Concentrating Solar Power Systems Analysis & Implications

> Henry Price, PE SunLab/NREL

Parabolic Trough & Power Tower Technology Assessment

CSP Program Status SunLab Technology Assessments Power Towers & Parabolic Troughs Sargent & Lundy Review due-diligence technology review National Academy of Science Review of S&L Report

Overview CSP Systems Approach

- Solar Resource
- Power Markets
- Parabolic Trough Case Study

	L				_
- 11	7/1)	2	n	12
	<i></i> / '	~'	~	υų	~

U.S. DNI Solar Resource

NREL Siting Studies

12/12/2002

Land with Slope <1%

State Resource	≥6 kWh/m²-day	≥7 kWh/m²-day	
(Area km) Arizona	53,460	21,407	
California	26,793	11,073	
Colorado	13,327	157	
Idaho	1,284	-	
Kansas	9,947	-	
Nevada	26,137	6,122	
New Mexico	74,350	15,603	
Oklahoma	6,408	-	
Oregon	2,405	-	
Texas	70,869	732	
Utah	18,919	4,612	
Wyoming	2,428	-	
Tota	al 306,325	59,706	
	1% of Lar	nd dav	

~30 GWe

CSP Analysis & Implications

Power Markets for CSP

Market Characteristics

- Focus on US Southwest
- Large-scale centralized generation
- Wholesale power market
- Competition
 - Fossil Fuel Costs
 - Electricity Cost Projections
- Value of Solar Power
 - Ability to dispatch to meet peak load

SW Natural Gas Forecast

Platts Research and Consulting

Gas Price Forecast Comparison Platts vs. EIA AEO 2002

SW Coal Costs

Platts Research and Consulting

- Air Quality constraints limit development of new coal power plants
- No Growth in Coal Demand
- Coal prices are reduced through mining productivity enhancements

Conventional Technology Cost of Electricity (New Plants)

	Service	Lowest Cost When Used	<i>Corresponding Cost \$/MWh</i>
Pulverized Coal	Baseload	60-100%	\$41 to \$28
Combined Cycle	Intermediate	20-60%	\$75 to \$41
Combustion Turbine	Peaking	0-20%	\$75*
*At a 20% capacity	factor.		
	Sou	urce: Platts Rese	arch & Consulting
2/12/2002	CSP Analysis & Im	olications	11

Conventional Technology Cost of Electricity (New Plants)

	Capacity Factor	Low Fuel Price \$/MWh	<i>Base Fuel Price \$/MWh</i>	High Fuel Price \$/MWh
Pulverized Coal	85%	30.7	31.2	32.0
Combined Cycle	60%	34.6	40.9	56.3
Combustion Turbine	10%	99.7	109.9	135.2
		Source: F	Platts Researc	h & Consultin
2/12/2002	CSP Analy	sis & Implication	S	1

California System Load Profile

California System Load Profile Data from 1999 CalPX

Solar Plant

with Thermal Storage

Wholesale Value Analysis

Case	Capacity	Average Price
	Factor	Received
	(%)	(\$/MWh)
Average Price	100	41.17
Trough Plant No TES, SM 1.0	25.2	47.34
Trough Plant With 4 hrs TES, SM 1.5	34.1	53.40
Hybrid Trough	50.3	56.17
Wind Plant		??
	Natural Gas Pric	e \$3.87/MMBtu
	Source: Platts Resea	rch and Consulting
2/12/2002 CSP Analysis & I	mplications	18

Market Conclusions

- Baseload Power 3 to 4¢/kWh
- Intermediate Load 3.5 to 5.5¢/kWh
- Green Adder 0.5 to 1.0¢/kWh*

Value of CSP 4-6¢/kWh

12/12/2002

CSP Analysis & Implications

Trough LEC Learning Curve

How low can it go?

SEGS I-IX, 354 MWe of Trough Power Plants

Trough Technology Assessment

- Integrated performance model
 Define baseline assumptions
- Define current state-of-the-art
- Define avenues for cost reduction
- Development scenarios

Systems Analysis Approach

Integrated Trough Performance Model

Trough Baseline Assumptions

Trough Performance Baseline

SunLab Trough Performance Model

Trough Capital Cost Baseline

Trough O&M Cost Baseline KJC Operating Company

Baseline Economic Assumptions

DOE LCOE Methodology

- 2002 real dollars
- IPP Project Financing
 - 30 year cash flow model
 - Current financial incentives
 - Sargent & Lundy financial assumptions

SEGS VI Baseline

Site: Kramer Junction	Solar	Hybrid
	Only	(25%)
Plant size, net electric [MWe]	30	30
Collector Aperture Area [km ²]	0.188	0.188
Thermal Storage [hours]	0	0
Solar-to-electric Efficiency. [%]	10.6%	10.7%
Plant Capacity Factor [%]	22.2%	30.4%
Capital Cost [\$/kWe]	3008	3204
O&M Cost [\$/kWh]	0.046	0.034
Fuel Cost [\$/kWh]	0.000	0.013
Levelized Cost of Energy [2002\$/kWh]	0.170	0.141

