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Project Goals

• Demonstrate the engineering and economic feasibility 
of using sulfur to support baseload operation of a solar 
electricity plant

Reaction Temp ( C) ∆H 
(kJ/mole)

Sulfuric Acid 
Decomposition

2H2SO4 → 2H2O(g) + 
2SO3(g) 450 – 500 560

2SO3 → O2 (g) + 2SO2(g) 700 – 800

Disproportionation  
Reaction

2H2O(l) + 3SO2(g) → 
2H2SO4(aq) + S(s,l) 50 – 200 -260

Sulfur Combustion S(s,l) + O2(g) → SO2(g) 500 – 1200 -300

• All chemical reactions have been demonstrated



The baseline concept decouples thermochemcial
process from electricity generation 

•storage of sulfur 
and H2SO4 is 
simple and 
inexpensive



Disproportionaton
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Thermodynamics
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• Catalysts
• Sulfur Extraction

Phase I Objective – Maximize the sulfur generation 
rate and establish a baseline system design
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Phase I began in September 2010 
and the duration is 18 months



Thermodynamic modeling is used to guide 
disproportionation reaction experiments

HSC 
Chemistry Aspen Plus Aspen Plus 

OLI

• Design of Experiments
– HSC Chemistry
– Aspen Plus advanced sulfuric acid model

• Preliminary optimization
– Aspen Plus advanced sulfuric acid model
– OLI Systems electrolytes model

• Final optimization
– Custom model based on experimental data



Aspen Plus results showed sulfur yield is suppressed by 
temperature but enhanced by pressure

• Optimal H2O: SO2 ratio enhances sulfur yield
• Too much water can reduce SO2 activity resulting in 

lower sulfur yield
• Too little water suppresses reaction resulting in lower 

H2SO4 formation



H2O:SO2 ratio and pressure effects predicted by 
thermodynamic model were qualitatively verified

• High H2O:SO2 ratio enhance sulfur generation  
• A minimum pressure is required for sulfur generation



Catalysts have been used to enhance sulfur 
generation

• Thiosulfates, metal sulfates and hydroxides have 
all shown catalytic activities in this system 



Disproportionation reaction is affected by a number 
of factors

Sulfur

High Pressure
>200psi

H2O:SO2
ratio >2

Temperature
>100°C

Catalysts
Thoisulfates

MnSO4
NH4OHSolution pH

SO2 solubility

• Laboratory studies to find the optimal parameters 
for fast reaction kinetics is on going



Several process pathways were considered in 
devising the initial Sulfur TES flowsheet

• Rankine steam power cycle
 High process heat available (~900⁰C) not an 

optimal fit for steam cycle alone

• Supercritical CO2 power cycle
 Large gas-gas heat exchangers may be required 

for high efficiency
 Development work remains

• Methods for sulfuric acid concentration
 Solar trough heat
 SO2 conversion to SO3



The current Sulfur TES flowsheet is based upon a 
combined-cycle power plant with SO2 conversion
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The combined cycle power plant concept is well 
established and is very efficient

• Electrical conversion efficiency of heat 
supplied to the power plant is ~50%

• Overall efficiency of electricity generation from 
solar heat supplied to thermochemical process 
is about 27%

• Losses in disproportionation reactor and in 
sulfuric acid decomposer account for the 
difference



Sulfuric acid concentration can be done via 
conversion of SO2 to SO3

• Avoids construction of a separate solar trough 
plant

• Allows this process to leverage established 
sulfuric acid production equipment and 
techniques

• SO2 converter units generate recoverable heat, 
increasing efficiency



TES is done via storage of dry sulfur

• Hot (molten) sulfur 
storage not necessary

• Dry sulfur delivered via 
hopper to combustor

• Sulfur is melted in 
combustor before 
atomizing/spraying 
into burner



Summary

• Process parameters boundaries were defined 
by thermodynamic models

• Laboratory results qualitatively agreed with 
thermodynamic models 

• Sulfur yield was enhanced by using catalysts 

• Flowsheet design focused on minimizing 
impact of thermochemical losses



Future Work

• Define the pressure, temperature and H2O:SO2
ratio for optimal reaction kinetics and system 
design

• Identify the catalyst(s) to be used 

• Demonstrate a sulfur extraction methodology

• Establish reactor and system design concepts

• Determine the economics of the proposed 
system



Sulfur as a TES medium is truly unique

• Provides process heat at 
temperatures higher than 
collected at solar 
receiver

• Uncomplicated storage 
method

• Allows for seasonal 
storage if desired
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