Progress in High-Efficiency III-V Multijunction Concentrator Solar Cells

Spectrolab, Inc., Sylmar, CA

DOE Solar Program Review Meeting
Denver, Colorado — April 16-19, 2007
• Robert McConnell, Martha Symko-Davies, Fannie Posey-Eddy, Keith Emery, James Kiehl, Tom Moriarty, Wyatt Metzger, Dick Ahrenkiel, Brian Keyes, Manuel Romero – NREL

• Kent Barbour, Mark Takahashi, Andrey Masalykin, Jason Yen, Moran Haddad, Takahiro Isshiki, Hector Cotal, and the entire multijunction solar cell team at Spectrolab

This work was supported in part by the Dept. of Energy through the NREL High-Performance Photovoltaics (HiPerf PV) program (ZAT-4-33624-12), and by Spectrolab.
• Solar spectrum and theoretical efficiency
• **Multijunction** cell architectures capable of >50%
• Metamorphic (MM) semiconductor materials
 ⇒ flexibility in bandgap for multijunction cells
• Experimental results on **metamorphic** (MM) and **lattice-matched** (LM) 3-junction cells over 40% efficiency
• Dislocations and recombination in MM materials
• Bandgap - V_{oc} offset and diode ideality factor for LM and MM
• Highly lattice-mismatched ~1-eV MM GaInAs subcells
• **4-junction** terrestrial concentrator cells with reduced series resistance power losses
Wide-bandgap tunnel junction

Ga(In)As middle cell

Tunnel junction

Buffer region

Ge bottom cell

Lattice-Matched (LM)

Lattice-Mismatched or Metamorphic (MM)
Solar Spectrum Partition for 3-Junction Cell

Current Density per Unit Wavelength (mA/(cm²·μm))

Wavelength (nm)

External Quantum Efficiency (%)

AM1.5D, low-AOD
AM1.5G, ASTM G173-03
AM0, ASTM E490-00a

1.79 eV
1.31 eV
0.67 eV
External QE of LM and MM 3-Junction Cells

- AM1.5D, low-AOD
- AM1.5G, ASTM G173-03
- AM0, ASTM E490-00a
- EQE, lattice-matched
- EQE, metamorphic
3-junction $E_{g1}/E_{g2}/0.67$ eV cell efficiency

- 240 suns (24.0 W/cm²), AM1.5D (ASTM G173-03), 25°C
- Ideal efficiency -- radiative recombination limit

$E_{g1} = \text{Subcell 1 (Top) Bandgap (eV)}$

$E_{g2} = \text{Subcell 2 Bandgap (eV)}$

Disordered GaInP top subcell

Ordered GaInP top subcell

- MM
- LM
- 40.7%
- 40.1%
- 54%
- 52%
- 50%
- 48%
- 46%
- 44%
- 42%
- 40%
- 38%
Record 40.7%-Efficient Concentrator Solar Cell

- Highest solar conversion efficiency for any type of photovoltaic device demonstrated to date
- First solar cell of any kind to reach over 40% efficiency

Concentrator cell light I-V independently verified by J. Kiehl, T. Moriarty, K. Emery – NREL
Lattice-Matched and Metamorphic Cells Over 40%

<table>
<thead>
<tr>
<th></th>
<th>Concentrator Cells</th>
<th>1-sun Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latt.-matched</td>
<td>Metamorphic</td>
</tr>
<tr>
<td>V_{oc}</td>
<td>3.054 V</td>
<td>2.911 V</td>
</tr>
<tr>
<td>$J_{sc/inten.}$</td>
<td>0.1492 A/W</td>
<td>0.1596 A/W</td>
</tr>
<tr>
<td>V_{mp}</td>
<td>2.755 V</td>
<td>2.589 V</td>
</tr>
<tr>
<td>FF</td>
<td>0.881</td>
<td>0.875</td>
</tr>
<tr>
<td>conc.</td>
<td>135 suns</td>
<td>240 suns</td>
</tr>
<tr>
<td>area</td>
<td>0.2547 cm²</td>
<td>0.267 cm²</td>
</tr>
<tr>
<td>Eff.</td>
<td>40.1%</td>
<td>40.7%</td>
</tr>
</tbody>
</table>

Designated-area efficiency at 25C

Total-area efficiency at 25C

AM1.5D, low-AOD spectrum

AM1.5G 1 sun = 0.100 W/cm²
Record Cell Efficiencies for a Variety of PV Technologies

Chart courtesy of Bob McConnell, NREL
3-Junction Theoretical Eff. — Vary \(E_{g1}\) and \(E_{g2}\)

3-junction \(E_{g1}/E_{g2}/0.67\) eV cell efficiency

240 suns (24.0 W/cm\(^2\)), AM1.5D (ASTM G173-03), 25°C

Ideal efficiency -- radiative recombination limit

\(E_{g1} = \) Subcell 1 (Top) Bandgap (eV)