Near-Term Technology

Parabolic Trough Plant

Current State-of-the-Art 50 MWe Trough Plant

Site: Kramer Junction	Solar	Hybrid
	Only	(25%)
Plant size, net electric [MWe]	50	50
Collector Aperture Area [km ²]	0.312	0.312
Thermal Storage [hours]	0	0
Solar-to-electric Efficiency. [%]	13.9%	14.1%
Plant Capacity Factor [%]	29.2%	39.6%
Capital Cost [\$/kWe]	2745	2939
O&M Cost [\$/kWh]	0.024	0.018
Fuel Cost [\$/kWh]	0.000	0.010
Levelized Cost of Energy	0.110	0.096
[2002\$/kWh]		

12/12/2002

Opportunities for Reducing the Cost of Energy

Concentrator Design Advanced Receiver Technology Thermal Energy Storage Plant Size Design Optimization/Standardization Power Park Competition Financial

Trough Concentrator Cost Reduction Opportunities

LS-2 Baseline Reduce Costs Increase Size Optimized Structure Competition Improved Performance Increase mirror reflectivity Increase cleanliness

Trough Concentrator Current Development

Duke Solar Concentrator

12/12/2002

CSP Analysis & Implications

36

Concentrator Size

Impact on Cost of Energy

Site: Kramer Junction	LS-2	LS-3	LS-3
	50	100	150
Aperture (m)	5	5.75	5.75
Length (m)	50	100	150
Aperture Area (m ²)	235	545	818
Number of collectors relative to LS-2 size collector	100%	43%	29%
Number of receivers relative to LS-2 size collector	100%	87%	87%
Est. Collector Cost (\$/m ²)	233	208	202
Levelized Cost of Energy 2002\$/kWh	0.110	0.103	0.102

12/12/2002

CSP Analysis & Implications

Solel UVAC Receiver

Test Results

Trough Receiver Technology

Impact on the Cost of Energy

Thermal Storage

Developments

Near-term Option

- Two Tank Molten Salt Storage
 - Leveraged experience from Solar Two's TES.
 - Heat transferred via an oil-to-salt HX.

Advanced Technologies

- Thermocline Molten Salt System
 - Single tank. Hot and cold separated with thermal gradient.
 - Low-cost filler material
 - Design and operation more compex than 2-tank

Molten Salt HTF/Storage

- Increased operating temperature (450-500C), reduced piping cost, reduced parasitics
- Freeze protection of fluid (120C), SCA interconnection, increased O&M complexity

Advanced HTF

12/12/2002

- Imidazolium salts have potential to be thermally stable to above 400 C with very low freezing point
- Compatible with alloys used in solar plants, nonflamable, low vapor pressure
- Cost and temperature stability issues

CSP Analysis & Implications

Solar Two Molten Salt Thermal Storage

Prototype Thermocline Storage

Thermal Storage Design Optimization Impact on Cost of Energy

Near-Term 50 MWe Trough Plant

Thermal Storage Technology

Impact on Cost of Energy

Plant Size

Impact on Cost of Energy

Solar Resource

Impact on Cost of Energy

	DNI	LCOE	Source
Site	Resource		
	kWh/m ² day	\$/kWh	
Kramer Junction, CA	8.0	0.110	a
Daggett, CA	7.6	0.115	b
Las Vegas, NV	7.1	0.125	b
Phoenix, AZ	6.9	0.124	b
El Paso, TX	6.8	0.127	b
Cedar City, UT	6.4	0.147	b
Reno, NV	6.4	0.147	b

b – NREL TMY 2 Data, http://rredc.nrel.gov/

Cost of Capital

Impact on Cost of Energy

Tax Incentives

Impact on Cost of Energy

Trough Development Scenario

	SEGS	Near-	Mid-	Long-
	VI 1989	Term	Term	Term
Plant Size: MWe	30	50	100	400
Solar Multiple	1.2	1.5	2.5	2.5
Collector	LS-2	LS-2	LS-3+	Adv
Receiver	Luz	UVAC2	Adv	Adv
HTF	VP-1	VP-1	Salt	Salt
	390 C	390 C	450 C	500 C
ΓES	NA	NA	12 hrs	12 hrs
			TC Dir	TC Dir
apacity Factor	22%	30%	56%	56%
Solar to Electric η	10.6%	13.4%	16.2%	17.2%
Cost Reduction			5%	20%
Capital Cost \$/kWe	2954	2865	3416	2225
D&M Cost \$/kWh	0.0462	0.0233	0.0103	0.0057

12/12/2002

CSP Analysis & Implications

Trough Development Scenario Cost of Energy

Trough Development Scenario

Breakdown of Cost Reduction

Trough Power Plant Scenarios

with Different Financing Assumptions

Conclusions

CSP Systems Analysis & Implications

