party
Who Requires, Who Pays?

• Who Requires:
 - Large purchasers
 • Historically: DOE, PVUSA, TEAM-UP, etc.
 • Currently: CE(?)
 • Soon: California implementing efficiency and power measurement requirements for CEC rebate program
 - Local Codes/Legislation
 • California Title 24 (Building Energy Efficiency) considering a section on PV

• Who Pays:
 - Tax Payers (when Govt’ funded)
 - Utility Rate Payers
 - Consumers
Who Certifies?

- **Certifying Body**
 - UL, PowerMark, PV Gap, CSA

- **Laboratory Accreditation**
 - OSHA, American Assoc for Laboratory Accreditation (A2LA), National Voluntary Laboratory Accreditation Program (NVLAP; through NIST)

- **Testing Laboratory/Agency**
 - Nationally Recognized Testing Laboratory (OSHA or otherwise), other 3rd party testing agency, manufacturer, owner/installer
Who Tests?

- **Manufacturer**
 - Preferred: least cost
 - Done as part of development/ongoing QC
 - Can be witnessed

- **Owner/Installer**
 - Larger systems
 - Usually limited to field tests
 - More “system”, less “component”

- **3rd Party Testing Laboratory/Agency**
 - When results are contentious
 - When results are critical
 - When mfg data is suspect
 - When owner/installer is unable or unwilling
 - When required by contract or legislation
 - Should be minimized for cost reasons
What Tests?

• For example, one or more of the tests from...
Proposed Performance Test Procedure

Sandia Performance Test Protocol for Evaluating Inverters Used in Grid-Connected Photovoltaic Systems

Ward Bower
Chuck Whitaker
Bill Erdman
Mike Behnke

www.endecon.com click on Sandia PV Inverter Performance Test Procedure DRAFT

BEW Engineering, Inc.
Performance Test Protocol:
Outline

• General Requirements
• Test Equipment Requirements
• DC Input Characterization
• **Maximum Continuous Output Power**
• Inverter Efficiency
• Maximum Power Point Tracking Accuracy
• Tare Losses (nighttime)
• Power Foldback
• Inverter Performance Factors
Performance Test Protocol: Test Equipment Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Allowable Maximum Uncertainty</th>
<th>Preferred Maximum Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Voltage</td>
<td>± 1% of reading</td>
<td>± 0.25% of reading</td>
</tr>
<tr>
<td>AC Voltage</td>
<td>± 1% of reading</td>
<td>± 0.25% of reading</td>
</tr>
<tr>
<td>DC Current</td>
<td>± 1% of reading</td>
<td>± 0.5% of reading</td>
</tr>
<tr>
<td>AC Current</td>
<td>± 1% of reading</td>
<td>± 0.5% of reading</td>
</tr>
<tr>
<td>DC Power</td>
<td>± 1% of reading</td>
<td>± 0.5% of reading</td>
</tr>
<tr>
<td>AC Power</td>
<td>± 1% of reading</td>
<td>± 0.5% of reading</td>
</tr>
<tr>
<td>AC Frequency</td>
<td>± 0.05 Hz</td>
<td>± 0.01 Hz</td>
</tr>
<tr>
<td>Temperature</td>
<td>±1°C</td>
<td>±0.5°C</td>
</tr>
</tbody>
</table>
Performance Test Protocol: DC Input Characterization

- Define operating voltage and current ranges
- Max Vop is limited by inverter max system voltage, array Vop/Voc (typically <0.8)
 - For Vsys, max = 600Vdc, Max Vop = 480Vdc
Performance Test Protocol:
Maximum Continuous Output Power

- Measure Output Power
 - 3 hours @ “rated” output
 - After thermal stabilization
 - Maximum rated ambient temperature
 - Additional testing may be done at lower temperatures
 - Various Input/Output Voltages (5 conditions)
Performance Test Protocol: Efficiency

• Measure efficiency over ranges of relevant conditions:
 - Power Level (~7 conditions)
 - Input Voltage (3 conditions)
 - Output Voltage (3 conditions)
 - Ambient Temperature (2 conditions)
Performance Test Protocol: Efficiency Measurement Issues

• Issues
 – Power Level
 • Maximum Rated Power needs to be strictly defined
 – Input/Output Voltage
 • Performance at extremes (Vdc, Vac) is of interest for modeling; help bound performance characteristics
 • How many test points are enough/too many?
 – Ambient Temperature
 • Passively cooled units can be sensitive to forced convection
 – Ancillary equipment: What should be included?
 • External transformers, fans, displays, etc.
Performance Test Protocol: Maximum Power Point Tracking Accuracy

- Most Problematic Test
- Static and Dynamic Tests Defined
- Using PV
 - Standardized/Characterized PV array or Intermittent IV curves
 - Measurement uncertainty exceeds expected MPPT accuracy—good for finding gross errors
 - Limited configurations, characteristics
 - Time consuming
- Using PV Simulator
 - Wide range of characteristics and programmable control
 - Good repeatability
 - Few suppliers, custom equipment, nearly as expensive as PV
 - Unknown uncertainty, unknown response characteristics (how “PV-like” is it?)
Performance Test Protocol: Tare Losses

- Losses related to startup/standby/shutdown operation
 - Control power
 - Transformer magnetization power

- Magnitude and duration are both important
Performance Test Protocol: Foldback

- Reduction in output power due to over-power/over-temperature conditions
- How does unit respond to high input power conditions (e.g., extreme irradiance conditions)
- What conditions lead to thermal foldback, and what is the response
Arco Solar 5.2 MWac
Carrisa Plains
Next Steps

Now:
• Continue to Obtain Industry and User Input and Feedback
• Refine Information Needs and Test Procedures
• Publish Sandia Report
• Submit to IEEE/IEC for Adoption as a Standard

Later:
• Identify Certifying Body
• Develop Certification Requirements
• Define Lab Accreditation Requirements
Conclusion

- Certification Program must be
 - Standardized
 - Cost Effective
 - Flexible
 - Valuable to the Consumer

- These are achievable goals