\(E_{g2} = \) Subcell 2 Bandgap (eV)

- **Disordered GaInP top subcell**
- **Ordered GaInP top subcell**

- MM
- LM

Ideal efficiency

38%
42%
44%
46%
50%
52%
54%
40.7%
40.1%
48%
3-junction $E_{g1}/E_{g2}/0.67$ eV cell efficiency

- 240 suns (24.0 W/cm²), AM1.5D (ASTM G173-03), 25°C
- Series resistance and grid shadowing included

E_{g1} = Subcell 1 (Top) Bandgap (eV)
E_{g2} = Subcell 2 Bandgap (eV)

Disordered GaInP top subcell
Ordered GaInP top subcell
3-Junction Efficiency – Based on Expt. Values

3-junction $E_{g1}/E_{g2}/0.67$ eV cell efficiency

240 suns (24.0 W/cm2), AM1.5D (ASTM G173-03), 25°C

Normalized to experimental 3J cell Voc and Jsc

- Disordered GaInP top subcell
- Ordered GaInP top subcell

$E_{g1} =$ Subcell 1 (Top) Bandgap (eV)

$E_{g2} =$ Subcell 2 Bandgap (eV)
Record Cell Performance vs. Concentration

Efficiency (%) and $V_{oc} \times 10$ (V)

Fill Factor (%)

Eff.
- 40.1% LM
- 40.7% MM

$V_{oc} \times 10$
- 38.5%

at 630 suns

FF
- 40.7% MM
- 40.1% LM
- 38.5%

at 630 suns

(1 sun = 0.100 W/cm²)
Jsc vs. Voc Measurements for MM and LM GaInAs and GaInP

- MM GaInAs
- MM GaInP
- MM 3J cell data
- LM GaInAs
- LM GaInP
- LM 3J cell data

- Jo1, Jo2 fit
- sum of Voc, MM 3J subcells
- sum of Voc, LM 3J subcells
Diode Ideality vs. Voltage for MM and LM GaInAs & GaInP

- MM, 8%-In GaInAs
- LM, 1%-In GaInAs
- MM, 56%-In GaInP
- LM, 49.5%-In GaInP
Visualizing Dislocations in III-V Materials
• Low dislocation density in active cell layers in top portion of epilayer stack:
 \[\sim 2 \times 10^5 \text{ cm}^{-2} \] from EBIC and CL meas.

• Dislocations confined to graded buffer layers in bottom portion of epilayer stack
High-Resolution XRD Reciprocal Space Map (RSM)

- GaInP/ 8%-In GaInAs/ Ge metamorphic (MM) cell structure
- Nearly 100% relaxed step-graded buffer → removes driving force for dislocations to propagate into active cell layers
- 56%-In GaInP top cell pseudomorphic with respect to GaInAs middle cell
Dislocation Imaging in 23%-In GaInAs

23%-In GaInAs double heterostructure on Ge

Cathodoluminescence (CL)

\[\text{disloc. density} = 4.4 \times 10^6 \text{ cm}^{-2} \]

Plan-View Transmission Electron Microscopy (TEM)

\[\text{disloc. density} = 3.1 \times 10^6 \text{ cm}^{-2} \]
Time-Resolved PL of LM & MM Double Heterostructures

Indium Mole Fraction of GaInAs Lattice-Matched to Base (%)

\[\tau_{\text{eff}} \text{ Measured by TRPL (ns)} \]

Base Material

Recent data
- nid-GaInAs, recent data
- p-GaInP (disordered)

Previous data
- nid-GaInAs
- nid-GaInP (ordered)
- nid-GaInP (disordered)

\[E_g = 1.407 \text{ eV} \]

\[1.813 \text{ eV} \]

\[1.887 \text{ eV} \]

\[1.311 \text{ eV} \]

\[1.114 \text{ eV} \]

\[0.994 \text{ eV} \]

\[1.736 \text{ eV} \]

\[1.807 \text{ eV} \]

\[1.529 \text{ eV} \]

\[1.619 \text{ eV} \]

Time-resolved PL meas. courtesy of W. Metzger, B. Keyes, and R. Ahrenkiel – NREL
Quantum Eff. of Metamorphic GaInAs and GaInP Cells on Ge

- GaInAs, 1.6% mismatch (no AR, normalized)
- GaInAs, 0.5% mismatch
- GaInAs, 0% mismatch
- GaInP, 0.5% mismatch, disordered
- GaInP, 0% mismatch, disordered

Photon Energy (eV)

Quantum Efficiency (%)
Bandgap - Voltage Offset \((E_g/q) - V_{oc}\) for Single-Junction Solar Cells

\(V_{oc}\) of solar cells with wide range of bandgaps and comparison to radiative limit

