Sulfur Based Thermochemical Heat Storage for Baseload Concentrating Power

General Atomics (GA) German Aerospace Center (DLR) Staff

Award Number: DE-EE0003588

CSP Program Review 18th May, 2011

- Project Description and Objectives
- Thermodynamic Modeling
- Laboratory Results
- Process Pathways and System Efficiency
- Summary
- Future Work

Project Goals

 Demonstrate the engineering and economic feasibility of using sulfur to support baseload operation of a solar electricity plant

	Reaction	Temp (C)	∆H (kJ/mole)
Sulfuric Acid Decomposition	$2H_2SO_4 \rightarrow 2H_2O(g) + 2SO_3(g)$	450 – 500	560
	$2SO_3 \rightarrow O_2(g) + 2SO_2(g)$	700 – 800	
Disproportionation Reaction	$\begin{array}{l} 2H_2O(l) + 3SO_2(g) \rightarrow \\ 2H_2SO_4(aq) + S(s,l) \end{array}$	50 – 200	-260
Sulfur Combustion	$S(s,I) + O_2(g) \rightarrow SO_2(g)$	500 – 1200	-300

All chemical reactions have been demonstrated

The baseline concept decouples thermochemcial process from electricity generation

SENERAL ATOMICS

Phase I Objective – Maximize the sulfur generation rate and establish a baseline system design

Thermodynamic modeling is used to guide disproportionation reaction experiments

- Design of Experiments
 - HSC Chemistry
 - Aspen Plus advanced sulfuric acid model
- Preliminary optimization
 - Aspen Plus advanced sulfuric acid model
 - OLI Systems electrolytes model
- Final optimization
 - Custom model based on experimental data

Aspen Plus results showed sulfur yield is suppressed by temperature but enhanced by pressure

Sulfur yield

- Optimal H₂O: SO₂ ratio enhances sulfur yield
- Too much water can reduce SO₂ activity resulting in lower sulfur yield
- Too little water suppresses reaction resulting in lower H_2SO_4 formation

H₂O:SO₂ ratio and pressure effects predicted by thermodynamic model were qualitatively verified

- High H₂O:SO₂ ratio enhance sulfur generation
- A minimum pressure is required for sulfur generation

Catalysts have been used to enhance sulfur generation

• Thiosulfates, metal sulfates and hydroxides have all shown catalytic activities in this system

Disproportionation reaction is affected by a number of factors

 Laboratory studies to find the optimal parameters for fast reaction kinetics is on going

Several process pathways were considered in devising the initial Sulfur TES flowsheet

- Rankine steam power cycle
 - High process heat available (~900°C) not an optimal fit for steam cycle alone
- Supercritical CO₂ power cycle
 - Large gas-gas heat exchangers may be required for high efficiency
 - Development work remains
- Methods for sulfuric acid concentration
 - Solar trough heat
 - > SO_2 conversion to SO_3

The current Sulfur TES flowsheet is based upon a combined-cycle power plant with SO₂ conversion

The combined cycle power plant concept is well established and is very efficient

- Electrical conversion efficiency of heat supplied to the power plant is ~50%
- Overall efficiency of electricity generation from solar heat supplied to thermochemical process is about 27%
- Losses in disproportionation reactor and in sulfuric acid decomposer account for the difference

Sulfuric acid concentration can be done via conversion of SO₂ to SO₃

- Avoids construction of a separate solar trough plant
- Allows this process to leverage established sulfuric acid production equipment and techniques
- SO₂ converter units generate recoverable heat, increasing efficiency

TES is done via storage of dry sulfur

- Hot (molten) sulfur storage not necessary
- Dry sulfur delivered via hopper to combustor
- Sulfur is melted in combustor before atomizing/spraying into burner

- Process parameters boundaries were defined by thermodynamic models
- Laboratory results qualitatively agreed with thermodynamic models
- Sulfur yield was enhanced by using catalysts
- Flowsheet design focused on minimizing impact of thermochemical losses

Future Work

- Define the pressure, temperature and H₂O:SO₂ ratio for optimal reaction kinetics and system design
- Identify the catalyst(s) to be used
- Demonstrate a sulfur extraction methodology
- Establish reactor and system design concepts
- Determine the economics of the proposed system

Sulfur as a TES medium is truly unique

- Provides process heat at temperatures higher than collected at solar receiver
- Uncomplicated storage method

Allows for seasonal storage if desired

