## INFINIA

#### FOCUS YOUR ENERGY

Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish Engine Solar Power Generation Contract Number DE-FC36-08GO18157

February 9, 2010

## Objectives

- Demonstrate the practicality of integrating thermal energy storage (TES), using a thermal salt phase-change material (PCM), with a dish-Stirling system
- When developed the TES module is expected to lower the overall LCOE of the system
- Provide preliminary design for 1-hour demonstrator and LCOE estimate by the end of Phase 1
- Build and demonstrate 1-hour on-sun prototype by the end of Phase 2
- Deliver and field test a statistically significant number of 4-6 hour storage systems by the end of Phase 3

| Phase 1                                                                                                                                                                                                                                                                                                                                                                  | Phase 2                                                                                                                                                                                                                                                                                           | Phase 3                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Develop a preliminary design of the TES module</li> <li>Develop preliminary interface design for existing 3-kW CSP system</li> <li>Conduct manufacturing cost analysis</li> <li>Assess the impact of TES on the LCOE of a 3-kW CSP system</li> <li>Determine residual technical barriers and revise the Phase 2 and Phase 3 task details accordingly</li> </ul> | <ul> <li>Complete Design Documentation</li> <li>Develop test plan</li> <li>Complete prototype TES/CSP<br/>fabrication and assembly</li> <li>Test and evaluate TES/CSP<br/>prototype on-sun</li> <li>Complete increased dish capacity<br/>design</li> <li>Develop refined LCOE analysis</li> </ul> | <ul> <li>Complete design refinement</li> <li>Complete larger dish integration</li> <li>Manufacture field units</li> <li>Install and commission units</li> <li>Conduct field endurance testing</li> <li>Verify TES functionality         <ul> <li>Round trip efficiency (&gt;93%)</li> <li>Cost (&lt;\$15/kWhT)</li> <li>Dispatchable power</li> <li>Expanded operational time</li> </ul> </li> <li>Conduct final LCOE analysis based on manufacturing data</li> </ul> |

### **Timeline and Milestones**

|       |                                           | 2009 |   |   |   |   |   |   |   |   |    |    |      | 2010 |   |   |   |   |   |   |   |   |    |      |    | 2011 |   |   |   |   |   |   |   |
|-------|-------------------------------------------|------|---|---|---|---|---|---|---|---|----|----|------|------|---|---|---|---|---|---|---|---|----|------|----|------|---|---|---|---|---|---|---|
| Phase | Task                                      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12   | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11   | 12 | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|       | 1-TES Preliminary Design                  |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |
| 1     | 2-Engine Interface Design                 |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |
|       | 3-System Integration Design               |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |
|       | 4-LCOE Analysis                           |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |
|       | 5-Project Management and Reporting        |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |
| 2     | 1-Detailed Integrated Design              |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |
|       | 2-Fabricate, Integrate TES/CSP System     |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |
|       | 3-Increased Dish Capacity Design          |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |
|       | 4-Test and Evaluate TES/CSP Prototype     |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |
|       | 5-LCOE Refinement                         |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |
|       | 6-Project Management and Reporting        |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |
|       |                                           | 2010 |   |   |   |   |   |   |   |   |    |    | 2011 |      |   |   |   |   |   |   |   |   |    | 2012 |    |      |   |   |   |   |   |   |   |
|       | 1-Refine TES Design, Integrate Large Dish |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |
| 3     | 2- Produce Field TES/CSP Sytems           |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |
|       | 3- Install and Commission Field Systems   |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |
|       | 4- Field/Endurance Testing                |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |
|       | 5-LCOE Verification                       |      |   |   |   |   |   |   |   |   |    |    |      |      |   |   |   |   |   |   |   |   |    |      |    |      |   |   |   |   |   |   |   |

#### **Completed Milestones**

- Phase 1
  - Completed all activities, end of September 2009
- Phase 2
  - Continuation Application go ahead November 2009

## Phase 1 Background:

- Task 1: TES Preliminary Design
  - Identify target storage capacity and efficiency for demonstrator and field units: 1 hr. demonstrator, 4-6 hr. field unit; round trip thermal efficiency >93%
  - Salt selection by trade study from 83 initial candidates: considered melting temperature, cost, size, weight, material impact – down selected to one salt
  - TES Design Considerations:
    - Infinia and Thermacore conducted two workshops at Infinia and brainstormed concepts for further evaluation; trade-offs of cost, weight, technical challenges
    - Thermal analyses were conducted to evaluate salt melting/freezing characteristics
    - Began material compatibility investigation for TES components
    - Developed 11 TES field system concepts Considered all options
    - Evaluated how to control heat transfer into TES from solar concentrator and out of TES to engine at various times
    - Trade off study of cost, weight, technical challenges, configurations
    - Weight of TES versus additional structural requirements
    - TES container material compatibilitywith salt versus costs
    - Controlling heat transfer during different conditions
    - Cost and efficiency of insulation versus heat storage duration

## Phase 1 Background Continued:

- Task 2: Engine Interface Design
  - Engine and TES mounting and support; heat transfer to engine heater head
- Task 3: System Integration Design
  - Heat drive mounting and dish
- Task 4: LCOE Analysis
  - High volume manufacturing analysis
- Task 5: Project Management and Reporting

### **Demonstrator Prototype Design**

- Demonstrator is based on a modified Infinia commercial 3kW CSP system
- TES module is integrated with the Stirling engine



### **Demonstrator Prototype Design**



- PCM volume is sized to generate 3kWh net electric power
- Heat is delivered to, and extracted from, the salt via a system of high-temperature heat pipes embedded in the TES module.
- TES module serves as a "buffer"; excessive insolation energy is absorbed by salt, and will also enable full engine output during cloud transients



### Engine/TES Module

- Heat pipe arrangement permits simultaneous operation of the engine while charging the salt as soon as solar energy is available
- TES system is passive, requiring no pumps, valves or other parasitic loads to operate
- Direct coupling to engine increases thermal efficiency



### Engine/TES Module

- Commercial engine heater head modified to add a weld ring which serves as the structural interface with the TES module
- Modified heater head has been successfully prototyped



FOCUS YOUR ENERGY

### **Thermal Modeling**

- Computer modeling and analysis of transient thermal response performed by The Pennsylvania State University's Applied Research Laboratory
- Heat pipe configuration iterated to optimize heat transfer to/from phase change salt, and to ensure desired energy split between engine and salt mass is achieved
- Results correlate well with bulk analysis methods



### **Thermal Modeling**

• TES module salt volume is designed to be fully charged to 700°C after approximately 8 hours



FOCUS YOUR ENERGY

### **Thermal Modeling**

- Analysis of Stirling engine performance as a function of hot end temperature
- Analysis of Stirling engine performance and power produced as a function of salt temperature



FOCUS YOUR ENERGY

# LCOE

- Two concepts examined at the 4-6 hour size
- Resulting LCOE drops from 15¢/kWh to 12.5¢/kWh (17% reduction in LCOE) as a result of TES addition
- Cost estimates used were conservative, but when compared to projected cost of natural gas production numbers are roughly on par with expected conventional generation.

## Thank you

**US Headquarters** 6811 West Okanogan Place Kennewick, WA 99336 www.infiniacorp.com

Albuquerque

Los Angeles

Madrid

New Delhi

Tokyo

Washington DC