- \(V_{oc}\) (V)
- \(E_g/q\) (V)
- \((E_g/q) - V_{oc}\) (V)
- radiative limit

- d-AlGaInP
- 0.97-eV GaInAs
- GaInNAs
- 1.10-eV GaInAs
- 1.24-eV GaInAs
- 1.30-eV GaInAs
- A\text{GaInAs}
- AGaInAs
- d-GaInP
- d-A\text{GaInP}
- d-A\text{GaInP}
- d-A\text{GaInP}
Voc of solar cells with wide range of bandgaps and comparison to radiative limit
Metamorphic (MM) 3-Junction Cells — Inverted 1.0-eV GaInAs Subcell

Growth on both sides of GaAs substrate

Growth on one side of GaAs or Ge substrate, followed by substrate removal
Solar Spectrum Partition for 3-Junction Cell

![Graph showing current density per unit wavelength and external quantum efficiency for different solar spectrum conditions: AM1.5D, low-AOD, AM1.5G, ASTM G173-03, AM0, ASTM E490-00a.](image)
3-Junction Theoretical Eff. — Vary E_{g2} and E_{g3}

3-junction 1.9 eV/ E_{g2}/ E_{g3} cell efficiency
500 suns (50 W/cm2), AM1.5D (ASTM G173-03), 25°C
Ideal efficiency -- radiative recombination limit

E_{g2} = Subcell 2 Bandgap (eV)
E_{g3} = Subcell 3 Bandgap (eV)
4-Junction Terrestrial Concentrator Cell

- Divides available current density above GaAs E_g among 3 subcells instead of 2
- High-voltage, low-current design
- Approx. $2/3$ current density of 3-junction cell
- $(2/3)^2$ or less than half of series resistance loss
 \rightarrow Crucial for concentrators
4-Junction Theoretical Efficiency

4-junction 1.9 eV / E_{g2} / E_{g3} / 0.67 eV cell efficiency

500 suns (50 W/cm²), AM1.5D (ASTM G173-03), 25°C

Ideal efficiency -- radiative recombination limit

E_{g3} = Subcell 3 Bandgap (eV)

E_{g2} = Subcell 2 Bandgap (eV)
External QE – 4-Junction Concentrator Cell

- GaInP subcell 1 (top cell): 1.86 eV
- AlGaInAs subcell 2: 1.62 eV
- GaInAs subcell 3: 1.38 eV
- Ge subcell 4: 0.70 eV
4-Junction Light I-V at 250 Suns – Active and Inactive Ge

<table>
<thead>
<tr>
<th></th>
<th>3J Concentrator Cells</th>
<th>4J Concentrator Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latt.-matched</td>
<td>Metamorphic</td>
</tr>
<tr>
<td></td>
<td>4J Cell</td>
<td>Inactive Ge (3J)</td>
</tr>
<tr>
<td>V_{oc}</td>
<td>3.089</td>
<td>2.922</td>
</tr>
<tr>
<td>J_{sc}/inten.</td>
<td>0.1431</td>
<td>0.1575 A/W</td>
</tr>
<tr>
<td>V_{mp}</td>
<td>2.749</td>
<td>2.565</td>
</tr>
<tr>
<td>FF</td>
<td>0.882</td>
<td>0.855</td>
</tr>
<tr>
<td>conc.</td>
<td>236</td>
<td>179</td>
</tr>
<tr>
<td>area</td>
<td>0.269</td>
<td>0.378 cm2</td>
</tr>
<tr>
<td>Eff.</td>
<td>39.0%</td>
<td>39.3%</td>
</tr>
</tbody>
</table>

Aperture-area efficiency, 25C
AM1.5D, low-AOD spectrum
Independently confirmed meas.

Aperture-area efficiency, 25C
AM1.5D ASTM G173-03
Preliminary measurement
5- and 6-Junction Cells

- Divides available current density above GaAs E_g among 3-4 subcells
- Allows low-current GaInNAs cell to be matched to other subcells
- Lower series resistance

Ref.: U.S. Pat. No. 6,316,715, Spectrolab, Inc., filed 3/15/00, issued 11/13/01.
• Energy generation increases from 3J → 4J → 5J → 6J, due to series res., better use of spectrum
• Large difference between 5J and 6J due to inclusion of ~1-eV subcell
• $\eta > 50\%$ achievable by solar spectrum division in MJ cells with the right subcell bandgaps

• **4-6 junction** terrestrial cells \rightarrow strong advantage at high concentrations from lower series resistance losses \rightarrow **35.7%** 4J conc. cell measured

• **Metamorphic materials give new opportunity for bandgap engineering**
 ✓ High V_{oc} and τ demonstrated on **1.1-eV** and **1.3-eV** MM GaInAs subcells

• Faster voltage increase with ↑ incident intensity meas. for MM cells

• New heights in terrestrial concentrator cells reported here:
 • **40.7%** metamorphic (MM) 3J cell
 • **40.1%** lattice-matched (LM) 3J cell

\rightarrow **First solar cells to reach over 40%**

\rightarrow Highest solar conversion efficiency for PV device of any kind to date

\rightarrow **Metamorphic cells now exceed best lattice-matched designs**